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APPROXIMATION SCHEMES FOR MONOTONE SYSTEMS OF

NONLINEAR SECOND ORDER PARTIAL DIFFERENTIAL

EQUATIONS: CONVERGENCE RESULT AND ERROR ESTIMATE

ARIELA BRIANI, FABIO CAMILLI AND HASNAA ZIDANI

Abstract. We consider approximation schemes for monotone systems of fully nonlinear second
order partial differential equations. We first prove a general convergence result for monotone,
consistent and regular schemes. This result is a generalization to the well known framework
of Barles-Souganidis, in the case of scalar nonlinear equation. Our second main result provides
the convergence rate of approximation schemes for weakly coupled systems of Hamilton-Jacobi-
Bellman equations. Examples including finite difference schemes and Semi-Lagrangian schemes
are discussed.
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