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Abstract. The existence of homoclinic solutions is obtained by the Mountain Pass theorem
for a class of the second order Hamiltonian systems q̈(t) + ∇V (t,q(t)) = 0 , where V (t,x) =
−K(t,x) +W(t,x) ∈ C1(R×R

N ,R), K(t,x) is not a quadratic form in x and W(t,x) is su-
perquadratic in x .

1. Introduction and main results

In this paper we shall study the existence of homoclinic orbits for the second order
Hamiltonian systems of the type:

q̈(t)+ ∇V(t,q(t)) = 0, (1)

where V ∈ C1(R×R
N ,R) . We say that a solution q is a homoclinic (to 0) if q ∈

C2(R,RN), q(t) → 0 as |t| → ∞(see [6]).
The existence and multiplicity of homoclinic solutions for Hamiltonian systems

have been extensively investigated in many recent papers, see, e.g., ([1–9], [11-20]).
But except for [6] and [16], most of the known results on problem (1) are obtained
under the following assumption that

V (t,x) = −1
2
(L(t)x,x)+W (t,x),

where L(t) is a symmetric matrix valued function for all t ∈ R . The main feature of
the problem is the lack of global compactness due to unboundedness of domain. To
overcome the difficulty, many authors have considered the periodic case, autonomous
case or asymptotically periodic case (see [1], [2], [3], [5], [6], [13], [14], [17]). Some
papers treat the symmetric case (see [7], [9]). Recently, a coercive condition on L is
introduced, that is,
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(L ) the L(t) is a positive definite symmetric matrix for t ∈ R and there exists an l ∈
C(R,(0,∞)) such that l(t) → +∞ as |t| → ∞ and

(L(t)x,x) � l(t)|x|2 for all t ∈ R and x ∈ R
N ,

(see [4], [8], [11], [12], [14], [15], [16], [18], [19], [20]). For example, in [8], the
authors obtained the existence of homoclinic orbits of problem (1) under a class of
new superquadratic conditions, which is the following theorem.

THEOREM A. (see [8]) Assume that

V (t,x) = −1
2
(L(t)x,x)+W (t,x),

where L(t) satisfies (L ), and the following conditions hold:

(H1 ) W (t,0) ≡ 0, W ∈C1(R×R
N,R) and |∇W (t,x)| = o(|x|) as |x| → 0 uniformly

in t ∈ R ;

(H2 ) there are two constants μ > 2 and ν ∈ [
0, μ

2 −1
)

and β ∈ L1(R,R+) such that

(∇W (t,x),x)− μW(t,x) � −ν(L(t)x,x)−β (t)

for all t ∈ R and x ∈ R
N \ {0} ;

(H3 ) there exists T0 > 0 such that

liminf
|x|→∞

W (t,x)
|x|2 >

π2

2T 2
0

+
l1
2

uniformly in t ∈ [−T0,T0] , where l1 is the biggest eigenvalue of L(t) on [−T0,T0].
Then (1) has at least one nontrivial homoclinic solution. �

In [16], the authors consider that

V (t,x) = −K(t,x)+W(t,x),

where K is not necessarily homogeneous of degree 2 with respect to x and W satisfies
the (AR) condition. Motivated by this paper and [8], we consider the case that K is
not necessarily homogeneous of degree 2 with respect to x and W satisfies (H2 ). An
existence theorem is obtained for homoclinic solutions by applying the Mountain Pass
theorem. The main result is the following theorem.

THEOREM 1. Assume that

V (t,x) = −K(t,x)+W(t,x),

where W satisfies (H1 ), and the following conditions hold:

(K1 ) K ∈C1(R×R
N,R) and there exists a positive constant λ such that

λ
2

(L(t)x,x) � K(t,x) � 1
2
(L(t)x,x), ∀t ∈ R, ∀x ∈ R

N ,
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where L(t) is a positive definite symmetric matrix valued function for all t ∈ R;

(K2 ) K(t,x)
|x|2 → +∞ as |t| → ∞ uniformly in x ∈ R

N \ {0} ;

(K3 ) there exists a constant c0 > 0 such that

0 � 2K(t,x)− (∇K(t,x),x) � c0|x|2, ∀t ∈ R, ∀x ∈ R
N ;

(W1 ) there exist constants μ > 2 , ν ∈ [0, μ
2λ − 1

λ ) and β (t) ∈ L1(R,R+) such that

(∇W (t,x),x)− μW(t,x) � −ν(∇K(t,x),x)−β (t), ∀t ∈ R, ∀x ∈ R
N \ {0};

(W2 ) there exists T0 > 0 such that

liminf
|x|→∞

W (t,x)
|x|2 >

π2

2T0
2 +

λ l1
2

,

uniformly in t ∈ [−T0,T0], where l1 is the biggest eigenvalue of L(t) on [−T0,T0].
Then (1) has at least one nontrivial homoclinic solution.

REMARK 1. On one hand, noting that conditions (K1 )-(K3 ) can be satisfied if
K(t,x) = 1

2 (L(t)x,x) , where L(t) satisfying (L ). On the other hand, we can check that
if

K(t,x) =
(
2+ t2− 1

|x|2 +1

)
|x|2 and W (t,x) = |x|4,

where t ∈ R, x ∈ R
N , then

V (t,x) = −K(t,x)+W(t,x)

can not be represented in the form

V1(t,x) = −1
2
(L(t)x,x)+W1(t,x)

with L(t) satisfying (L ) and W1 satisfying (H1 )-(H3 ). So we extend the results in
Theorem 1 of [8]. Besides, (W1 ) is different from the (AR) condition used in [16] and
conditions (W4 ) and (W5 ) used in [18], thus our result is different from results in [16]
and [18]. There isn’t any periodic assumption on W , so our result is also different from
Theorem 1.3 in [17].

REMARK 2. In [8], the homoclinic orbit is obtained as a limit of solutions of
a certain sequence of boundary-value problems which are obtained by the minimax
methods. However, we get the the existence of homoclinic solutions only by applying
the Mountain Pass theorem. Moreover, (L(t)x,x) is homogeneous of degree 2 with
respect to x , which property plays an important role in the proofs of [8]. For example,
it can be included into the norm and be well controlled, that is,

(∫
R

[|q̇|2 +(L(t)q,q)]dt
) 1

2
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is a norm. However, K(t,x) here is not necessarily homogeneous of degree 2 with
respect to x , so (∫

R

[|q̇|2 +K(t,q)]dt
) 1

2

is not a norm in general. Hence we need other conditions, such as (K1 ) and (K3 ), to
overcome the difficulty.

2. Proof of the main results

Let

E =
{

q ∈ H1(R,RN)
∣∣∫

R

[ |q̇|2 +(L(t)q,q) ]dt < +∞
}

.

Then E is a Hilbert space with the norm given by

‖q‖ =
(∫

R

[ |q̇|2 +(L(t)q,q) ]dt

) 1
2

.

Obviously, by (K1 ) E is continuously embedded in H1(R,RN) and so continuously
embedded in Lp(R,RN) for p ∈ [2,∞] . Thus we have

‖q‖Lp � γp‖q‖ for p ∈ [2,∞],

where γp > 0. For q ∈ E , let

I(q) =
1
2

∫
R

[ |q̇|2 +2K(t,q) ]dt−
∫

R

W (t,q)dt.

Then I ∈ C1(E,R) and it is routine to verify that any critical point of I on E is a
classical solution of (1) with q(±∞) = 0.

LEMMA 1. (see [4]) Suppose L(t) satisfies the condition (L) , then the imbedding
of E in L2(R,RN) and L∞(R,RN) are compact.

LEMMA 2. Suppose K satisfies the conditions (K1) and (K2) , then the imbedding
of E in L2(R,RN) and L∞(R,RN) are compact.

Proof. It is obvious that by (K1 ) and (K2 ) one can obtain (L ). Then by Lemma 1,
the lemma is proved. �

PROOF OF THEOREM 1. We divide our proof into four steps.

Step 1. There are ρ > 0, δ > 0 such that

I|S � δ ,
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where S = {q ∈ E | ‖q‖ = ρ} . In fact, it follows from (H1 ) that, for any ε > 0, there
exists ρ ′ = ρ ′(ε) > 0 such that

|∇W (t,x)| � 2ε|x|, ∀ |x| � ρ ′,∀t ∈ R,

which implies that
|W (t,x)| � ε|x|2

for all |x| � ρ ′ and for all t ∈ R . Then choose ε = (4γ2
2 )−1 > 0, ρ = ρ ′/γ∞ > 0 and

δ = ρ2/4 > 0, and by (K1 ) we have

I(q) =
1
2

∫
R

[|q̇|2 +2K(t,q)]dt−
∫

R

W (t,q)dt

� 1
2
‖q‖2−

∫
R

W (t,q)dt

� 1
2
‖q‖2− ε

∫
R

|q|2dt

� 1
2
‖q‖2− εγ2

2‖q‖2

=
1
4
‖q‖2 = δ

for all q ∈ S .

Step 2. By (W2 ), there exist constants ε1 > 0 and σ > 0 such that

W (t,x)
|x|2 � π2 + ε1

2T 2
0

+
λ l1
2

for all |x| > σ and t ∈ [−T0,T0] . Let

δ1 = max
t∈[−T0,T0], |x|�σ

|W (t,x)|,

then we have

W (t,x) �
(

π2 + ε1

2T 2
0

+
λ l1
2

)
(|x|2 −σ2)− δ1 (2)

for all x ∈ R and t ∈ [−T0,T0] . Let

e(t) =

{
ξ |sin(ωt)|e1, t ∈ [−T0,T0],
0, t ∈ R\ [−T0,T0],

where ξ ∈ R, ω = π
T0

and e1 = (1,0, · · ·,0) . By (K1 ), (W2 ) and (2) one has

I(e) � 1
2

∫
R

|ė(t)|2dt +
λ
2

∫
R

(L(t)e(t),e(t))dt −
∫

R

W (t,e(t))dt

=
1
2

ξ 2ω2
∫ T0

−T0

|cos(ωt)|2dt +
λ
2

∫ T0

−T0

(L(t)e(t),e(t))dt
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−
∫ T0

−T0

W (t,ξ |sin(ωt)|e1)dt

� 1
2

ξ 2ω2
∫ T0

−T0

|cos(ωt)|2dt +
λ l1
2

ξ 2
∫ T0

−T0

|sin(ωt)|2dt

−
(π2 + ε1

2T 2
0

+
λ l1
2

)
ξ 2

∫ T0

−T0

|sin(ωt)|2dt +2T0

[(π2 + ε1

2T 2
0

+
λ l1
2

)
σ2 + δ1

]

=
1
2

ξ 2ω2
∫ T0

−T0

[|cos(ωt)|2−|sin(ωt)|2]dt

− ε1ξ 2

2T 2
0

∫ T0

−T0

|sin(ωt)|2dt +2T0

[(
π2 + ε1

2T 2
0

+
λ l1
2

)
σ2 + δ1

]

= − ε1

2T0
ξ 2 +2T0

[(
π2 + ε1

2T 2
0

+
λ l1
2

)
σ2 + δ1

]
→−∞ as ξ → ∞.

We can choose a large enough ξ such that ‖e‖ � ρ and I(e) < 0.

Step 3. Let {qk} ⊂ E be a (PS) sequence, i.e., there exists a constant M1 > 0 such
that

|I(qk)| � M1 for all k and I′(qk) → 0 as k → ∞. (3)

By (K3 ), we have

2
μ
〈I′(qk),qk〉 =

2
μ

∫
R

[|q̇k|2 +(∇K(t,qk),qk)− (∇W (t,qk),qk)]dt

� 2
μ

∫
R

[|q̇k|2 +2K(t,qk)− (∇W(t,qk),qk)]dt.

Then one gets

− 2
μ

∫
R

[|q̇k|2 +2K(t,qk)]dt � − 2
μ
〈I′(qk),qk〉− 2

μ

∫
R

(∇W (t,qk),qk)dt. (4)

From (W1 ) one obtains∫
R

[|q̇k|2 +2K(t,qk)]dt

= 2I(qk)+2
∫

R

W (t,qk)dt

� 2I(qk)+
2
μ

∫
R

[(∇W (t,qk),qk)+ ν(∇K(t,qk),qk)+ β (t)]dt. (5)

From (4) and (5), we have(
1− 2

μ

)∫
R

[|q̇k|2 +2K(t,qk)]dt � 2I(qk)− 2
μ
〈I′(qk),qk〉

+
2ν
μ

∫
R

(∇K(t,qk),qk)dt +
2
μ

∫
R

β (t)dt.
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Then by (K1 ), (K3 ) and (3) one has(
1− 2

μ

)∫
R

[|q̇k|2dt +(L(t)qk,qk)]dt

� 2I(qk)− 2
μ
〈I′(qk),qk〉

+
4
μ

ν
∫

R

K(t,qk)dt +
2
μ

∫
R

β (t)dt

� 2M1 +
2
μ
‖I′(qk)‖‖qk‖

+
2λ ν

μ

∫
R

(L(t)qk,qk)dt +
2
μ
‖β‖L1(R,R+),

that is,

(
1− 2

μ

)∫
R

|q̇k|2dt +
(
1− 2

μ
− 2λ ν

μ

)∫
R

(L(t)qk,qk)dt

� 2M1 +
2
μ
‖I′(qk)‖‖qk‖+

2
μ
‖β‖L1(R,R+). (6)

Since μ > 2 and ν ∈ [0, μ
2λ − 1

λ ) , (6) shows that {qk}k∈N is bounded in E .

Step 4. Since {qk} is bounded, that is, there exists a positive constant C1 such that

‖qk‖ � C1 (7)

for all k ∈ N . Passing to a subsequence if necessary, by Lemma 2, we may assume that

qk ⇀ q in E (8)

and
qk → q in L2(R,RN) and L∞(R,RN) (9)

as k → ∞ . In addition, it follows from (H1 ) that there is σ1 > 0 such that

|∇W (t,x)| � |x| (10)

for all t ∈ R and all |x| � σ1 . Since E is continuously embedded in H1(R,RN) , one
has

|q(t)| → 0 as |t| → ∞. (11)

From (11) and (9) it follows that there exists δ2 > 0 such that

|qk(t)| � σ1 (12)

for k large and all |t|> δ2 . Thus, by (12), (10), (7) and Hölder’s inequality, for k large
one has ∣∣∣∣

∫
R

(∇W (t,qk)−∇W(t,q),qk −q)dt

∣∣∣∣
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�
∫

R

(|∇W (t,qk)|+ |∇W(t,q)|)|qk −q|dt

�
∫
|t|>δ2

(|qk|+ |q|)|qk−q|dt +2C2

∫
|t|�δ2

|qk −q|dt

� [‖qk‖L2 +‖q‖L2 +2C2(2δ2)
1
2 ]‖qk −q‖L2

� [γ2‖qk‖+‖q‖L2 +2C2(2δ2)
1
2 ]‖qk −q‖L2

� C3‖qk −q‖L2, (13)

where
C2 = max{|∇W (t,x)| | |t| � δ2, |x| � γ∞C1}

and
C3 = γ2C1 +‖q‖L2 +2C2(2δ2)

1
2 .

By (K3 ) we have

〈I′(q),q〉 =
∫

R

[|q̇|2 +(∇K(t,q),q)− (∇W(t,q),q)]dt

�
∫

R

[|q̇|2 +2K(t,q)− c0|q|2− (∇W(t,q),q)]dt.

Then by (K1 ) and (13) one has

‖qk −q‖2 � 〈I′(qk)− I′(q),qk −q〉+ c0‖qk −q‖2
L2

+
∫

R

(∇W (t,qk)−∇W (t,q),qk −q)dt

� ‖I′(qk)‖‖qk −q‖−〈I′(q),qk −q〉+ c0‖qk −q‖2
L2 +C3‖qk −q‖L2

� ‖I′(qk)‖(C1 +‖q‖)−〈I′(q),qk −q〉+ c0‖qk −q‖2
L2 +C3‖qk −q‖L2 (14)

for k large. From (14), (3), (8) and (9) it follows that qk → q in E as k → ∞ . Thus
I satisfies the (PS) condition. Then by the Mountain Pass theorem (see [10]), q is the
nontrivial homoclinic orbit of problem (1). The proof is complete. �
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