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SOLUTION TO GENERALIZED NONLOCAL THERMISTOR

PROBLEMS WITH FRACTIONAL–ORDER DERIVATIVES
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(Communicated by Mokhtar Kirane)

Abstract. In this work we study a generalized nonlocal thermistor problem with fractional-
order Riemann–Liouville derivative. Making use of fixed-point theory, we obtain existence and
uniqueness of a positive solution.

1. Introduction

Joule heating is generated by the resistance of materials to electrical current and
is present in any electrical conductor operating at normal temperatures. The heating
of such conductors has undesirable side effects. Problems dealing with the combined
heat and current flows were considered in [5, 9, 11, 13], where various aspects of the
so-called thermistor problem were analyzed. The mathematical model of the nonlocal
steady thermistor problem has the form

Δu =
λ f (u)

(
∫

Ω f (u)dx)2 , (1)

where Δ is the Laplacian with respect to the spacial variables. Such problems arise in
many applications, for instance, in studying the heat transfer in a resistor device whose
electrical conductivity f is strongly dependent on the temperature u . The equation
(1) describes the diffusion of the temperature with the presence of a nonlocal term
as a result of Joule effect. Constant λ is a dimensionless parameter, which can be
identified with the square of the applied potential difference at the ends of the conductor.
Function u represents the temperature generated by the electric current flowing through
a conductor. For more description, we refer to [12, 21]. A deep discussion about the
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history of thermistors, and more detailed accounts of their advantages and applications
to industry, can be found in [11, 13]. In [4] Antontsev and Chipot studied existence
and regularity of weak solutions to the thermistor problem under the condition that the
electrical conductivity f (u) is bounded.

Fractional differential equations are a generalization of ordinary differential equa-
tions and integration to arbitrary noninteger orders. The origin of fractional calculus
goes back to Newton and Leibniz in the seventieth century. In recent years there has
been a great deal of interest in fractional differential equations. They provide a powerful
tool for modeling and solving various problems in various fields: physics, mechanics,
engineering, electrochemistry, economics, visco-elasticity, feedback amplifiers, elec-
trical circuits and fractional multipoles - see, for example, [6, 8, 10, 18, 19, 20] and
references therein. Using fixed point theorems, like Shauder’s fixed point theorem,
and Banach’s contraction mapping principle, many results of existence have been ob-
tained to linear and nonlinear equations and, more recently, to fractional derivative
equations. The interested reader can see [2, 3]. For a physical meaning to the initial
conditions of fractional differential equations with Riemann–Liouville derivatives we
refer to [7, 15, 16].

Our main concern in this paper is to prove existence and uniqueness of solution to
a general fractional order nonlocal thermistor problem of the form

D2αu =
λ f (u)

(
∫ T
0 f (u)dx)2

+h(t) , t ∈ (0,T ) ,

Iβ u(t)|t=0 = 0, ∀β ∈ (0,1],

(2)

under suitable conditions on f and h (see Theorem 3.2). We assume that T is a fixed
positive real and α > 0 a parameter describing the order of the fractional derivative.
In the literature we may find a great number of definitions of fractional derivatives. In
this paper, the fractional derivative is considered in the Riemann–Liouville sense. In
the case α = 1 and h = 0, the fractional equation (2) becomes the one-dimensional
nonlocal steady state thermistor problem. The values of 0 < α < 1

2 correspond to
intermediate processes. We further prove the boundedness of u (see Theorem 3.3),
which is of considerable importance from a practical and physical point of view: it
is interesting to keep the temperature from exceeding some extremal values that may
damage the conductor.

2. Preliminaries

In this section, we give some basic definitions and preliminary facts that are used
further in the paper. Let 0 < α < 1

2 and X = (C([0,T ]),‖ · ‖) , where C([0,T ]) is the
space of all continuous functions on [0,T ] . For x ∈C([0,T ]) , define the norm

‖x‖ = sup
t∈[0,T ]

{e−Nt |x(t)|},

which is equivalent to the standard supremum norm for f ∈C([0,T ]) . It is used in lit-
erature in many papers, see for example [1]. The use of this norm is technical and allow
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us to simplify the integral calculus. By L1([0,T ],R) we denote the set of Lebesgue
integrable functions on [0,T ] . As in [4], we consider that the electrical conductivity is
bounded. More precisely, we assume the following assumptions:

(H1) f : R
+ →R

+ is a Lipschitz continuous function with Lipschitz constant Lf such
that c1 � f (u) � c2 , with c1,c2 two positive constants;

(H2) h is continuous on (0,T ) with h ∈ L∞(0,T ) .

DEFINITION 2.1. (see, e.g., [14, 16, 17, 19]) The fractional (arbitrary) integral of
order α ∈ R

+ of a function f ∈ L1[a,b] is defined by

Iα
a f (t) =

∫ t

a

(t− s)α−1

Γ(α)
f (s)ds,

where Γ is the gamma function. For a = 0 we put Iα := Iα
0 .

REMARK 2.2. For f ,g ∈ L1[a,b] one has

Iα
a ( f (t)+g(t)) = Iα

a f (t)+ Iα
a g(t).

Note also that Iα f (t) ∈C(R+) for f ∈C(R+) and, moreover, Iα f (0) = 0.

DEFINITION 2.3. (see, e.g., [14, 16, 17, 19]) The Riemann–Liouville fractional
(arbitrary) derivative of order α ∈ (n−1,n) , n ∈ N , of function f is defined by

Dα
a f (t) =

dn

dtn
In−α
a f (t) =

1
Γ(n−α)

(
d
dt

)n ∫ t

a
(t− s)n−α−1 f (s)ds, t ∈ [a,b].

3. Main results

Our main result asserts existence of a unique solution to (2) on C(R+) of the form

u(t) = I2α
{

λ f (u)
(
∫ T
0 f (u)dx)2

+h(t)
}

=
∫ t

0

(t − s)2α−1

Γ(2α)

{
λ f (u)

(
∫ T
0 f (u)dx)2

+h(s)
}

ds . (3)

3.1. Existence and uniqueness

We begin by proving the equivalence between (2) and (3) on the space C(R+) .
This restriction of the space of functions allows to exclude from the proof a stationary
function with Riemann-Liouville derivative of order 2α equal to d · t2α−1 , d ∈ R ,
which belongs to the space C1−2α [0,T ] of continuous weighted functions.
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LEMMA 3.1. Suppose that α ∈ (0, 1
2 ) . Then the nonlocal problem (2) is equiva-

lent to the integral equation (3) on the space C(R+) .

Proof. First we prove that (2) implies (3). For t > 0 equation (2) can be written as

d
dt

I1−2αu(t) =
λ f (u)(∫ T

0 f (u)dx
)2 +h(t).

Integrating both sides of the above equation, we obtain

I1−2αu(t)− I1−2αu(t)|t=0 =
∫ t

0

{
λ f (u)(∫ T

0 f (u)dx
)2 +h(s)

}
ds.

Since 0 < 1−2α < 1,

I1−2αu(t) =
∫ t

0

{
λ f (u)(∫ T

0 f (u)dx
)2 +h(s)

}
ds .

Applying the operator I2α to both sides, we get

Iu(t) = I2α+1

{
λ f (u)(∫ T

0 f (u)dx
)2 +h(t)

}
.

Differentiating both sides,

u(t) = I2α

{
λ f (u)(∫ T

0 f (u)dx
)2 +h(t)

}
.

Let us now prove that (3) implies (2). Since u ∈C(I) and I1−2αu(t) ∈C(I) , applying
the operator I1−2α to both sides of (3) one obtains

I1−2αu(t) = I1−2αI2α

{
λ f (u)(∫ T

0 f (u)dx
)2 +h(t)

}

= I

{
λ f (u)(∫ T

0 f (u)dx
)2 +h(t)

}
.

Differentiating both sides of the above equality,

DI1−2αu(t) = DI

{
λ f (u)(∫ T

0 f (u)dx
)2 +h(t)

}
.

Then,

D2αu(t) =
λ f (u)(∫ T

0 f (u)dx
)2 +h(t), t > 0.
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THEOREM 3.2. Let f and h satisfy hypotheses (H1) and (H2) . Then there ex-
ists a unique solution u ∈ X of (2) for all

0 < λ <
N2α

Lf

(
1

(c1T )2 + 2c2
2T

(c1T )4 eNT
) .

Proof. Let F : X → X be defined by

Fu = I2α

{
λ f (u)(∫ T

0 f (u)dx
)2 +h(t)

}
.

Then,

|Fu−Fv| =
∣∣∣∣∣I2α

{
λ f (u)(∫ T

0 f (u)dx
)2 − λ f (v)(∫ T

0 f (v)dx
)2
}∣∣∣∣∣

=

∣∣∣∣∣I2α

{
λ(∫ T

0 f (u)dx
)2 ( f (u)− f (v))

+ λ f (v)

(
1(∫ T

0 f (u)dx
)2 − 1(∫ T

0 f (v)dx
)2
)}∣∣∣∣∣

�
∣∣∣∣∣I2α

{
λ(∫ T

0 f (u)dx
)2 ( f (u)− f (v))

}∣∣∣∣∣
+

∣∣∣∣∣I2α

{
λ f (v)

(
1(∫ T

0 f (u)dx
)2 − 1(∫ T

0 f (v)dx
)2
)}∣∣∣∣∣. (4)

We estimate each term on the right hand side of (4) separately. Using then the fact that
f is Lipshitzian, we have∣∣∣∣∣I2α

{
λ(∫ T

0 f (u)dx
)2 ( f (u)− f (v))

}∣∣∣∣∣
� 1

(c1T )2 λ I2α{| f (u)− f (v)|}

� 1
(c1T )2 λLf I

2α{|u− v|}

=
1

(c1T )2 λLf

∫ t

0

(t − s)2α−1

Γ(2α)
|u(s)− v(s)|ds. (5)

Since ∫ Nt

0

r2α−1

Γ(2α)
e−rdr � 1

Γ(2α)

∫ +∞

0
r2α−1e−rdr =

Γ(2α)
Γ(2α)

= 1,
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it follows from (5) that

e−Nt

∣∣∣∣∣I2α

{
λ

(
∫ T
0 f (u)dx)2

( f (u)− f (v))

}∣∣∣∣∣
� 1

(c1T )2 λLf e
−Nt

∫ t

0

(t − s)2α−1

Γ(2α)
|u(s)− v(s)|ds

� 1
(c1T )2 λLf

∫ t

0

(t − s)2α−1

Γ(2α)
e−N(t−s)e−Ns|u(s)− v(s)|ds

� 1
(c1T )2 λLf sup

t
{e−Nt |u(t)− v(t)|}

∫ t

0

(t− s)2α−1

Γ(2α)
e−N(t−s)ds

� 1
(c1T )2 λLf ‖u− v‖

∫ t

0

(t − s)2α−1

Γ(2α)
e−N(t−s)ds

� 1
(c1T )2 λLf ‖u− v‖ 1

N2α

∫ Nt

0

r2α−1

Γ(2α)
e−rdr

�
1

(c1T )2 λLf

N2α ‖u− v‖.

On the other hand, similar arguments as above yield to

∣∣∣∣∣I2α

{
λ f (v)

(
1(∫ T

0 f (u)dx
)2 − 1(∫ T

0 f (v)dx
)2
)}∣∣∣∣∣

=

∣∣∣∣∣I2α

{
λ f (v)(∫ T

0 f (u)dx
)2(∫ T

0 f (v)dx
)2((∫ T

0
f (u)dx

)2

−
(∫ T

0
f (v)dx

)2
)}∣∣∣∣∣

� c2

(c1T )4 λ

∣∣∣∣∣I2α

{(∫ T

0
f (u)dx

)2

−
(∫ T

0
f (v)dx

)2
}∣∣∣∣∣

� c2

(c1T )4 λ

∣∣∣∣∣I2α

{(∫ T

0
( f (u)− f (v))dx

)(∫ T

0
( f (u)+ f (v))dx

)}∣∣∣∣∣
� 2c2

2T
(c1T )4 λ I2α

{∫ T

0
| f (u)− f (v)|dx

}

� 2c2
2T

(c1T )4 λLf I
2α
{∫ T

0
|u(x)− v(x)|dx

}

� 2c2
2T

(c1T )4 λLf

∫ t

0

(t− s)2α−1

Γ(2α)

(∫ T

0
|u(x)− v(x)|dx

)
ds. (6)
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Then,

e−Nt

∣∣∣∣∣I2α

{
λ f (v)

(
1(∫ T

0 f (u)dx
)2 − 1(∫ T

0 f (v)dx
)2
)}∣∣∣∣∣

� 2c2
2T

(c1T )4 λLf

∫ t

0

(t − s)2α−1

Γ(2α)

(∫ T

0
e−N(t−x)e−Nx|u(x)− v(x)|dx

)
ds

� 2c2
2T

(c1T )4 λLf sup
t
{e−Nt |u(t)− v(t)|}

∫ t

0

(t− s)2α−1

Γ(2α)

(∫ T

0
e−N(t−x) dx

)
ds

� 2c2
2T

(c1T )4 λLf sup
t

{
e−Nt |u(t)− v(t)|}

∫ t

0

(t− s)2α−1

Γ(2α)
e−Nt

(
1
N

(eNT −1)
)

ds

� 2c2
2T

(c1T )4 λLf ‖u− v‖
∫ t

0

(t − s)2α−1

Γ(2α)
e−Nt

(
1
N

(eNT −1)
)

ds

�
2c2

2T
(c1T )4 eNT λLf

N
‖u− v‖

∫ t

0

(t − s)2α−1

Γ(2α)
e−Ntds

�
2c2

2T
(c1T )4 eNT λLf

N
‖u− v‖

∫ t

0

(t − s)2α−1

Γ(2α)
e−N(t−s)e−Nsds

�
2c2

2T
(c1T )4 eNT λLf

N
‖u− v‖

∫ t

0

(t − s)2α−1

Γ(2α)
e−N(t−s)ds

�
2c2

2T
(c1T )4 eNT λLf

N2α+1 ‖u− v‖

�
2c2

2T
(c1T )4 eNT λLf

N2α ‖u− v‖. (7)

Gathering (4)-(7), we get

e−Nt |Fu−Fv| �
(

1
(c1T )2 +

2c2
2T

(c1T )4 eNT
)

λLf

N2α ‖u− v‖.

Then, we have

‖Fu−Fv‖ �
(

1
(c1T )2 +

2c2
2T

(c1T )4 eNT
)

λLf

N2α ‖u− v‖.

Choosing λ > 0 such that(
1

(c1T )2 +
2c2

2T
(c1T )4 eNT

)
λLf

N2α < 1,
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the map F : X → X is a contraction and it has a fixed point u = Fu . Hence, there exists
a unique u ∈ X that is the solution to the integral equation (3). The result follows from
Lemma 3.1.

3.2. Boundedness

We now show that the condition that the electrical conductivity f (u) is bounded
(hypothesis (H1)) allows to assert boundedness of u .

THEOREM 3.3. Under hypotheses (H1) and (H2) and λ > 0 , if u is the solution
of (3), then

‖u‖ �

(
λ

(c1T )2 f (0)+h∞

)
N2α e

λL f
(c1TNα )2 ,

where h∞ denotes the L∞ norm of h.

Proof. One has

|u(t)| � I2α
{

λ | f (u)|
(
∫ T
0 f (u)dx)2

+ |h(t)|
}

� λ
(c1T )2

∫ t

0

(t − s)2α−1

Γ(2α)
| f (u(s))− f (0)|ds

+
∫ t

0

(t− s)2α−1

Γ(2α)

(
|h(s)|+ λ

(c1T )2 f (0)
)

ds

� λLf

(c1T )2

∫ t

0

(t − s)2α−1

Γ(2α)
|u(s)|ds

+
(

λ
(c1T )2 f (0)+h∞

)∫ t

0

(t − s)2α−1

Γ(2α)
ds.

Then,

e−Nt |u(t)| � λLf

(c1T )2

∫ t

0

(t− s)2α−1

Γ(2α)
e−Nt |u(s)|ds

+
(

λ
(c1T )2 f (0)+h∞

)∫ t

0

(t− s)2α−1

Γ(2α)
e−Ntds

� λLf

(c1T )2

∫ t

0

(t− s)2α−1

Γ(2α)
e−N(t−s)e−Ns|u(s)|ds

+
(

λ
(c1T )2 f (0)+h∞

)∫ t

0

(t− s)2α−1

Γ(2α)
e−N(t−s)e−Nsds

� λLf

(c1T )2

∫ t

0

(t− s)2α−1

Γ(2α)
e−N(t−s)e−Ns|u(s)|ds

+
(

λ
(c1T )2 f (0)+h∞

)∫ t

0

(t− s)2α−1

Γ(2α)
e−N(t−s)ds
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� λLf

(c1T )2

∫ t

0

(t− s)2α−1

Γ(2α)
e−N(t−s)e−Ns|u(s)|ds

+

( λ
(c1T )2 f (0)+h∞

)
N2α

∫ Nt

0

r2α−1

Γ(2α)
e−rdr

�
( λ

(c1T )2 f (0)+h∞
)

N2α

+
λLf

(c1T )2

∫ t

0

(t− s)2α−1

Γ(2α)
e−N(t−s) (e−Ns|u(s)|)ds.

Using Gronwall’s lemma, we have

e−Nt |u(t)| �
( λ

(c1T )2 f (0)+h∞
)

N2α e
λL f

(c1T )2
∫ t
0

(t−s)2α−1

Γ(2α) e−N(t−s)ds

�
( λ

(c1T )2 f (0)+h∞
)

N2α e

λL f
(c1T )2

N2α
∫Nt
0

r2α−1
Γ(2α) e−rdr

�
( λ

(c1T )2 f (0)+h∞
)

N2α e

λL f
(c1T )2

N2α .

Then,

‖u‖ �
( λ

(c1T )2 f (0)+h∞
)

N2α e

λL f
(c1T )2

N2α =

( λ
(c1T )2 f (0)+h∞

)
N2α e

λL f
(c1TNα )2

and we conclude that u is bounded.
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