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OSCILLATION CRITERIA OF CERTAIN THIRD

ORDER NEUTRAL DIFFERENTIAL EQUATIONS

MINGMEI SU AND ZHITING XU

(Communicated by Leonid Berezansky)

Abstract. This paper deals with the oscillation of the following third order neutral delay differ-
ential equation

(r(t)|z′′(t)|α−1z′′(t))′ +q(t)|x(τ(t))|α−1x(τ(t)) = 0,

where t � t0 , α > 0 and z(t) = x(t) + p(t)x(δ (t)) . We will establish some new sufficient
conditions which insure that any solution of this equation oscillates or converges to zero. Two
examples are also provided to illustrate the relevance of the main results.

1. Introduction

Consider the third order neutral delay differential equation

(r(t)|z′′(t)|α−1z′′(t))′ +q(t)|x(τ(t))|α−1x(τ(t)) = 0, (1.1)

where t � t0 , α > 0 is a fixed constant and z(t) = x(t)+ p(t)x(δ (t)) . Throughout this
paper, we assume that:

(A1) p(t),q(t) ∈C([t0,∞),R) with −μ � p(t) � p < 1 for μ ∈ (0,1) and q(t) � 0;

(A2) r(t) ∈C1([t0,∞),(0,∞)) with r′(t) � 0 and
∫ ∞
t0

r−1/α(s)ds = ∞ ;

(A3) δ (t),τ(t)∈C([t0,∞),R) with δ (t) � t , τ(t) � t , limt→∞ δ (t) = limt→∞ τ(t) = ∞ .

By a solution of Eq.(1.1) we mean a function x(t) ∈C1([Tx,∞),R) , Tx � t0 , which
has the property r(t)|z′′(t)|α−1z′′(t) ∈ C1([Tx,∞),R) and satisfies Eq.(1.1) for all t �
Tx . We consider only those solutions x(t) of Eq.(1.1) which satisfy

sup{|x(t)| : t � T} > 0 for all t � Tx.

We assume that Eq.(1.1) possesses such a solution [13]. As is customary, a solution of
Eq.(1.1) is said to be oscillatory if it has arbitrarily large zeros. Otherwise, it is said to
be nonoscillatory.

Neutral delay differential equations have applications to electric networks contain-
ing lossless transmission lines. Such networks appear in high speed computers where
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lossless transmission less are used to interconnect switching circuits. They also occur in
problems dealing with vibrating masses attached to elastic bar and in some variational
problems, see [13].

The problem of the oscillation of solutions of differential equations has been
widely studied by many authors and by many techniques since the pioneering work
of Sturm on second order linear differential equations. In the past 30 years, the os-
cillation theory for second order neutral delay differential equations and third-order
retarded delay differential equations have been well developed; see, for example, the
monographs [4, 10] and papers [1, 2, 5, 7, 8, 9, 11, 15] as well as the references cites
therein. Compared to second order neutral delay differential equations, it seems that
not much work has been done concerning with the oscillation and asymptotic of third
order neutral differential equations [3, 12]. Very recently, Baculı́ková and Džurina [3]
have studied the oscillation behavior of Eq.(1.1) and extended Nehari’s theorems [14]
to Eq.(1.1).

Motivated by the recent works [3, 6], in this paper, we will establish some new
sufficient conditions which insure that any solution of Eq.(1.1) oscillates or converges
to zero. The theorems obtained here extend the main theorems [6] to Eq.(1.1) and
complement the existing results in [3]. Finally, two examples are also provided to
illustrate the relevance of the main results.

2. Oscillation criteria for 0 � p(t) � p < 1

In this section, we will establish some oscillation criteria for Eq.(1.1) in the case
when 0 � p(t) � p < 1. In order to prove our main results, we need the following
lemmas.

LEMMA 2.1. (see [3, Lemma 1]) Let x(t) be a positive solution of Eq.(1.1). Then
there are only the following two cases for z(t):

(i) z(t) > 0 , z′(t) > 0 , z′′(t) > 0 ;

(ii) z(t) > 0 , z′(t) < 0 , z′′(t) > 0 ,

for t � t1 , where t1 is sufficiently large.

LEMMA 2.2. (see [3, Lemma 2]) Let x(t) be a positive solution of Eq.(1.1) and
z(t) satisfy Lemma 2.1(ii) . If∫ ∞

t0

∫ ∞

v

[ 1
r(u)

∫ ∞

u
q(s)ds

]1/α
dudv = ∞, (2.1)

then limt→∞ x(t) = limt→∞ z(t) = 0 .

LEMMA 2.3. (see [3, Lemma 3]) Let u(t)∈C2([t0,∞),R) . Assume that u(t) > 0 ,
u′(t) � 0 , and u′′(t) � 0 on [t0,∞) . Then for each k1 ∈ (0,1) there exist a T1 � t0 such
that

u(τ(t))
u(t)

� k1
τ(t)
t

, t � T1.
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LEMMA 2.4. Let z(t)∈C3([t0,∞),R) . Assume that z(t) > 0 , z′(t)> 0 , z′′(t)> 0 ,
z′′′(t) � 0 on [t0,∞) . Then for each k2 ∈ (0,1) there exist a T2 � t0 such that

z(t) � 1
2
k2tz

′(t), t � T2.

The proof of this lemma proceeds along the lines of that of [3, Lemma 4] and
hence is omitted.

For simplicity, for each k1 , k2 ∈ (0,1) , define

Q(t) =
(k1k2

2

)α(τ2(t)
t

)α
[1− p(τ(t))]αq(t), t � t0.

LEMMA 2.5. Let x(t) be a positive solution of Eq.(1.1) and z(t) satisfy Lemma
2.1(i). Then for each k1,k2 ∈ (0,1) , there exist a T3 ∈ [t0,∞) and a positive function
w(t) defined on [T3,∞) such that for t � T3 ,

∫ ∞

t
Q(s)ds < ∞,

∫ ∞

t

(wα+1(s)
r(s)

)1/α
ds < ∞, (2.2)

and

w(t) �
∫ ∞

t
Q(s)ds+ α

∫ ∞

t

(wα+1(s)
r(s)

)1/α
ds. (2.3)

Proof. Without loss of generality, we assume that x(t) > 0, x(δ (t)) > 0, x(τ(t)) >
0 for t � t2 � t0 and z(t) satisfies Lemma 2.1(i) . Note that

x(t) = z(t)− p(t)x(δ (t)) > z(t)− p(t)z(δ (t)) � (1− p(t))z(t),

which follows from (1.1) that

(r(t)|z′′(t)|α−1z′′(t))′ � −q(t)[1− p(τ(t))]αzα(τ(t)), (2.4)

so,
(r(t)|z′′(t)|α−1z′′(t))′ � 0.

The last inequality together with r′(t) � 0 and z′′(t) > 0 gives z′′′(t) � 0. So there
exists a t3 � t2 such that z(t) satisfies:

z(τ(t)) > 0, z′(t) > 0, z′′(t) > 0 and z′′′(t) � 0, t � t3.

Define

w(t) = r(t)
(z′′(t)

z′(t)

)α
, t � t3. (2.5)

Obviously, w(t) > 0. By (2.4),

w′(t) =
(r(t)(z′′(t))α )′

(z′(t))α −αr(t)
(z′′(t)

z′(t)

)α+1

� −q(t)[1− p(τ(t))]α
(z(τ(t))

z′(t)

)α −α
(wα+1(t)

r(t)

)1/α
. (2.6)
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From Lemma 2.3 with u(t) = z′(t) , for k1 the same as in Q(t) ,

1
z′(t)

� k1
τ(t)
t

1
z′(τ(t))

, t � T1 � t2, (2.7)

and by Lemma 2.4, for k2 the same as in Q(t) , by (2.7),

z(τ(t))
z′(t)

� k1
τ(t)
t

z(τ(t))
z′(τ(t))

� k1k2

2
τ2(t)

t
, t � t4 � t3. (2.8)

Combining (2.6) and (2.8), we get

w′(t) � −Q(t)−α
(wα+1(t)

r(t)

)1/α
, t � t4.

Integrating the above inequality from t to T , T � t4 , we obtain

w(T )−w(t)+
∫ T

t
Q(s)ds+ α

∫ T

t

(wα+1(s)
r(s)

)1/α
ds � 0. (2.9)

We now claim that
∫ ∞
t Q(s)ds < ∞ . Otherwise, it follows from (2.9) that

w(T ) � w(t)−
∫ T

t
Q(s)ds →−∞ as T → ∞,

which is a contradiction. Hence the claim is proved. Similarly, we can show

∫ ∞

t

(wα+1(s)
r(s)

)1/α
ds < ∞, t � t4. (2.10)

By (2.6), limt→∞ w(t) = w∗ � 0 exists. In view of (2.10), we have w∗ = 0. Letting
T → ∞ in (2.9), (2.3) holds. This completes the proof. �

Define a sequence of functions {An(t)}∞
n=0 as

A0(t) =
∫ ∞

t
Q(s)ds, t � t0,

and

An(t) = α
∫ ∞

t

(Aα+1
n−1 (s)
r(s)

)1/α
ds+A0(t), t � t0, n = 1,2, · · · . (2.11)

In induction method, it is easy to prove that (2.11) is a nondecreasing, i.e.,

An(t) � An+1(t), t � t0, n = 1,2, · · · . (2.12)

LEMMA 2.6. Let x(t) be a positive solution of Eq.(1.1) and z(t) satisfy Lemma
2.1(i). Then there exist a T4 ∈ [t0,∞) and a positive function A(t) defined on [T4,∞)
such that limn→∞ An(t) = A(t) for t � T4 . Furthermore,

A(t) = α
∫ ∞

t

(Aα+1(s)
r(s)

)1/α
ds+A0(t), t � T4. (2.13)
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Proof. By Lemma 2.5, for each k1 , k2 ∈ (0,1) , there exist a T3 ∈ [t0,∞) and a
positive function w(t) such that (2.3) holds. Consequently, w(t) � A0(t) for t � T3 .
Inductively, we can get w(t) � An(t) for t � T3 , n = 1,2, · · · . Thus, by (2.12), the se-
quence {An(t)}∞

n=0 converges to A(t) on [T3,∞) . By Lebesgue monotone convergence
theorem and letting n → ∞ in (2.11), (2.13) holds. �

Now we present our main oscillation results for Eq.(1.1)

THEOREM 2.1. Assume that (2.1) holds. If
∫ ∞
t0

Q(s)ds = ∞ , then any solution
x(t) of Eq.(1.1) is oscillatory or satisfies limt→∞ x(t) = 0 .

Proof. Suppose that x(t) is a nonoscillatory solution of Eq.(1.1) on [t0,∞) . With-
out loss of generality, we may assume that x(t) is a positive solution of Eq.(1.1). In
view of Lemma 2.1, z(t) only satisfies Lemma 2.1(i) or (ii) .

Assume that z(t) satisfies Lemma 2.1(i). It follows from Lemma 2.5 that∫ ∞

t0
Q(s)ds < ∞,

which is a contradiction.
Next we assume that z(t) satisfies Lemma 2.1(ii) . Note that (2.1) holds, by

Lemma 2.2, limt→∞ x(t) = 0, Hence, we complete the proof. �

THEOREM 2.2. Assume that (2.1) holds. If

liminf
t→∞

1
A0(t)

∫ ∞

t

(Aα+1
0 (s)
r(s)

)1/α
ds >

1

(α +1)(α+1)/α , (2.14)

then any solution x(t) of Eq.(1.1) is oscillatory or satisfies limt→∞ x(t) = 0 .

Proof. Suppose that x(t) is a nonoscillatory solution of Eq.(1.1) on [t0,∞) . With-
out loss of generality, we assume that x(t) is a positive solution of Eq.(1.1). In view of
Lemma 2.1, z(t) only satisfies Lemma 2.1(i) or (ii) .

If z(t) satisfies Lemma 2.1(ii) , then from Lemma 2.2 follows limt→∞ x(t) = 0.
Next, we assume that z(t) satisfies Lemma 2.1(i) , and let w(t) be defined by

(2.5). Then it follows from Lemma 2.5 that (2.3) holds. By (2.14), there exists a
constant η > (α +1)−(α+1)/α such that

liminf
t→∞

1
A0(t)

∫ ∞

t

(Aα+1
0 (s)
r(s)

)1/α
ds > η . (2.15)

On the other hand, by (2.3),

w(t)
A0(t)

� 1+
α

A0(t)

∫ ∞

t

(wα+1(s)
r(s)

)1/α
ds

= 1+
α

A0(t)

∫ ∞

t

(Aα+1
0 (s)
r(s)

)1/α( w(s)
A0(s)

)(α+1)/α
ds, t � t1. (2.16)
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Let λ = inft�t1
w(t)
A0(t)

, then λ � 1. It follows from (2.15) and (2.16) that

λ � 1+ αλ (α+1)/αη � 1+ α
( λ

α +1

)(α+1)/α
,

i.e.,
λ

α +1
� 1

α +1
+

α
α +1

( λ
α +1

)(α+1)/α
,

which contradicts the admissible values of η and λ . It completes the proof. �

Denote

Q0(t) =
∫ ∞

t

(τ2(s)
s

)α
[1− p(τ(s))]αq(s)ds, t � t0.

By Theorem 2.2, we get the following sharp result.

COROLLARY 2.1. Assume that (2.1) holds. If

liminf
t→∞

1
Q0(t)

∫ ∞

t

(Qα+1
0 (s)
r(s)

)1/α
ds >

2

(α +1)(α+1)/α , (2.17)

then any solution x(t) of Eq.(1.1) is oscillatory or satisfies limt→∞ x(t) = 0 .

Proof. We shall show that (2.17) implies (2.14). Note that

1
A0(t)

∫ ∞

t

(Aα+1
0 (s)
r(s)

)1/α
ds =

k′

2Q0(t)

∫ ∞

t

(Qα+1
0 (s)
r(s)

)1/α
ds, (2.18)

where k′ = k1k2 . On the other hand, (2.17) implies that for some k′ ∈ (0,1) ,

liminf
t→∞

1
Q0(t)

∫ ∞

t

(Qα+1
0 (s)
r(s)

)1/α
ds >

1
k′

2

(α +1)(α+1)/α . (2.19)

Combining (2.18) with (2.19), we get (2.14) holds. Hence, by Theorem 2.2, we com-
plete the proof. �

THEOREM 2.3. Assume that (2.1) holds. If there is a positive integer m such that
either of the following conditions hold:

∫ ∞

t0
Q(t)exp

(
α

∫ t

t0

(Am(s)
r(s)

)1/α
ds

)
dt = ∞, (2.20)

or ∫ ∞

t0

(Am(t)
r(t)

)1/α
A0(t)exp

(
α

∫ t

t0

(Am(s)
r(s)

)1/α
ds

)
dt = ∞, (2.21)

then any solution x(t) of Eq.(1.1) is oscillatory or satisfies limt→∞ x(t) = 0 .
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Proof. Suppose that x(t) is a nonoscillatory solution of Eq.(1.1) on [t0,∞) . With-
out loss of generality, we assume that x(t) is a positive solution of Eq.(1.1). In view of
Lemma 2.1, z(t) only satisfies Lemma 2.1(i) or (ii) .

If z(t) satisfies Lemma 2.1(ii) , then, by Lemma 2.2, we have limt→∞ x(t) = 0.
Assume that z(t) satisfies Lemma2.1(i) . By Lemma 2.6, (2.13) holds. Thus,

A′(t) =−α
(Aα+1(t)

r(t)

)1/α −Q(t)

�−α
(Am(t)

r(t)

)1/α
A(t)−Q(t), t � T4,

since Am(t) � A(t) . The above inequality follows

A(t) � exp
(
−α

∫ t

T4

(Am(s)
r(s)

)1/α
ds

)

×
[
A(T4)−

∫ t

T4

Q(s)exp
(

α
∫ s

T4

(Am(u)
r(u)

)1/α
du

)
ds

]
,

so,

∞ > A(T4) �
∫ t

T4

Q(s)exp
(

α
∫ s

T4

(Am(u)
r(u)

)1/α
du

)
ds,

which contradicts (2.20).
On the other hand, define

v(t) = α
∫ ∞

t

(Aα+1(s)
r(s)

)1/α
ds, t � T4.

Hence, by (2.13),

v′(t) = −α
(Aα+1(t)

r(t)

)1/α
� −α

(Am(t)
r(t)

)1/α
A(t) = −α

(Am(t)
r(t)

)1/α
[v(t)+A0(t)].

Similarly, we get

∫ ∞

T3

(Am(t)
r(t)

)1/α
A0(t)exp

(
α

∫ t

T3

(Am(s)
r(s)

)1/α
ds

)
dt < ∞,

which contradicts (2.21). This completes the proof. �

EXAMPLE 2.1. Consider the third order differential equation(
t|z′′(t)|3z′′(t)

)′
+

c1

t8

∣∣∣x( t
3

)∣∣∣3x( t
3

)
= 0, t � 1, (2.22)

where z(t) = x(t)+ 1
2x( t

2 ) , c1 � 0. For Eq.(1.1), let

α = 4, r(t) = t, q(t) =
c1

t8
, p(t) =

1
2
, τ(t) =

t
3
, δ (t) =

t
2
.
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Note that ∫ ∞

1

∫ ∞

v

[ 1
r(u)

∫ ∞

u
q(s)ds

]1/4
dudv =

(c1

7

)1/4
∫ ∞

t0

1
v
dv = ∞,

i.e., (2.1) holds. Here,

Q0(t) =
∫ ∞

t

(τ2(s)
s

)4
(1− p(τ(s)))4q(s)ds =

c1

2439t3
.

So,

liminf
t→∞

1
Q0(t)

∫ ∞

t

(Q5
0(s)

r(s)

)1/4
ds =

c1/4
1

2 ·313/4
.

Hence, by Corollary 2.1, every nonoscillatory solution of Eq.(2.22) converges to zero
provided that c1 > 28313/55 . In fact, let c1 = 176, one such solution is x(t) = 1/t .

3. Oscillation criteria for −μ � p(t) � 0

Similar to Section 2, in this section we will present some oscillation criteria for
Eq.(1.1) under the case when −μ � p(t) � 0 for μ ∈ (0,1) . In order to prove the main
results, we need the following Lemmas.

LEMMA 3.1. (see [3, Lemma 7]) Let x(t) be a positive solution of Eq.(1.1). Then
there are only the following four cases for z(t):

(j) z(t) > 0,z′(t) > 0,z′′(t) > 0 ;

(jj) z(t) > 0,z′(t) < 0,z′′(t) > 0 ;

(jjj) z(t) < 0,z′(t) < 0,z′′(t) > 0 ;

(jv) z(t) < 0,z′(t) < 0,z′′(t) < 0 ,

for t � t1 , where t1 is sufficiently large.

LEMMA 3.2. (see [3, Lemma 8]) Let x(t) be a positive solution of Eq.(1.1) and
z(t) satisfy Lemma 3.1( j j) . If (2.1) holds, then limt→∞ x(t) = limt→∞ z(t) = 0 .

For simplicity, for each k1 , k2 ∈ (0,1) , define

Q̃(t) =
(k1k2

2

)α(τ2(t)
t

)α
q(t), t � t0.

LEMMA 3.3. Let x(t) be a positive solution of Eq.(1.1) and z(t) satisfy Lemma
3.1( j) . Then for each k1,k2 ∈ (0,1) , there exist a T5 ∈ [t0,∞) and a positive function
w(t) defined on [T5,∞) such that for t � T5 ,

∫ ∞

t
Q̃(s)ds < ∞,

∫ ∞

t

(wα+1(s)
r(s)

)1/α
ds < ∞, (3.1)
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and

w(t) �
∫ ∞

t
Q̃(s)ds+ α

∫ ∞

t

(wα+1(s)
r(s)

)1/α
ds. (3.2)

Proof. Without loss of generality, we assume that x(t) is a positive solution of
Eq.(1.1) and z(t) satisfied Lemma 3.1( j) . Noting that −μ � p(t) � 0, we have x(t) �
z(t) . Then, it follows from Eq.(1.1) that

(r(t)(z′′(t))α)′ = −q(t)xα(τ(t)) � −q(t)zα(τ(t)).

Replacing Q(t) by Q̃(t) and following the similar steps as in the proof of Lemma 2.5,
we can get all desired results. �

Similar to (2.11), define a sequence of functions {Ãn(t)}∞
n=0 as

Ã0(t) =
∫ ∞

t
Q̃(s)ds, t � t0,

and

Ãn(t) = α
∫ ∞

t

( Ãα+1
n−1 (s)
r(s)

)1/α
ds+ Ã0(t), t � t0, n = 1,2, · · · . (3.3)

Proceeding as the proof of Lemma 2.6, we have

LEMMA 3.4. Let x(t) be a positive solution of Eq.(1.1) and z(t) satisfy Lemma
3.1( j) . Then there exist a T6 ∈ [t0,∞) and a positive function Ã(t) defined on [T6,∞)
such that limn→∞ Ãn(t) = Ã(t) for t � T6 . Furthermore,

Ã(t) = α
∫ ∞

t

( Ãα+1(s)
r(s)

)1/α
ds+ Ã0(t), t � T6. (3.4)

THEOREM 3.1. Assume that (2.1) holds. If
∫ ∞
t0

Q̃(s)ds = ∞ , then any solution
x(t) of Eq.(1.1) is oscillatory or satisfies limt→∞ x(t) = 0 .

Proof. Assume that x(t) be a nonoscillatory solution of Eq.(1.1). Without loss of
generality, we assume that x(t) is a positive solution of Eq.(1.1).

We claim that x(t) is bounded. To prove this we assume, on the contrary, that x(t)
is unbounded. Hence there exists a sequence tm such that limm→∞ tm = ∞ ; moreover
limm→∞ x(tm) = ∞ and

x(tm) = max{x(s);t1 � s � tm}, m � 2.

Since limt→∞ δ (t) = ∞ , we can choose m sufficiently large that δ (tm) > t2 . Noting
that δ (t) � t , we have

x(δ (tm)) = max{x(s);t1 � s � δ (tm)} � max{x(s); t1 � s � tm} = x(tm).
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Therefore, for all large m ,

z(tm) = x(tm)+ p(tm)x(δ (tm)) � (1− μ)x(tm).

Thus z(tm) → ∞ as m → ∞ . So, z(t) > 0 is positive and unbounded. It follows
from Lemma 3.1 that Lemma 3.1( j) has to hold. Moreover, by Lemma 3.3, we have∫ ∞
t0

Q̃(t)dt < ∞ , which is a contradiction. Hence, we can conclude that both x(t) and
z(t) are bounded, Lemma 3.1 now implies that for z(t) either Lemma 3.1( j j) or ( j j j)
holds.

If the case Lemma 3.1( j j) holds, then Lemma 3.2 ensures that limt→∞ x(t) =
0. On the other hand, if the case Lemma 3.1( j j j) holds, then there exists a finite
limt→∞ z(t)=−b < 0. We know that x(t)> 0 and x(t) is bounded, so limsupt→∞ x(t)=
a � 0.

We next claim that a = 0. If not, then there exists a sequence tk such that
limk→∞ tk = ∞ and limk→∞ x(tk) = a . It is easy to see that for ε = a(1− μ)/(2μ) > 0,
we have x(tk) < a+ ε for k large enough, and

0 > −b = lim
k→∞

z(tk) � lim
k→∞

(x(tk)− μ(a+ ε)) =
a
2
(1− μ) > 0.

This is a contradiction. Thus, a = 0, i.e., limt→∞ x(t) = 0. Hence, we complete the
proof. �

THEOREM 3.2. Assume that (2.1) holds. If

liminf
t→∞

1

Ã0(t)

∫ ∞

t

( Ãα+1
0 (s)
r(s)

)1/α
ds >

1

(α +1)(α+1)/α , (3.5)

then the any solution x(t) of Eq.(1.1) is oscillatory or satisfies limt→∞ x(t) = 0 .

The proof of this theorem is similar to that of Theorem 2.2 and can be omitted.
Denote

Q̃0(t) =
∫ ∞

t

(σ2(s)
s

)α
q(s)ds, t � t0.

Then, by Theorem 3.2, we have the following result.

COROLLARY 3.1. Assume that (2.1) holds. If

liminf
t→∞

1

Q̃0(t)

∫ ∞

t

( Q̃α+1
0 (s)
r(s)

)1/α
ds >

2

(α +1)(α+1)/α , (3.6)

then any solution x(t) of Eq.(1.1) is oscillatory or satisfies limt→∞ x(t) = 0 .

By Lemma 3.4, similar to the proof of Theorem 2.3, we have
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THEOREM 3.3. Assume that (2.1) holds. If there is a positive integer m such that
either of the following conditions hold.

∫ ∞

t0
Q̃(t)exp

(
α

∫ t

t0

( Ãm(s)
r(s)

)1/α
ds

)
dt = ∞, (3.7)

or ∫ ∞

t0

( Ãm(t)
r(t)

)1/α
Ã0(t)exp

(
α

∫ t

t0

( Ãm(s)
r(s)

)1/α
ds

)
dt = ∞, (3.8)

then any solution x(t) of Eq.(1.1) is oscillatory or satisfies limt→∞ x(t) = 0 .

EXAMPLE 3.1. Consider the third order differential equation(
t2|z′′(t)|z′′(t)

)′
+

c2

t3

∣∣∣x( t√
2

)∣∣∣x( t√
2

)
= 0, t � 1, (3.9)

where z(t) = x(t)− 1
3x( t

2 ) , c2 > 0. For Eq.(1.1), let

α = 2, r(t) = t2, q(t) =
c2

t3
, p(t) = −1

3
, τ(t) =

t√
2

and δ (t) =
t
2
.

Note that ∫ ∞

1

∫ ∞

v

[ 1
r(u)

∫ ∞

u
q(s)ds

]1/2
dudv =

(c2

2

)1/2
∫ ∞

1

1
v
dv = ∞,

i.e., (2.1) holds. For some k1,k2 ∈ (0,1) ,

Q̃(t) =
(k1k2

2

)2(τ2(t)
t

)2
q(t) =

c2(k1k2)2

16
1
t
.

Then ∫ ∞

1
Q̃(t)exp

(
2

∫ t

1

( Ãm(s)
r(s)

)1/2
ds

)
dt � c2(k1k2)2

16

∫ ∞

1

1
t
dt = ∞.

So, (3.7) holds. Therefore, by Theorem 3.3, every nonoscillatory solution of Eq.(3.9)
converges to zero. In fact, let c2 = 4

9 (3−2β)2β 2(β +1)3 , β > 0, one such solution is
x(t) = t−β .
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