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SOLVING A SYSTEM OF NONLINEAR INTEGRAL EQUATIONS

AND EXISTENCE OF ASYMPTOTICALLY STABLE SOLUTIONS

LE THI PHUONG NGOC AND NGUYEN THANH LONG

(Communicated by B. C. Dhage)

Abstract. The paper is devoted to the study of a system of nonlinear integral equations. First,
this system is reduced to a fixed point problem of a nonlinear integral operator and hence we
can give suitable assumptions and using a fixed point theorem of Krasnosel’skii type in order to
obtain the existence of solutions. Next, we prove the existence of asymptotically stable solutions
for the above system. In order to illustrate the results, an example is also presented.

1. Introduction

In this paper, we consider the solvability and the existence of asymptotically stable
solutions for the following system of nonlinear integral equations⎧⎨⎩x1(t) = p(t)+ f (t,x1(t),x2(t))+

∫ t
0 V (t,s,x1(s),x2(s))ds,

x2(t) = q(t)+g(t,x1(t),x2(t))+
∫ ∞
0 G(t,s,x1(s),x2(s))ds,

(1.1)

where t ∈ R+ = [0,∞), p, q : R+ → E; f , g : R+×E2 → E; G : R+×R+×E2 → E;
V : Δ×E2 → E are supposed to be continuous, Δ = {(t,s) ∈ R+ ×R+ : s � t} and E
is a Banach space.

Nonlinear functional integral equations with bounded intervals or unbounded in-
tervals have been studied extensively by many authors using various methods and tech-
niques. There are many important results about the existence, stability and other prop-
erties of solutions, for example, we refer to [1]-[9], [13]-[17] and the references given
therein.

In the case E = Rd , some types of (1.1) have been studied by C. Avramescu and C.
Vladimirescu [2], [3]. The authors have proved the existence of asymptotically stable
solutions to the following integral equations

x(t) = q(t)+ f (t,x(t))+
∫ t

0
V (t,s)x(s)ds+

∫ t

0
G(t,s,x(s))ds, t ∈ R+, (1.2)

or

x(t) = q(t)+
∫ t

0
K(t,s,x(s))ds+

∫ ∞

0
G(t,s,x(s))ds, t ∈ R+, (1.3)
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under suitable hypotheses. In the proofs, a fixed point theorem of Krasnosel’skii type
is used, (see [2], [3]).

C. Avramescu and C. Vladimirescu [5] also have proved the existence of solutions
to the following integral equations system⎧⎨⎩x(t) =

∫ t
0 K(t,s,y(μ1(s)))x(ν1(t))ds+

∫ t
0 F(t,s,x(σ1(s)),y(θ1(s)))ds,

y(t) =
∫ T
0 G(t,s,y(μ2(s)))ds+

∫ T
0 H(t,s,x(σ2(s)),y(θ2(s)))ds,0 � t � T,

(1.4)

where K : Δ×RN → MN(R) is a continuous and bounded quadratic matrix function,
F : Δ×R2N → RN , G : [0,T ]2 ×RN → RN , H : [0,T ]2×R2N → RN , μ1, ν1, σ1, θ1,
μ2, σ2, θ2 : [0,T ] → [0,T ], are continuous and bounded functions. By using the fixed
point theorem of Krasnosel’skii, the authors stated and proved an existence result of
solutions for a system of type{

x = A1(x,y)+B1(x,y),

y = A2(y)+B2(x,y)

and (1.4) is the application of this result, (see [5]).
Also applying a fixed point theorem of Krasnosel’skii type and giving the suit-

able assumptions, Dhage and Ntouyas [7], Purnaras [16] obtained some results on the
existence of solutions to the following nonlinear functional integral equation

x(t) = q(t)+
∫ μ(t)

0
k(t,s) f (s,x(θ (s)))ds+

∫ σ(t)

0
v(t,s)g(s,x(η(s)))ds, t ∈ [0,1],

(1.5)
where E = R, 0 � μ(t) � t; 0 � σ(t) � t; 0 � θ (t) � t; 0 � η(t) � t, for all t ∈ [0,1].
Purnaras also shows that the technique used in [16] can be applied to yield existence
results for the following equation

x(t) = q(t)+
∫ μ(t)

α(t)
k(t,s) f (s,x(θ (s)))ds

+
∫ λ (t)

β (t)
k̂(t,s)F

(
s,x(ν(s)),

∫ σ(s)

0
k0s,v,x(η(v)))dv

)
ds, t ∈ [0,1]. (1.6)

In case the Banach space E is arbitrary, recently in [13], [15], we also have proved
the existence of asymptotically stable solutions to the following integral equations

x(t) = q(t)+ f (t,x(t))+
∫ t

0
V (t,s,x(s))ds+

∫ t

0
G(t,s,x(s))ds,t ∈ R+, (1.7)

or

x(t) = q(t)+ f (t,x(t))+
∫ t

0
V (t,s,x(s))ds+

∫ ∞

0
G(t,s,x(s))ds,t ∈ R+, (1.8)

by using the fixed point theorem of Krasnosel’skii type as follows.
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THEOREM A. [13, L. T. P. Ngoc and N. T. Long]
Let (X , |·|n) be a Fréchet space and let U, C : X → X be two operators. Assume

that
(i) U is a kn−contraction operator, kn ∈ [0,1) (depending on n), with respect to

a family of seminorms ‖·‖n equivalent with the family |·|n ;

(ii) C is completely continuous;

(iii) lim
|x|n→∞

|Cx|n
|x|n = 0, ∀n ∈ N.

Then U +C has a fixed point.

By choosing suitable spaces and establishing corresponding operators in the Fréchet
space, also applying Theorem A, we improve the existence results of (1.7) and (1.8) for
(1.1), in which the given functions satisfy conditions specified later. The results are
obtained by combination of the arguments in [13], some techniques in [2], [3] with
appropriate modifications and the arguments of density as in [15].

It is known that the space of continuous functions on a noncompact interval cannot
be organized always as a Banach space, but it can be organized as a Fréchet space if we
use suitable seminorms and define the corresponding metric [see [1] - [6], ([18], p.32,
p.52)].

The paper consists of four sections. First, in section 2, the system (1.1) is re-
duced to a fixed point problem of a nonlinear integral operator and then we prove
the existence of solutions. Next, in section 3, we prove the existence of asymptoti-
cally stable solutions. Remark that in order to obtain this result, here we need not the
condition V (t,s,0,0) = 0, for all (t,s) ∈ Δ as in [13], [15]. Finally, section 4 presents
an illustrated example.

2. Existence of solutions

Let (E, |·|E) be a Banach space. Then E2 = E ×E is also a Banach space with
the norm |·| defined as follows

|u| = |u1|E + |u2|E , u = (u1,u2) ∈ E2.

Let X =C(R+;E2) be the space of all continuous functions on R+ to E2 equipped
with the numerable family of seminorms

|x|n = sup
t∈[0,n]

|x(t)| , n � 1; |x(t)| = |x1(t)|E + |x2(t)|E ; x = (x1,x2) ∈ X .

Then (X , |·|n) is complete in the metric

d(x,y) =
∞

∑
n=1

2−n |x− y|n
1+ |x− y|n

and X is the Fréchet space (it will be proved in the appendix).
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Consider in X the other family of seminorms ‖·‖n is defined as follows

‖x‖n = |x|γn
+ |x|hn

, n ∈ N,

where
|x|γn

= sup
t∈[0,γn]

|x(t)| , |x|hn
= sup

t∈[γn,n]
e−hn(t−γn) |x(t)| ,

γn ∈ (0,n) and hn > 0 are arbitrary numbers, which is equivalent to |x|n , since

e−hn(n−γn) |x|n � ‖x‖n � 2 |x|n ,∀x ∈ X ,∀n ∈ N.

We make the following assumptions.
(A1) p, q ∈C(R+;E);
(A2) There exists a constant L ∈ [0,1) such that ∀x = (x1,x2),y = (y1,y2) ∈ E2 ,

for all t ∈ R+,

| f (t,x1,x2)− f (t,y1,y2)|E � L
2
|x− y|, |g(t,x1,x2)−g(t,y1,y2)|E � L

2
|x− y| ;

(A3) There exists a continuous function ω1 : Δ → R+ such that for all (t,s) ∈ Δ ,
for all x = (x1,x2),y = (y1,y2) ∈ E2,

|V (t,s,x1,x2)−V(t,s,y1,y2)|E � ω1(t,s) |x− y| ;
(A4) G is completely continuous such that for all bounded subsets I1, I2 of R+

and for any bounded subset J of E2, for all ε > 0, there exists δ > 0, such that
∀t1, t2 ∈ I1,

|t1 − t2| < δ =⇒ |G(t1,s,x1,x2)−G(t2,s,x1,x2)|E < ε,∀s ∈ I2, ∀x = (x1,x2) ∈ J;

(A5) There exists a continuous function ω2 : R+ ×R+ → R+ such that for each
bounded subset I of R+, ∫ ∞

0
sup
t∈I

ω2(t,s)ds < ∞,

and
|G(t,s,x1,x2)|E � ω2(t,s), ∀(t,s) ∈ I×R+, ∀x = (x1,x2) ∈ E2.

THEOREM 1. Let (A1)-(A5) hold. Then the system (1.1) has a solution on R+.

Proof. The proof consists of four steps.
Step 1. In X , we consider the system⎧⎨⎩x1(t) = p(t)+ f (t,x1(t),x2(t))+

∫ t
0 V (t,s,x1(s),x2(s))ds,

x2(t) = q(t)+g(t,x1(t),x2(t)), t ∈ R+.
(2.1)

We have the following lemma.
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LEMMA 1. Let (A1)-(A3) holds. Then the system (2.1) has a unique solution
ξ = (ξ1,ξ2), ξ ∈C(R+,E2).

Proof. We rewrite (2.1) as follows

x(t) = Φx(t), t ∈ R+,

where

Φx(t) = (Φ1x(t),Φ2x(t)), x = (x1,x2) ∈ X = C(R+;E2),

Φ1x(t) = p(t)+ f (t,x1(t),x2(t))+
∫ t

0
V (t,s,x1(s),x2(s))ds,

Φ2x(t) = q(t)+g(t,x1(t),x2(t)), t ∈ R+.

By hypothesis (A2),(A3), for all x = (x1,x2),y = (y1,y2) ∈ X , we have

Φ1x(t)−Φ1y(t) = f (t,x1(t),x2(t))− f (t,y1(t),y2(t))

+
∫ t

0
[V (t,s,x1(s),x2(s))−V (t,s,y1(s),y2(s))]ds,

|Φ1x(t)−Φ1y(t)|E � | f (t,x1(t),x2(t))− f (t,y1(t),y2(t))|E
+

∫ t

0
|V (t,s,x1(s),x2(s))−V (t,s,y1(s),y2(s))|E ds

� L
2
|x(t)− y(t)|+

∫ t

0
ω1(t,s) |x(s)− y(s)|ds.

Let n ∈ N be fixed. For all t ∈ [0,γn], with γn ∈ (0,n) chosen later, we have

|Φ1x(t)−Φ1y(t)|E � L
2
|x(t)− y(t)|+

∫ t

0
ω1(t,s) |x(s)− y(s)|ds

� L
2
|x− y|γn

+ γnω̃1n |x− y|γn
=

(
L
2

+ γnω̃1n

)
|x− y|γn

,

where

ω̃1n = sup{ω1(t,s) : (t,s) ∈ Δn}, Δn = {(t,s) : 0 � s � t,0 � t � n}.
On the other hand, we also have

|Φ2x(t)−Φ2y(t)|E = |g(t,x1(t),x2(t))−g(t,y1(t),y2(t))|E
� L

2
|x(t)− y(t)|� L

2
|x− y|γn

for all t ∈ [0,γn]. Hence

|Φx(t)−Φy(t)| = |Φ1x(t)−Φ1y(t)|E + |Φ2x(t)−Φ2y(t)|E
�

(
L
2

+ γnω̃1n

)
|x− y|γn

+
L
2
|x− y|γn

= (L+ γnω̃1n) |x− y|γn
, t ∈ [0,γn].
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So
|Φx−Φy|γn

� (L+ γnω̃1n) |x− y|γn
.

For all t ∈ [γn,n], similarly, we also have

|Φ1x(t)−Φ1y(t)|E � L
2
|x(t)− y(t)|+ ω̃1n

∫ γn

0
|x(s)− y(s)|ds

+ ω̃1n

∫ t

γn

|x(s)− y(s)|ds

� L
2
|x(t)− y(t)|+ γnω̃1n |x− y|γn

+ ω̃1n

∫ t

γn

|x(s)− y(s)|ds.

Hence

|Φx(t)−Φy(t)| = |Φ1x(t)−Φ1y(t)|E + |Φ2x(t)−Φ2y(t)|E
� L

2
|x(t)− y(t)|+ γnω̃1n |x− y|γn

+ ω̃1n

∫ t

γn

|x(s)− y(s)|ds

+
L
2
|x(t)− y(t)|

� L |x(t)− y(t)|+ γnω̃1n |x− y|γn
+ ω̃1n

∫ t

γn

|x(s)− y(s)|ds.

By the inequality
0 < e−hn(t−γn) � 1, ∀t ∈ [γn,n],

with hn > 0 is also chosen later, we get

|Φx(t)−Φy(t)|e−hn(t−γn) � L |x(t)− y(t)|e−hn(t−γn) + γnω̃1n |x− y|γn

+ ω̃1ne
−hn(t−γn)

∫ t

γn

|x(s)− y(s)|ds

� L |x− y|hn
+ γnω̃1n |x− y|γn

+ ω̃1n

∫ t

γn

|x(s)− y(s)|e−hn(s−γn)ehn(s−t)ds

� L |x− y|hn
+ γnω̃1n |x− y|γn

+ ω̃1n |x− y|hn

∫ t

γn

ehn(s−t)ds

= L |x− y|hn
+ γnω̃1n |x− y|γn

+
ω̃1n

hn
|x− y|hn

(
1− ehn(γn−t))

� L |x− y|hn
+ γnω̃1n |x− y|γn

+
ω̃1n

hn
|x− y|hn

= γnω̃1n |x− y|γn
+

(
L+

ω̃1n

hn

)
|x− y|hn

.

Hence

|Φx−Φy|hn
� γnω̃1n |x− y|γn

+
(

L+
ω̃1n

hn

)
|x− y|hn

.
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Consequently,

‖Φx−Φy‖n = |Φx−Φy|γn
+ |Φx−Φy|hn

� (L+ γnω̃1n) |x− y|γn
+ γnω̃1n |x− y|γn

+
(

L+
ω̃1n

hn

)
|x− y|hn

� (L+2γnω̃1n) |x− y|γn
+

(
L+

ω̃1n

hn

)
|x− y|hn

� Ln ‖x− y‖n ,

where Ln = max
{
L+2γnω̃1n, L+ ω̃1n

hn

}
.

Choose γn and hn such that

0 < γn < min

{
1−L
2ω̃1n

,n

}
and hn >

ω̃1n

1−L
,

then we have Ln < 1, so Φ is an Ln -contraction operator on X with respect to the
family of seminorms ‖·‖n . Based on the Banach contraction principle in an arbitrary
Fréchet space, [see ([1], p.8), ([4], p.475), ([5], p.185)], we have the following lemma
and the proof will be presented in the appendix.

LEMMA 2. Let (X , |·|n) be a Fréchet space and let Φ : X →X be an Ln -contraction
on X with respect to a family of seminorms ‖·‖n equivalent with |·|n . Then Φ has a
unique fixed point in X .

Remark 1. The existence of a fixed point in Lemma 2 can be also obtained from
Theorem A especially when Cx = 0 for all x ∈ X (C is null-operator).

Applying Lemma 2, there is only a function ξ ∈ X such that

ξ (t) = Φξ (t), t ∈ R+.

Hence, Lemma 1 follows. �

By the transformation x1 = y1 + ξ1, x2 = y2 + ξ2, we can write the system (1.1)
in the form

y1(t)+ ξ1(t) = p(t)+ f (t,y1(t)+ ξ1(t),y2(t)+ ξ2(t))

+
∫ t

0
V (t,s,y1(s)+ ξ1(s),y2(s)+ ξ2(s))ds,

y2(t)+ ξ2(t) = q(t)+g(t,y1(t)+ ξ1(t),y2(t)+ ξ2(t))

+
∫ ∞

0
G(t,s,y1(s)+ ξ1(s),y2(s)+ ξ2(s))ds,

or

y(t) = Uy(t)+Cy(t), t ∈ R+, (2.2)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = (y1,y2), Uy(t) = (U1y(t),U2y(t)) , Cy(t) = (0,C2y(t)),

U1y(t) = p(t)+ f (t,y1(t)+ ξ1(t),y2(t)+ ξ2(t))− ξ1(t)
+

∫ t
0 V (t,s,y1(s)+ ξ1(s),y2(s)+ ξ2(s))ds,

U2y(t) = q(t)+g(t,y1(t)+ ξ1(t),y2(t)+ ξ2(t))− ξ2(t),

C2y(t)) =
∫ ∞
0 G(t,s,y1(s)+ ξ1(s),y2(s)+ ξ2(s))ds,t ∈ R+.

(2.3)

Step 2. The operator U is a kn -contraction, kn ∈ [0,1) (depending on n ), with re-
spect to a family of seminorms ‖·‖n in which γn, hn are chosen suitably, γn = γ̂n, hn =
ĥn as below.

Indeed, fixed an arbitrary positive integer n ∈ N.
For all t ∈ [0, γ̂n], with γ̂n ∈ (0,n) chosen later, we have

U1y(t)−U1ỹ(t) = f (t,y1(t)+ ξ1(t),y2(t)+ ξ2(t))− f (t, ỹ1(t)+ ξ1(t), ỹ2(t)+ ξ2(t))

+
∫ t

0
V (t,s,y1(s)+ ξ1(s),y2(s)+ ξ2(s))ds

−
∫ t

0
V (t,s, ỹ1(s)+ ξ1(s), ỹ2(s)+ ξ2(s))ds

= f (t,y(t)+ ξ (t))− f (t, ỹ(t)+ ξ (t))

+
∫ t

0
[V (t,s,y(s)+ ξ (s))ds−V(t,s, ỹ(s)+ ξ (s))]ds,

so

|U1y(t)−U1ỹ(t)|E � L
2
|y(t)− ỹ(t)|+

∫ t

0
ω1(t,s) |y(s)− ỹ(s)|ds

�
(L

2
+ ω̃1nγ̂n

)
|y− ỹ|γ̂n

. (2.4)

For short, we can write

f (t,y1(t)+ ξ1(t),y2(t)+ ξ2(t)) ≡ f (t,y(t)+ ξ (t)),
g(t,y1(t)+ ξ1(t),y2(t)+ ξ2(t)) ≡ g(t,y(t)+ ξ (t)),

and it is similar to the other functions. On the other hand, we also have

|U2y(t)−U2ỹ(t)|E = |g(t,y(t)+ ξ (t))−g(t, ỹ(t)+ ξ (t))|E
� L

2
|y(t)− ỹ(t)| � L

2
|y− ỹ|γ̂n

,
(2.5)

for all t ∈ [0, γ̂n]. This implies that

|Uy(t)−Uỹ(t)| = |U1y(t)−U1ỹ(t)|E + |U2y(t)−U2ỹ(t)|E
�

(L
2

+ ω̃1nγ̂n

)
|y− ỹ|γ̂n

+
L
2
|y− ỹ|γ̂n

= (L+ ω̃1nγ̂n) |y− ỹ|γ̂n
.
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Hence
|Uy−Uỹ|γ̂n

� (L+ ω̃1nγ̂n) |y− ỹ|γ̂n
. (2.6)

For all t ∈ [γ̂n,n], similarly, we also have

|U1y(t)−U1ỹ(t)|E � L
2
|y(t)− ỹ(t)|+ ω̃1n

∫ γ̂n

0
|y(s)− ỹ(s)|ds

+ ω̃1n

∫ t

γ̂n

|y(s)− ỹ(s)|ds

� L
2
|y(t)− ỹ(t)|+ γ̂nω̃1n |y− ỹ|γ̂n

+ ω̃1n

∫ t

γ̂n

|y(s)− ỹ(s)|ds.

(2.7)

On the other hand, we also have

|U2y(t)−U2ỹ(t)|E � L
2
|y(t)− ỹ(t)| .

We deduce that

|Uy(t)−Uỹ(t)| = |U1y(t)−U1ỹ(t)|E + |U2y(t)−U2ỹ(t)|E
� L

2
|y(t)− ỹ(t)|+ γ̂nω̃1n |y− ỹ|γ̂n

+ ω̃1n

∫ t

γ̂n

|y(s)− ỹ(s)|ds+
L
2
|y(t)− ỹ(t)|

� L |y(t)− ỹ(t)|+ γ̂nω̃1n |y− ỹ|γ̂n

+ ω̃1n

∫ t

γ̂n

|y(s)− ỹ(s)|ds,∀t ∈ [γ̂n,n]. (2.8)

By the inequality
0 < e−hn(t−γ̂n) � 1,∀t ∈ [γ̂n,n],

in which ĥn > 0 is also chosen later, we get

|Uy(t)−Uỹ(t)|e−ĥn(t−γ̂n)

� L |y(t)− ỹ(t)|e−ĥn(t−γ̂n) + ω̃1nγ̂n |y− ỹ|γ̂n

+ ω̃1n

∫ t

γ̂n

|y(s)− ỹ(s)|e−ĥn(t−γ̂n)ds

� L |y− ỹ|ĥn
+ ω̃1nγ̂n |y− ỹ|γ̂n

+ ω̃1n

∫ t

γ̂n

|y(s)− ỹ(s)|e−ĥn(s−γ̂n)eĥn(s−t)ds

� L |y− ỹ|ĥn
+ ω̃1nγ̂n |y− ỹ|γ̂n

+ ω̃1n |y− ỹ|ĥn

∫ t

γ̂n

eĥn(s−t)ds

= L |y− ỹ|ĥn
+ ω̃1nγ̂n |y− ỹ|γ̂n

+ ω̃1n |y− ỹ|ĥn

1

ĥn

(
1− eĥn(γ̂n−t))

� ω̃1nγ̂n |y− ỹ|γ̂n
+

(
L+

ω̃1n

ĥn

)
|y− ỹ|ĥn

. (2.9)
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We get

|Uy−Uỹ|ĥn
� ω̃1nγ̂n |y− ỹ|γ̂n

+
(
L+

ω̃1n

ĥn

)
|y− ỹ|ĥn

. (2.10)

Combining (2.6), (2.10), we deduce that

‖Uy−Uỹ‖n = |Uy−Uỹ|γn
+ |Uy−Uỹ|ĥn

� (L+ ω̃1nγ̂n) |y− ỹ|γ̂n
+ ω̃1nγ̂n |y− ỹ|γ̂n

+
(
L+

ω̃1n

ĥn

)
|y− ỹ|ĥn

� (L+2ω̃1nγ̂n) |y− ỹ|γ̂n
+

(
L+

ω̃1n

ĥn

)
|y− ỹ|ĥn

� k̃n ‖y− ỹ‖n ,

(2.11)

where k̃n = max
{

L+2ω̃1nγ̂n,L+ ω̃1n

ĥn

}
. Choose

0 < γ̂n < min
{1−L

2ω̃1n
,n

}
and ĥn >

ω̃1n

1−L
. (2.12)

Then we have k̃n < 1, by (2.11), U is a k̃n−contraction operator with respect to a
family of new seminorms ‖·‖n .

Step 3. We show that C : X → X is completely continuous. It is obviously C :
X → X is completely continuous if and only if C2 : X → X1 = C(R+;E) is completely
continuous. We first show that C2 is continuous.

For any y0 ∈ X , let {ym} be a sequence in X such that lim
m→∞

ym = y0. We recall

that
lim
m→∞

ym = y0 in X if and only if lim
m→∞

|ym − y0|n = 0,

i.e.
lim
m→∞

sup
t∈[0,n]

|ym(t)− y0(t)| = 0,∀n ∈ N.

Let n ∈ N be fixed. For any given ε > 0, because of∫ ∞

0
sup

t∈[0,n]
ω2(t,s)ds < ∞,

there exists Tn ∈ N, such that∫ ∞

Tn

ω2(t,s)ds �
∫ ∞

Tn

sup
t∈[0,n]

ω2(t,s)ds <
ε
8
, ∀t ∈ [0,n]. (2.13)

Put
K = {((y1m + ξ1)(s), (y2m + ξ2)(s)) : s ∈ [0,Tn], m ∈ Z+}.

For short, we can write

K = {(ym + ξ )(s) : s ∈ [0,Tn], m ∈ Z+}.
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We have K is compact in E2, since

sup
s∈[0, Tn]

|(ym + ξ )(s)− (y0 + ξ )(s)| = sup
s∈[0, Tn]

|ym(s)− y0(s)|

= |ym− y0|Tn
→ 0 as m → ∞.

In detail, let {(ymj +ξ )(s j)} j be a sequence in K. We can assume that there exists
a subsequence of {s j} j, denoted by {s j} j, such that

lim
j→∞

s j = s0 and lim
j→∞

ymj + ξ = y0 + ξ .

We have∣∣(ymj + ξ )(s j)− (y0 + ξ )(s0)
∣∣ �

∣∣(ymj + ξ )(s j)− (y0 + ξ )(s j)
∣∣

+
∣∣(y0 + ξ )(s j)− (y0 + ξ )(s0)

∣∣
�

∣∣ymj − y0
∣∣
Tn

+
∣∣(y0 + ξ )(s j)− (y0 + ξ )(s0)

∣∣ ,
which shows that

lim
j→∞

(ymj + ξ )(s j) = (y0 + ξ )(s0) in E2 .

It yields K is compact in E2.
For ε > 0 be given as above, by G is continuous on the compact set [0,n]×

[0,Tn]×K, there exists δ > 0 such that for every u, v ∈ K, |u− v|< δ ,

|G(t,s,u)−G(t,s,v)|E <
ε

4Tn
, ∀(t,s) ∈ [0,n]× [0,Tn].

By

sup
s∈[0, Tn]

|(ym + ξ )(s)− (y0 + ξ )(s)| = |ym − y0|Tn
→ 0 as m → ∞,

there exists m0 such that for m > m0,

|(ym + ξ )(s)− (y0 + ξ )(s)| < δ , ∀s ∈ [0,Tn].

This implies that for all t ∈ [0,n], for all m > m0,

|C2ym(t)−C2y0(t)|E �
∫ Tn

0
|G(t,s,(ym + ξ )(s))−G(t,s,(y0 + ξ )(s))|E ds

+2
∫ ∞

Tn

ω2(t,s)ds < Tn
ε

4Tn
+2

ε
8

=
ε
2
,

so sup
t∈[0,n]

|C2ym(t)−C2y0(t)|E < ε, for all m > m0, and the continuity of C2 is proved.

It remains to show that C2 maps bounded sets into relatively compact sets. Let us
recall the following condition for the relative compactness of a subset in X .
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LEMMA 3. Let C(R+;E) be the Fréchet space defined as above and A be a subset
of C(R+;E). For each n ∈ N, let C([0,n];E) be the Banach space of all continuous
functions u : [0,n]→ E with the norm

sup
t∈[0,n]

|u(t)|E and An = {x|[0,n] : x ∈ A}.

The set A in C(R+;E) is relatively compact if and only if for each n ∈ N, An is
equicontinuous in C([0,n];E) and for every s ∈ [0,n], the set An(s) = {x(s) : x ∈ An}
is relatively compact in E.

This condition was stated in [11] and was proved in detail in [13]. The proof
follows from the Ascoli-Arzela’s Theorem, (see [12], p.211). �

Now we continue with the proof. Let Ω be a bounded subset of X = C(R+;E2).
We have to prove that for n ∈ N :

(a) the set (C2Ω)n is equicontinuous in C([0,n];E) ,
(b) for every t ∈ [0,n], the set (C2Ω)n(t) = {C2y|[0,n](t) : y ∈ Ω} is relatively compact
in E .

Let n ∈ N be fixed. Consider any ε > 0 given. Then, there exists Tn ∈ N (Tn is
big enough) such that (2.13) is valid.

Proof of (a) . For any y ∈ Ω, for all t1, t2 ∈ [0,n], by (A5),

|C2y(t1)−C2y(t2)|E �
∫ Tn

0
|G(t1,s,(y+ ξ )(s))−G(t2,s,(y+ ξ )(s))|E ds

+
∫ ∞

Tn

(ω2(t1,s)+ ω2(t2,s))ds. (2.14)

According to (2.13), (2.14) and (A4), (C2Ω)n is equicontinuous on C([0,n];E).
Proof of (b) . Let {C2yk|[0,n](t)}k, yk ∈ Ω, be a sequence in (C2Ω)n(t). We shall

show that there exists a convergent subsequence of {C2yk|[0,n](t)}k.

Put S = {(y+ ξ )(s) : y ∈ Ω, s ∈ [0,Tn]}. Then S is bounded in E2. Since G is
completely continuous, the set G([0,n]× [0,Tn]× S) is relatively compact in E. Let
Q̂ = Q∩ [0,Tn] be the set of rational numbers in [0,Tn]. Then Q̂ is countable and has
form Q̂ = {sm}.

For m = 1, the sequence {G(t,s1,(yk + ξ )(s1))}k belongs to G([0,n]× [0,Tn]×
S), that is relatively compact in E, so there exists a subsequence of {yk} , denoted by

{y(1)
k }k, such that {

G(t,s1,(y
(1)
k + ξ )(s1))

}
k

converges in E.

For m = 2, similarly, there exists a subsequence of {y(1)
k }k, denoted by {y(2)

k }k,
such that {

G(t,s2,(y
(2)
k + ξ )(s2))

}
k

converges in E .
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Therefore, for all m ∈ N, by induction, we can establish a subsequence {y(m+1)
k }k

of {y(m)
k }k, such that{

G(t,sm+1,(y
(m+1)
k + ξ )(sm+1))

}
k

converges in E.

Put zk = y(k)
k . Then {zk}k is a subsequence of {yk}k and {G(t,sm,(zk + ξ )(sm)) }k

converges in E, for all sm ∈ Q̂. Then, there exists k0 � 1 (only depening on ε ) such
that for all k, l � k0,

|G(t,sm,(zk + ξ )(sm))−G(t,sm,(zl + ξ )(sm))|E <
ε

8Tn
for all sm ∈ Q̂. (2.15)

For each s ∈ [0,Tn], there exists the sequence {sm}, sm ∈ Q̂, m = 1,2, ..., such
that lim

m→∞
sm = s. By the continuity of the functions G, ξ , zk, zl , passing to the limit

in (2.15), we obtain that for all k, l � k0,

|G(t,s,(zk + ξ )(s))−G(t,s,(zl + ξ )(s))|E � ε
8Tn

, for all s ∈ [0,Tn]. (2.16)

It follows that for every t ∈ [0,n], for all k, l � k0, we have

|C2zk(t)−C2zl(t)|E �
∫ Tn

0
|G(t,s,(zk + ξ )(s))−G(t,s,(zl + ξ )(s))|E ds

+
∫ ∞

Tn

|G(t,s,(zk + ξ )(s))−G(t,s,(zl + ξ )(s))|E ds

� 3ε
8

+
2ε
8

< ε.

It implies that {C2zk|[0,n](t)}k is the Cauchy sequence in the Banach E, the con-
vegence of {C2zk|[0,n](t)}k follows. Note that {C2zk|[0,n](t)}k is a subsequence of
{C2yk|[0,n](t)}k. Then, (C2Ω)n(t) is relatively compact in E.

In view of Lemma 3, C2(Ω) is relatively compact in C(R+;E). Therefore, C2 is
completely continuous. Step 3 is proved.

Step 4. Finally, we show that ∀n ∈ N,

lim
|y|n→∞

|Cy|n
|y|n = 0.

By the assumption (A5), for all t ∈ [0,n], we get

|Cy(t)| = |C2y(t)|E �
∫ ∞

0
|G(t,s,(y+ ξ )(s))|E ds

�
∫ ∞

0
ω2(t,s)ds �

∫ ∞

0
sup

t∈[0,n]
ω2(t,s)ds < ∞.

It follows that
|Cy|n = sup

t∈[0,n]
|Cy(t)|n �

∫ ∞

0
sup

t∈[0,n]
ω2(t,s)ds < ∞
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and then

lim
|y|n→∞

|Cy|n
|y|n

= 0.

By applying Theorem A, the operator U +C has a fixed point y in X . Then
the system (1.1) has a solution (x1,x2) = (y1 + ξ1,y2 + ξ2) on R+. Theorem 1 is
proved. �

3. The asymptotically stable solutions

We now consider the asymptotically stable solutions of (1.1) defined as follows.

DEFINITION 1. A function x is said to be an asymptotically stable solution of
(1.1) if for any solution x of (1.1),

lim
t→∞

|x(t)− x(t)| = 0.

In this section, we assume (A1)-(A5) hold.
By Theorem 1, the system (1.1) has a solution on R+. On the other hand, if x is

a solution of (1.1) then, as step 1 of the proof of Theorem 1, y = x− ξ satisfies (2.2).
This implies that for all t ∈ R+,

|y(t)| � |Uy(t)|+ |Cy(t)| , (3.1)

where Uy(t), Cy(t) as in (2.3). Using (A1)-(A4) and note that

ξ1(t) = p(t)+ f (t,ξ1(t),ξ2(t))+
∫ t

0
V (t,s,ξ1(s),ξ2(s))ds,

ξ2(t) = q(t)+g(t,ξ1(t),ξ2(t)),

we obtain for all t ∈ R+,

|U1y(t)|E � | f (t,y1(t)+ ξ1(t),y2(t)+ ξ2(t))− f (t,ξ1(t),ξ2(t))|E
+

∫ t

0
|V (t,s,y1(s)+ ξ1(s),y2(s)+ ξ2(s))−V (t,s,ξ1(s),ξ2(s))|E ds

� L
2
|y(t)|+

∫ t

0
ω1(t,s) |y(s)|ds,

and

|U2y(t)|E = |g(t,y1(t)+ ξ1(t),y2(t)+ ξ2(t))−g(t,ξ1(t),ξ2(t))|E � L
2
|y(t)| .

It follows that

|Uy(t)|= |U1y(t)|E + |U2y(t)|E � L |y(t)|+
∫ t

0
ω1(t,s) |y(s)|ds, (3.2)
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Combining (3.1), (3.2) and (A5) , for all t ∈ R+,

|y(t)| � L |y(t)|+
∫ t

0
ω1(t,s)|y(s)|ds+

∫ ∞

0
ω2(t,s)ds.

It follows that

|y(t)| � 1
1−L

∫ t

0
ω1(t,s)|y(s)|ds+a(t),

where

a(t) =
1

1−L

∫ ∞

0
ω2(t,s)ds.

Using the inequality (a+b)2 � 2(a2 +b2), ∀a,b ∈ R, we get

|y(t)|2 � 2
(1−L)2

∫ t

0
ω2

1 (t,s)ds
∫ t

0
|y(s)|2ds+2a2(t). (3.3)

If we put

v(t) = |y(t)|2 and b(t) =
2

(1−L)2

∫ t

0
ω2

1 (t,s)ds,

then (3.3) is rewritten as follows

v(t) � b(t)
∫ t

0
v(s)ds+2a2(t). (3.4)

By (3.4), based on classical estimates, we obtain

|y(t)|2 = v(t) � 2a2(t)+2b(t)
∫ t

0
a2(s)exp

(∫ t

s
b(u)du

)
ds, ∀t ∈ R+. (3.5)

Then we have the following theorem about the asymptotically stable solutions.

THEOREM 2. Let (A1)-(A5) hold. If

lim
t→∞

[
a2(t)+b(t)

∫ t

0
a2(s)exp

(∫ t

s
b(u)du

)
ds

]
= 0, (3.6)

where

a(t) =
1

1−L

∫ ∞

0
ω2(t,s)ds and b(t) =

2
(1−L)2

∫ t

0
ω2

1 (t,s)ds, (3.7)

then every solution x = (x1, x2) of the system (1.1) is an asymptotically stable solution.
Furthermore,

lim
t→∞

|x(t)− ξ (t)|= 0,

where ξ is a unique solution of (2.1). �
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Remark 2. Assume that there exist functions α, β1, β2 ∈C(R+;R+), such that{
ω1(t,s) � Cα(t)β1(s), ω2(t,s) � Cα(t)β2(s), lim

t→∞
α(t) = 0,∫ ∞

0 α2(t)dt < ∞,
∫ ∞
0 β 2

1 (s)ds < ∞,
(3.8)

with C always indicating a constant independent of t, s. Then (3.6) holds. Indeed, by
(3.7), (3.8), we obtain:

a(t) =
1

1−L

∫ ∞

0
ω2(t,s)ds � 1

1−L
Cα(t)

∫ ∞

0
β2(s)ds � C2α(t), (3.9)

b(t) =
2

(1−L)2

∫ t

0
ω2

1 (t,s)ds � 2
(1−L)2Cα2(t)

∫ ∞

0
β 2

1 (s)ds � C1α2(t), (3.10)

and

b(t)
∫ t

0
a2(s)exp

(∫ t

s
b(u)du

)
ds � C2

2α2(t)
∫ t

0
C1α2(s)exp

(∫ t

s
C1α2(u)du

)
ds

= C2
2α2(t)

[
exp

(∫ t

0
C1α2(u)du

)
−1

]
� C2

2α2(t)exp

(∫ ∞

0
C1α2(u)du

)
� Const.α2(t). (3.11)

Hence

a2(t)+b(t)
∫ t
0 a2(s)exp

(∫ t
s b(u)du

)
ds � Cα2(t) → 0, as t → ∞. (3.12)

4. An example

Let us give an illustrated example for the results obtained as above.
Let E =C([0,1];R) be the Banach space of all continuous functions u : [0,1]→R

with the norm
‖u‖ = sup

0�η�1
|u(η)| , u ∈ E.

Then, for all x∈X =C(R+;E), for any t ∈R+, x(t) is an element of E and we denote

x(t)(η) = x(t,η), 0 � η � 1.

Consider (1.1) in the following form:⎧⎨⎩x1(t) = p(t)+ f (t,x1(t),x2(t))+
∫ t
0 V (t,s,x1(s),x2(s))ds,

x2(t) = q(t)+g(t,x1(t),x2(t))+
∫ ∞
0 G(t,s,x1(s),x2(s))ds,

(4.1)

where p, q, f , g, V, G, are the continuous functions given respectively as follows:
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(i) function p : R+ → E, defined by

p(t)(η) = p(t,η) =
(−k1− k2 + e−2t

et + η

)
e−2t , 0 � η � 1, t � 0,

with k1, k2 are given constants such that |k1| < 1/2, |k2| < 1/π ;

(ii) function q : R+ → E, defined by

q(t)(η) = q(t,η) = − k̃1 + k̃2

e2t + η
, 0 � η � 1, t � 0,

with k̃1, k̃2 are given constant such that |k̃1| < 1/(4π) , |k̃2| < 1/2;

(iii) function f : R+×E2 → E, defined by

f (t,u1,u2)(η) = k1e
−2t |u1(η)|+ k2

et + η
e−2t sin

(π
2

e2t ‖u2‖
)

,

for 0 � η � 1, (t,u1,u2) ∈ R+×E2.

(iv) function g : R+×E2 → E,

g(t,u1,u2)(η) =
k̃1

e2t + η
cos

(
2π(et + η)u1(η)

)
+ k̃2 |u2(η)| ,

for 0 � η � 1,(t,u1,u2) ∈ R+ ×E2.

(v) Function V : Δ×E2 → E, Δ = {(t,s) : 0 � s � t, t � 0},

V (t,s,u1,u2)(η) =
4e−4s

et + η

[
sin(π(es + η)u1(η))+ sin

(π
2

(e2s + η)u2(η)
) ]

for 0 � η � 1, (t,s,u1,u2) ∈ Δ×E2.

(vi) Function G : R2
+×E2 → E,

G(t,s,u1,u2)(η) =
e−2s

e2t + η

[
sin

(π
2

∫ 1

0
(es + ζ )u1(ζ )dζ

)
+ sin

(π
2

∫ 1

0
(e2s + ζ )u2(ζ )dζ

)]
,

for 0 � η � 1, (t,s,u1,u2) ∈ R2
+×E2.

We will prove that (A1)-(A5) hold. The proofs of (A1) is easy and hence, we omit
the details. The condition (A2) holds, since for all u = (u1,u2) ∈ E2, ũ = (ũ1, ũ2) ∈ E2

and t � 0,

‖ f (t,u1,u2)− f (t, ũ1, ũ2)‖ � |k1|‖u1− ũ1‖+
π
2
|k2|‖u2− ũ2‖

� L
2

[‖u1− ũ1‖+‖u2− ũ2‖]
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and

‖g(t,u1,u2)−g(t, ũ1, ũ2)‖ � 2π
∣∣k̃1

∣∣‖u1− ũ1‖+
∣∣k̃2

∣∣‖u2− ũ2‖
� L

2
[‖u1− ũ1‖+‖u2− ũ2‖] ,

in which
0 � L

2 = max{|k1| , π
2 |k2| , 2π

∣∣k̃1
∣∣ , ∣∣k̃2

∣∣} < 1
2 .

Assumption (A3) holds because for all (u1,u2)∈ E2, (ũ1, ũ2)∈ E2 and (t,s) ∈ Δ,
∀η ∈ [0,1], we have:

|V (t,s,u1,u2)(η)−V (t,s, ũ1, ũ2)(η)| � ω1(t,s) [‖u1− ũ1‖+‖u2− ũ2‖ ]

in which ω1(t,s) = 8πe−t−2s.
Assumption (A4) is also fulfilled, the proof is as below. First, we show G : R2

+ ×
E2 → E is continuous. For all (t,s,u1,u2), (t̃, s̃, ũ1, ũ2) ∈ R2

+ ×E2, we have

‖G(t,s,u1,u2)−G(t̃, s̃, ũ1, ũ2)‖ � 4
[|s− s̃|+ |t− t̃|]
+

π
2

[
(es +1)‖u1− ũ1‖+ |es− es̃|‖ũ1‖

]
+

π
2

[
(e2s +1)‖u2− ũ2‖+ |e2s− e2s̃|‖ũ2‖

]
.

Hence the continuity of G is proved. Next, we show G : R2
+×E2 → E is compact. Let

B is bounded in R2
+×E2, we have

‖G(t,s,u1,u2)‖ � ω2(t,s) = 2e−2t−2s � 2 ≡ M, ∀(t,s,u1,u2) ∈ B,

it implies that G(B) is uniformly bounded in E. For all η1, η2 ∈ [0,1], for all
(t,s,u1,u2) ∈ B, we have

|G(t,s,u1,u2)(η1)−G(t,s,u1,u2)(η2)| � 2e−2s |η2 −η1|
(e2t + η1) (e2t + η2)

� 2 |η2−η1| ,

consequently G(B) is equicontinuous. Finally, for all bounded subsets I1, I2 of R+
and for any bounded subsets J of E2, for all ε > 0, there exists δ > 0, such that

∀t1, t2 ∈ I1, |t1− t2| < δ =⇒‖G(t1,s,u1,u2)−G(t2,s,u1,u2)‖ < ε,

for all (s,u1,u2) ∈ I2× J. We get the above property since

|G(t1,s,u1,u2)(η)−G(t2,s,u1,u2)(η)| � 2 |e2t2−e2t1 |
(e2t1+η)(e2t2+η)

e−2s � 4 |t1 − t2| ,

∀η ∈ [0,1], ∀t1, t2 ∈ I1, ∀(s,u1,u2) ∈ I2× J.
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Assumption (A5) is also clear since ∀η ∈ [0,1], ∀(t,s) ∈ I×R+, ∀(u1,u2) ∈ E2,
we have:

|G(t,s,u1,u2)(η)| � 2e−2s

e2t + η
� 2e−2t−2s = ω2(t,s),

∫ ∞

0
sup
t∈I

ω2(t,s)ds � 1 < ∞.

On the other hand, the condition (3.8) is satisfied. Indeed,

ω1(t,s) = 8πe−t−2s � Cα(t)β1(s), ω2(t,s) = 2e−2t−2s � Cα(t)β2(s),

where α(t) = e−t and β1(s) = β2(s) = e−2s, in which

lim
t→∞

α(t) = 0,

∫ ∞

0
α2(t)dt < ∞,

∫ ∞

0
β 2

1 (s)ds < ∞.

We conclude Theorems 2 holds for (4.1). For more details, we can compute to
assert that x = (x1,x2) : R+ → E2, with

xi(t)(η) = xi(t,η) = 1
eit+η , ∀η ∈ [0,1], i = 1, 2, (4.2)

is the solution of (4.1). Furthermore

lim
t→∞

(‖x1(t)‖+‖x2(t)‖) = lim
t→∞

(
e−t + e−2t

)
= 0.

So, it is clear that x(t) ≡ 0 and x as in (4.2 ) are asymptotically stable solutions of
(4.1).

5. Appendix.

1. Let (E, |·|) be a Banach space. Let X = C(R+;E) be the space of all continu-
ous functions on R+ to E equipped with the numerable family of seminorms

|x|n = sup
t∈[0,n]

|x(t)| , n ∈ N, x ∈ X .

Then (X , |·|n) is complete in the metric

d(x,y) =
∞

∑
n=1

2−n |x− y|n
1+ |x− y|n

and X is the Fréchet space. Indeed, we need show that every Cauchy sequence {xk} of
X converges to a point of X . We only prove that

lim
k, h→∞

d(xk,xh) = 0 ⇐⇒ lim
k,h→∞

|xk − xh|n = 0,∀n ∈ N.

(i) Let lim
k, h→∞

d(xk,xh) = 0. Fixed n ∈ N, we have

2−n |xk − xh|n
1+ |xk − xh|n

� d(xk,xh) → 0.
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So

2−n |xk − xh|n
1+ |xk − xh|n

→ 0.

Then, by the property of the function f (x) = 2−n x
1+x on [0,∞), it implies that

lim
k, h→∞

|xk − xh|n = 0.

(ii) Let lim
k, h→∞

|xk − xh|n = 0, ∀n ∈ N. For all ε > 0, choose n0 ∈ N, such that

∑∞
n=n0+1 2−n <

ε
2
.

With n ∈ {1,2, ...,n0}, since lim
k, h→∞

|xk − xh|n = 0, there exists kn ∈ N such that

∀k, h � kn =⇒ |xk − xh|n � ε
2 .

Setting Kε = max
1�n�n0

kn. Then for all ∀k, h � Kε ,

d(xk,xh) =
n0

∑
n=1

2−n |xk − xh|n
1+ |xk − xh|n

+
∞

∑
n=n0+1

2−n |xk − xh|n
1+ |xk − xh|n

�
n0

∑
n=1

2−n |xk − xh|n +
∞

∑
n=n0+1

2−n

�
n0

∑
n=1

2−n ε
2

+
ε
2

= (1−2−n0)
ε
2

+
ε
2

< ε.

So
lim

k, h→∞
d(xk,xh) = 0.

This equivalence leads to the existence of a point of X which is a limit of a Cauchy
sequence {xk}k. Indeed, every Cauchy sequence {xk}k of X = C(R+;E), for all n ∈
N, {xk|[0,n]} is the Cauchy sequence in the Banach C([0,n];E). So, there exists xn ∈
C([0,n];E) such that {xk|[0,n]}k converges to xn in C([0,n];E) as k → ∞. By the
uniqueness of the limit, it is easy to see that

xn|[0,m] = xm,∀m = 1,2, ..., n.

It follows that {xk}k converges to x in X , where x is defined by

x(t) = xn(t) if t ∈ [0,n], ∀n ∈ N.

Consequently, X is the Fréchet space.

2. Proof of Lemma 2. Since Φ : X → X is an Ln−contraction on X with respect
to a family of seminorms ‖·‖n , for every n ∈ N, there exists Ln ∈ [0,1) such that
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‖Φx−Φy‖n � Ln ‖x− y‖n . Let x0 ∈ X be arbitrary, we construct by recurrence the
sequence {xk} as follows

xk+1 = Φxk, k ∈ N.

Then for every n ∈ N,

‖xk+1 − xk‖n � Ln ‖xk − xk−1‖n ,∀k ∈ N,

hence we obtain∥∥xk+p− xk

∥∥
n �

∥∥xk+p− xk+p−1
∥∥

n +
∥∥xk+p−1− xk+p−2

∥∥
n + ...+‖xk+1− xk‖n

� Lk
n

(
Lp−1

n +Lp−2
n + ...+1

)‖x1− x0‖n

� Lk
n

1−Ln
‖x1 − x0‖n ,∀k, p ∈ N.

Consequently, for every n ∈ N, for all p ∈ N,

lim
k→∞

∥∥xk+p− xk

∥∥
n = 0 ⇐⇒ lim

k→∞

∣∣xk+p− xk

∣∣
n = 0,

because ‖·‖n is equivalent with |·|n , which means that {xk} is a Cauchy sequence.
Since (X , |·|n) is complete, {xk} converges to a point x of X . It is clearly that x is a
unique fixed point of Φ. �

Remark 3. In general for (X ,‖·‖n) and Φ : X →X , the main assumption of Lemma
2 (∀n ∈ N, ∃Ln ∈ [0,1) such that ‖Φx−Φy‖n � Ln ‖x− y‖n , ∀x, y ∈ X ) does not
imply the conclusion:

∃L ∈ [0,1) such that d(Φx,Φy) � Ld(x,y), ∀x, y ∈ X , (*)

where the metric d(x,y) is generated by the family of seminorms ‖·‖n in the way:

d(x,y) = ∑∞
n=1

1
2n

‖x−y‖n
1+ ‖x−y‖n

.

In fact, if we put X = C(R+;E), E = R, Φx = 1
a x, for all x ∈ E, a > 1, since

‖·‖n are seminorms, we have

‖Φx−Φy‖n = 1
a ‖x− y‖n , ∀n ∈ N, ∀x, y ∈ X .

Obviously, Φ defined as above satisfies the main assumption of Lemma 2 for Ln = 1
a ∈

[0,1). Next, let Φ satisfy (*) and let β be such that L < β < 1. Also, let x0, y0 ∈ X
be defined by

y0(t) = 0 and x0(t) = aβ
1−β for all t ∈ R+.

It is clearly that x0, y0 ∈ X . Moreover, we claim that

d(Φx0,Φy0) > βd(x0,y0). (**)
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Indeed,

d(x0,y0) =
∞

∑
n=1

1
2n

‖x0− y0‖n

1+ ‖x0− y0‖n
=

∞

∑
n=1

1
2n

‖x0‖n

1+ ‖x0‖n

=
aβ

1−β

1+ aβ
1−β

∞

∑
n=1

1
2n =

aβ
aβ −β +1

,

and

d(Φx0,Φy0) =
∞

∑
n=1

1
2n

‖Φx0−Φy0‖n

1+‖Φx0 −Φy0‖n
=

∞

∑
n=1

1
2n

∥∥ 1
a x0

∥∥
n

1+
∥∥1

a x0
∥∥

n

=
1
a

aβ
1−β

1+ 1
a

aβ
1−β

∞

∑
n=1

1
2n = β .

Since β < 1 we have 1 > aβ
aβ−β+1 and therefore, previous two equalities for

d(x0,y0) and d(Φx0,Φy0) prove (**).
However, from (*) and (**) we obtain: d(Φx0,Φy0) � Ld(x0,y0) < L

β d(Φx0,Φy0)
which implies that β < L which is not possible since β has been chosen to satisfy
L < β < 1. Therefore, such Φ satisfies the main assumption of Lemma 2 but does not
satisfy the conclusion (*). For more details, let see Gabor [10]. �
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