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APPROXIMATION SCHEMES FOR MONOTONE SYSTEMS OF

NONLINEAR SECOND ORDER PARTIAL DIFFERENTIAL

EQUATIONS: CONVERGENCE RESULT AND ERROR ESTIMATE

ARIELA BRIANI, FABIO CAMILLI AND HASNAA ZIDANI

(Communicated by Renato Spigler)

Abstract. We consider approximation schemes for monotone systems of fully nonlinear second
order partial differential equations. We first prove a general convergence result for monotone,
consistent and regular schemes. This result is a generalization to the well known framework
of Barles-Souganidis, in the case of scalar nonlinear equation. Our second main result provides
the convergence rate of approximation schemes for weakly coupled systems of Hamilton-Jacobi-
Bellman equations. Examples including finite difference schemes and Semi-Lagrangian schemes
are discussed.

1. Introduction

In this paper we study approximation schemes for a system of nonlinear second
order partial differential equations

Fi
(
x,u,Dui,D

2ui
)

= 0, x ∈ R
N , i = 1, . . . ,M, (1.1)

where u = (u1, . . . ,uM) denotes the unknown function, and F = (F1, . . . ,FM) is a given
function.

The theory of viscosity solution, initially developed for the scalar equation has
been extended to systems in [13, 17, 19, 26]. In this framework the monotonicity of
F with respect to the variable u (see (2.2c)) is essential to guarantee the validity of
a maximum principle. Note that this property involves not only the single component
Fi , but all the system at the same time. Given this property and standard regularity
assumptions on F , it is possible to prove a strong comparison principle, hence the
uniqueness of the viscosity solution to (1.1).

For a large class of monotone systems, the existence of the solution can be ob-
tained either via the Perron’s method ([17, 19]) or via control-theoretic representation
formulas, ([13, 22]). We refer to [15, 16] for various applications of systems of PDEs
in many areas, in particular we mention [5] for a Black–Scholes pricing model with
jumping volatility.
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Here, we consider approximation schemes of the type

Si(h,x,uh(x),uh
i ) = 0, x ∈ R

N , i = 1, . . . ,M, (1.2)

where Si are consistent, monotone and uniformly continuous approximation of Fi in
(1.1) and the coupling among the equations is only in the variable uh(x) (where uh =
(uh

1, . . . ,u
h
M) represents the solution of the approximate system (1.2), and is expected to

be an approximation to the solution u of system (1.1)). Typical approximation of this
type, like finite difference methods and semi-Lagrangian schemes, will be discussed in
details.

For the case of a scalar fully nonlinear equation, the work of Barles-Souganidis [4]
provides a general setting for convergence of approximation schemes. This setting says
that any monotone, consistent, continuous scheme converges to the unique viscosity
solution of the limit problem, provided that it satisfies a comparison principle. To ex-
tend the result of [4] to the case of systems of PDEs, the crucial point is to introduce an
appropriate monotonicity condition for (1.2) (the monotonicity of the single scheme Si

being not sufficient). Under this appropriate monotonicity, (assumption (C1) in Section
3), and the standard consistency and regularity conditions, by applying the general idea
of [4] based on the use of the half-relaxed limits, we get the convergence result for the
monotone systems.

While results on convergence rates for viscosity solutions of 1st order equation
were obtained from the beginning of the viscosity theory, only quite recently Krylov
[22, 21, 23] and Barles-Jakobsen [1, 2] success in proving similar rates for second or-
der Hamilton-Jacobi-Bellman equations. Convergence rate of approximation schemes
for particular Isaac equations have been obtained in [6, 20]. We refer also to [10] for
convergence rate in the case of elliptic fully nonlinear equations, and to [14] for con-
vergence rate of probabilistic approximation schemes. Our aim, in the second part of
the paper, is to extend the previous convergence rates to the case of convex systems.
In order to simplify the presentation we choose as a model problem a weakly coupled
systems of Hamilton-Jacobi-Bellman equations, but the approach is sufficiently general
to hold for other classes of problems, f.e. switching control problems.

To obtain the rate of convergence, we will use the same arguments developed in
[1, 2, 7] and adapt them to the case of monotone system of PDEs. As usual, the upper
bound for u− uh is easier and it is obtained via a Krylov regularization and shaking
coefficient techniques. These techniques allow to define a smooth subsolution to the
system. So by using the consistency property, we obtain the upper bound. The proof of
the lower bound is more involved and requires an approximation of the weakly coupled
system with a switching system with a bigger number of components. By this proce-
dure it is possible to build regular “local” supersolutions of the continuous problems.
Then, we derive the lower error estimate by using the consistency and monotonicity
conditions. Our result gives an upper bound of h1/2 and a lower bound of h1/5 for the
finite differences scheme [9]. For a Semi-Lagrangian scheme these estimates become
h1/4 for the upper bound, and h1/10 for the lower bound.

The paper is organized as follows. In Section 2 we recall definitions and basic
results for the continuous problem. In Section 3 we state the main assumptions for
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the scheme and we prove the convergence theorem. Section 4 is devoted to the proof
of the error estimates, while in section 5.1-5.2 and 5.3 we discuss respectively finite
difference schemes and semi-Lagrangian schemes. The Appendix 6 is devoted to the
proofs of some technical results.

Notation.

We will use the following norms

| f |0 = esssupx∈RN | f (x)|, [ f ]1 = |Df |0, and | f |1 = | f |0 +[ f ]1.

The space of real symmetric N ×N matrices is denoted by SN , and X � Y in SN will
mean that X −Y is positive semi-definite.

For a function u : R
N → R

M , we say that u = (u1, . . . ,uM) is upper semicon-
tinuous (u.s.c. for short), respectively lower semicontinuous (l.s.c. for short), if all
the components ui , i = 1, . . . ,M , are u.s.c., respectively l.s.c.. If u = (u1, . . . ,uM) ,
v = (v1, . . . ,vM) , are two functions defined in a set E we write u � v in E if ui � vi in
E , i = 1, . . . ,M .

2. The continuous problem: definitions and assumptions

Consider the system of nonlinear second order equations

Fi
(
x,u,Dui,D

2ui
)

= 0, x ∈ R
N , i = 1, . . . ,M, (2.1)

where u := (u1, . . . ,uM) and ui is a real valued function defined in R
N and F :=

(F1, . . . ,FM) : R
N ×R

M ×R
N ×SN → R

M is a continuous given function.
Let us first recall the definition of viscosity solution for system (2.1) (see [19]).

DEFINITION 2.1. (i) An u.s.c. function u : R
N → R

M is said a viscosity subsolu-
tion of (2.1) if whenever φ ∈C2(RN) , i = 1, . . . ,M and ui−φ attains a local maximum
at x ∈ R

N , then
Fi(x,u(x),Dφ(x),D2φ(x)) � 0.

(ii) A l.s.c. function v : R
N → R

M is said a viscosity supersolution of (2.1) if whenever
φ ∈C2(RN) , i = 1, . . . ,M and vi −φ attains a local minimum at x ∈ R

N , then

Fi(x,v(x),Dφ(x),D2φ(x)) � 0.

(iii) A continuous function u is said a viscosity solution of (2.1) if it is both viscosity
sub- and supersolution of (2.1).

The existence of a solution to (2.1) can be obtained, for a large class of monotone
systems, either via Perron’s method ([17], [19]) or via the control-theoretic interpreta-
tion of the problem [13, 26]. To get a comparison principle for system (2.1), we shall
assume the following conditions on function F :

Fi ∈C(RN ×R
M ×R

N ×SN), i = 1, . . . ,M; (2.2a)



300 ARIELA BRIANI, FABIO CAMILLI AND HASNAA ZIDANI

− there exists a modulus of continuity ω s.t. if X , Y ∈ SN , β > 1 and

−3β
(

I 0
0 I

)
�

(
X 0
0 Y

)
� −3β

(
I −I
−I I

)
, (2.2b)

then Fi(y,r,β (x− y),−Y )−Fi(x,r,β (x− y),X) � ω(β |x− y|2 + β−1 );

− there exists c0 > 0 s.t. for r , s ∈ R
M satisfying

ri − si = max
j=1,...,M

{r j − s j} � 0, then for all x, y, p ∈ R
N , X ∈ SN ,

Fi(x,r, p,X)−Fi(x,s, p,X) � c0(ri − si). (2.2c)

THEOREM 2.2. (see [19]) Assume Fi : R
N ×R

M ×R
N × SN → R , i = 1, . . . ,M,

to be continuous and satisfy (2.2). Let u and v be respectively a bounded subsolution
and a bounded supersolution of (2.1). Then u � v in R

N .

REMARK 2.3. Assumption (2.2c) is the condition giving the monotonicity of the
system (2.1), while (2.2a), (2.2b) are standard regularity assumptions in viscosity solu-
tion theory.

EXAMPLE 2.4. (weakly coupled system) Consider the weakly coupled system of
M equations:

Fi(x,u(x),Dui(x),D2
i u(x))

:= sup
α∈A i

{
L α

i (x,u(x),Dui(x),D2ui(x))+
M

∑
j=1

di j(x,α)u j(x)
}

, (2.3)

where the operator L α is defined by:

L α
i (x,r, p,X) = −1

2
Tr[ai(x,α)X ]−bi(x,α) · p− fi(x,α)+ λiri (2.4)

and with ai(x,α) = σi(x,α)σT
i (x,α) . We assume that the following assumptions hold:

A i are compact metric spaces, i = 1, . . . ,M,

bi : R
N ×A i −→ R

N , σi : R
N ×A i → R

N×D, fi : R
N ×A i → R,

| fi(·,α)|1 + |σi(·,α)|1 + |bi(·,α)|1 � L for anyα ∈ A i, i = 1, . . . ,M

(2.5a)

and

di j : R
N ×A i → R,

|di j(·,α)|1 � L for anyα ∈ A i, i, j = 1, . . . ,M,

dii(x,α) � 0, di j(x,α) � 0 for i �= j, λi � 0,

λi +
M

∑
j=1

di j(x,α) � λ0 > 0, (x,α) ∈ R
N ×A i, i = 1, . . . ,M.

(2.5b)
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It is easy to check that under assumptions (2.5a)-(2.5b), system (2.4) satisfies con-
ditions (2.2a)-(2.2c) (in particular the last condition in (2.5b) implies the monotonicity
of the system with c0 = λ0 ). Moreover, we have the following result whose proof is
given in the appendix.

PROPOSITION 2.5. Under assumptions (2.5a)-(2.5b), system (2.3) admits a unique
bounded continuous solution u. Moreover, if we have:

λ0 > max
i=1,...,M

sup
α∈A i

|σi(·,α)|21 + max
i=1,...,M

sup
α∈A i

|bi(·,α)|1, (2.6)

then u is bounded and Lipschitz continuous in R
N .

Finally, let us also mention that system (2.3) comes from infinite horizon optimal
control problems of hybrid systems and random evolution processes.

3. The approximation scheme: definitions and assumptions

For a fixed h > 0, we consider the following approximation scheme:

Si(h,x,uh(x),uh
i ) = 0, x ∈ R

N , i = 1, . . . ,M, (3.1)

where the function uh : R
N → R

M , uh = (uh
1, . . . ,u

h
M) , represents the solution of (3.1).

In the sequel, we will state a set of assumptions on the scheme S(h, ., ., .) :

(C1) (monotonicity) there exists c0 > 0 such that for any h > 0, x ∈ R
N , bounded

functions u , v such that u � v in R
N and r , s ∈ R

M such that

θ := ri − si = max
j=1,...,M

{r j − s j} � 0,

then
Si(h,x,r,ui + θ )−Si(h,x,s,vi) � c0θ ;

(C2) (regularity) for any h > 0 and any continuous, bounded function φ : R
N → R , the

functions
x �→ Si(h,x,r,φ), i = 1, . . . ,M

are bounded and continuous on R
N and the functions

r �→ Si(h,x,r,φ)

are uniformly continuous for bounded r , uniformly with respect to x ∈ R
N ;

(C3) (consistency) fix i = 1, . . . ,M . For all h > 0, x ∈ R
N and for any continuous

function Φ ∈C0(RN ,RM) with a smooth i-th component Φi , we have:

|Si(h,x,Φ(x),Φi)−Fi(x,Φ,DΦi,D
2Φi)| � ω(h)

with ω(h) → 0 for h → 0;
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(C4) (stronger consistency) there exist n,k j > 0, j ∈ J ⊂ {1, . . . ,n} and a constant
Kc > 0 such that: for all h > 0, i = 1, . . . ,M , x ∈ R

N , and for any continuous function
Φ ∈C0(RN ;RM) such that its i-th component Φi is smooth with |DjΦi(x)| bounded
in R

N , for every j ∈ J , we have:

|Si(h,x,Φ(x),Φi)−Fi(x,Φ,DΦi,D
2Φi)| � KCQ(Φi) in R

N ,

where Q(φ) := ∑ j∈J |Djφ |hkj for every smooth function φ .

DEFINITION 3.1. We say that a function u : R
N → R

M is a subsolution (respec-
tively, a supersolution) of (3.1) if it satisfies

Si(h,x,u(x),ui) � 0 (respectively Si(h,x,u(x),ui) � 0), x ∈ R
N , i = 1, . . . ,M.

The next result is a comparison principle for the scheme (3.1).

PROPOSITION 3.2. Assume (C1) and (C2). If u and v are bounded sub- and su-
persolutions of (3.1), respectively, then u � v in R

N .

Proof. We assume δ := supi,RN (ui − vi) > 0 and we derive a contradiction. Let
{xn} in R

N and {in} ∈ {1, . . . ,M} be such that δn = uin(xn)−vin(xn) = max j{u j(xn)−
v j(xn)} → δ for n → ∞ . Since u and v are respectively sub- and supersolutions, we
get:

0 � Sin(h,xn,u(xn),uin)−Sin(h,xn,v(xn),vin).

Moreover, we know that u(xn) � v(xn) + δn , 0 = max j(u j(xn)− (v j(xn) + δn)) and
uin � vin + δ in R

N . Then, the monotonicity yields to:

Sin(h,xn,u(xn),uin) � Sin(h,xn,v(xn)+ δn,vin + δ ).

Therefore, by assumption (C2), we have:

0 � Sin(h,xn,v(xn)+ δ ,vin + δ )−Sin(h,xn,v(xn),vin)+ ω(δn− δ ),

where ω(t) → 0 when t → 0+ . Finally, by using (C1) again, we obtain:

0 � c0δ + ω(δn− δ ),

which leads to a contradiction when n → ∞ . �

In all the sequel, we assume that:

(C5) (existence of discrete solution) for every h > 0, system (3.1) admits a solution uh .

We give a convergence result for the scheme based on the classical argument by
Barles-Souganidis, [4].

PROPOSITION 3.3. Assume (C1)-(C3) and (C5). Let uh = (uh
1, . . . ,u

h
M) be a lo-

cally uniformly bounded family of solutions of (3.1) and let u be the solution of (2.1).
Then uh → u for h → 0 locally uniformly in R

N .
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Proof. Define the relaxed half-limits by:

ui(x) = liminf
h→0,z→x

uh
i (z) and ui(x) = limsup

h→0, z→x
uh

i (z), i = 1, . . . ,M.

Following the arguments introduced in [4], it is sufficient to prove that u is a superso-
lution and u is a subsolution of (2.1). Then by the comparison principle (Theorem 2.2),
it follows that u � u . Since the other inequality is obvious we get u = u = limh→0 uh

and the local uniform convergence in R
N .

We will only prove that u is a subsolution of (2.1) (the same arguments can be used
to prove that u is a supersolution). Let φ be a smooth function, and i ∈ {1, . . . ,M} ,
such that ui −φ has a maximum point at x0 , ui(x0) = φ(x0) . By using standard argu-
ments in the viscosity theory, there exists a sequence (hn)n of positive numbers satis-
fying:

hn → 0 and xn := xhn → x0, when n → ∞,

uhn
i −φ has a maximum point at xn and uhn

i (xn) → ui(x0).

Set δn := (uhn
i −φ)(xn) , and define the function:

Φn(x) = (uhn
1 (x), . . . ,uhn

i−1(x),φ(x),uhn
i+1(x), . . . ,u

hn
M (x)) in R

N .

Up to a subsequence, Φn(xn) converges to a vector r ∈ R
M , where ri = ui(x0) , and

r j � u j(x0) for j �= i . Then, using the fact that: uhn
i − δn � φ in R

N and δn =
uhn

i (xn)− φ(xn) = max j(u
hn
j (xn)−Φn

j(xn)) , and taking into account the monotonicity
assumption (C1), we get:

0 = Si(hn,xn,u
hn(xn),uhn

i ) = Si(hn,xn,u
hn(xn),(uhn

i − δn)+ δn)

� Si(hn,xn,Φn(xn),φ)+ c0δn � Fi(xn,Φn(xn),Dφ(xn),D2φ(xn))+ c0δn −ω(h),

where the last inequality is due to the consistency assumption (C3). Passing to the limit
when n → ∞ , we get

0 � Fi(x0,u(x0),Dφ(x0),D2φ(x0)),

which proves that u is a subsolution of (2.1). �

4. The error estimate for the weakly coupled systems

In this section, we consider again system (2.3) considered in Example 2.4, with
L α

i as in (2.4), i.e.

Fi(x,r, p,X)

:= sup
α∈A i

{
− 1

2
Tr[ai(x,α)X ]−bi(x,α) · p− fi(x,α)+ λiri +

M

∑
j=1

di j(x,α)r j

}
.
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We will always assume that (2.5) and (2.6) are satisfied and therefore we will denote
by u the unique solution given by Proposition 2.5. For this particular system, we will
derive an error estimate for |u− uh| , where uh is the solution of a scheme satisfying
(C1), (C2), (C4) and (C5).

4.1. The upper bound

PROPOSITION 4.1. There exists C > 0 such that:

ui(x)−uh
i (x) � Chγ , ∀i = 1, . . . ,M, (4.1)

where γ = min j∈J

{
k j
j

}
, with J and k j being defined in (C4).

We need a preliminary lemma which will be proved in the Appendix.

LEMMA 4.2. (i) There is a unique solution uε of the system

max
|e|�ε

Fi(x+ e,u(x),Dui,D
2ui) = 0, x ∈ R

N , i = 1, . . . ,M (4.2)

and two constants C0,C1 independent of h,ε such that

max
i=1,...,M

|uε
i |1 � C0 and max

i=1,...,M
|ui−uε

i |0 � C1ε, (4.3)

where u is a solution of (2.1).

(ii) Let (ρε)ε be a family of standard mollifiers and define uε = (ρε ∗uε
1, . . . ,ρε ∗uε

M) :=
(u1,ε , . . . ,uM,ε ) . Then uε is a classical subsolution of (2.1).

PROOF OF PROPOSITION 4.1. Thanks to Lemma 4.2 (ii), uε is classical subsolu-
tion of (2.1). Therefore, by (C4) we have, for each i = 1, . . . ,M

Si(h,x,uε(x),ui,ε ) � Fi(x,uε ,Dui,ε ,D
2ui,ε)+Q(ui,ε) � Q(ui,ε). (4.4)

Set ε = hγ with γ as in the statement. By [7, Lemma 4.2], we can estimate

Q(ui,ε) � K|J|C0h
γ := Chγ ,

where C0 as in (4.3). By (C1) and (4.4), we have that

uε − C
c0

hγ = (u1,ε − C
c0

hγ , . . . ,uM,ε − C
c0

hγ)

is a subsolution of the scheme. Hence, by the comparison principle of the scheme
(Proposition 3.2), we get:

ui,ε −uh
i � C

c0
hγ , ∀i = 1, . . . ,M. (4.5)

By estimate (4.3) and (4.5), we conclude

ui −uh
i � C

c0
hγ +Chγ , ∀i = 1, . . . ,M

and therefore (4.1) is satisfied. �
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4.2. The lower bound

For the lower bound we need an additional assumption: for each control set A i

and δ > 0, there is a finite family of controls {αi j}Li
j=1 such that for any α ∈ A i ,

inf
j=1,...,Li

{
|σi(·,α)−σi(·,αi j)|0 + |bi(·,α)−bi(·,αi j)|0

+ | fi(·,α)− fi(·,αi j)|0 +
M

∑
l=1

|dil(·,α)−dil(·,αi j)|0
}

� δ . (4.6)

REMARK 4.3. The previous assumption is satisfied for instance when the sets A i

are finite or if the functions σi, bi, fi,di j are uniformly continuous in α , uniformly in
x . A slight more general assumption is considered in [3, 21, 22]. To simplify the
notation, we assume in the following w.l.o.g. that all the families {αi j}Li

j=1 have the
same cardinality L .

PROPOSITION 4.4. Assume that (2.5), (2.6) and (4.6) hold. Then there exists
C > 0 such that:

−Chγ � ui(x)−uh
i (x), ∀i = 1, . . . ,M, (4.7)

where γ = min j∈J

{
k j

3 j−2

}
with J , k j being defined in (C4).

For every � > 0, we introduce the following switching system

Fε,�
i j (x,V ε,�,DV ε,�

i j ,D2V ε,�
i j ) = 0, x ∈ R

N , i = 1, . . . ,M, j = 1, . . . ,L, (4.8)

where

Fε,�
i j (x,R, p,X)

= max

{
min
|e|�ε

{
L

αi j
i (x+ e,Ri j, p,X)+

M

∑
l=1

dil(x+ e,αi j)Rl j
}
, Mi j(R)

}
, (4.9)

Mi j(R) := Ri j − min
l=1,...,L

l �= j

{Ril + �}, (4.10)

where {αi j}L
j=1 , i = 1, . . . ,M are defined in (4.6). The solution of the system (4.8)

is a function from R
N to R

M×L . The (i, j) component of the solution of (4.8) is
coupled with other L components by means of the switching term Mi j(R) and with
other (M−1) components by means of the term ∑M

l=1 dil(x,α)Rl j .

LEMMA 4.5. Let δ ,ε, � > 0 be fixed. Let u be the solution of (2.1) and V ε,� be
the solution of (4.8).

(i) There exists C > 0 such that:

max
j=1,...,L

|V ε,�
i j −ui|0 � C(ε + �

1
3 + δ ), i = 1, . . . ,M. (4.11)
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(ii) Set V �
ε,i j := ρε ∗V ε,�

i j , i = 1, . . . ,M, j = 1, . . . ,L where ρε is a standard mollifier.
Then

max
j,l=1,...,L

|V ε,�
i j −V �

ε,il|0 � C(ε + �). (4.12)

(iii) Moreover, for ε � (4supi j[V
ε,�
i j ]1)−1� and for for any x ∈ R

N , if we set j =
j(ε, i,x) := argminl=1,...,J V �

ε,il(x) , then

L
αi j
i (x,V �

ε,i j,DV �
ε,i j,D

2V �
ε,i j)+

M

∑
l=1

dil(x,αi j)V �
ε,l j � 0.

The proof of the previous lemma is postponed to the Appendix.

PROOF OF PROPOSITION 4.4. The proof is based on the same arguments as in
[2, Theorem 3.5]. We fix δ > 0 in such a way that (4.6) is satisfied, we consider the
solution V ε,� of (4.8) and its mollification (component by component) Vε . We define a
function w : R

N → R
M by wi := min j=1,...,LV �

ε,i j . By Lemma 4.5.(iii), it follows that w
is a supersolution of (2.1). We define

m = sup
y∈RN ,i=1,...,M

{uh
i (y)−wi(y)}

and
mk = sup

y∈RN ,i=1,...,M
{uh

i (y)−wi(y)− kφ(y)}, (4.13)

where φ(y) = (1 + |y|2)1/2 . Since w and uh are bounded continuous functions, the
supremum in (4.13) is achieved at a point x and at an index i , which is also a maximum
point for y �−→ uh

i (y)−V �
ε,i j(y)− kφ(y) , where j = argminl=1,...,LV �

ε,il(x) . By Lemma
4.5-(iii), the definition of φ , (2.5a) and (2.5b), we get

sup
α∈A i

L α
i (x,(V �

ε,i j + kφ)(x),D(V �
ε,i j + kφ)(x),D2(V �

ε,i j + kφ)(x))

+
M

∑
l=1

dil(x,α)(V �
ε,l j + kφ)(x) � −Ck. (4.14)

With the consistency assumption (C4), we obtain

−Ck � Si(h,x,({V �
ε,l j}M

l=1 + kΦ)(x),V �
ε,i j + kφ)+Q(V �

ε,i j + kφ), (4.15)

where Φ = (φ , . . . ,φ) . Taking into account the definition of Q(·) , V �
ε,i j and Φ , we

obtain

−C∑
l∈J

ε1−lhkl +O(k) � Si(h,x,({V �
ε,l j}M

l=1 + kΦ)(x),V �
ε,i j + kφ). (4.16)

Moreover by the definition of mk , it follows that

(V �
ε,i j + kφ)(y) � uh

i (y)−mk, ∀y ∈ R
N ,
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and

uh
i (x)−V �

ε,i j(x)− kφ(x) � uh
l (x)−wl(x)− kφ(x) � uh

l (x)−V �
ε,l j(x)− kφ(x)

and therefore

(uh
i (x)−mk)− (V �

ε,i j(x)+ kφ(x)) = max
l
{(uh

l (x)−mk)− (V �
ε,l j(x)+ kφ(x))}.

This with assumption (C1) yields:

Si(h,x,({V �
ε,l j}M

l=1 + kΦ)(x),V �
ε,i j + kφ) � Si(h,x,(uh −mk)(x),uh

i −mk)

� −c0mk +Si(h,x,uh(x),uh
i ) = −c0mk.

From the previous inequality and (4.16), sending k → 0 we get the estimate

c0m � C∑
l∈J

ε1−lhkl . (4.17)

Fix y ∈ R
N and l ∈ {1, . . . ,M} , then for any j ∈ {1, . . . ,L}

uh
l (y)−ul(y) � uh

l (y)−V �
ε,l j(y)+V �

ε,l j(y)−ul(y)

� uh
l (y)−wl(y)+V �

ε,l j(y)−ul(y)

� m+V �
ε,l j(y)−ul(y).

By (4.17), Lemma 4.5(i) and (ii), we get

uh
l (y)−ul(y) � C(∑

l∈J

ε1−lhkl + ε + �+ �1/3 + δ ),

and the statement of the theorem follows by taking

ε = max
l∈J

h
3kl

3l−2 and � = 4sup
i j

[V ε,�
i j ]1ε

and sending δ to 0. �

5. Examples of approximation schemes

5.1. Finite differences, one dimensional problem

Let x be in R , φ in C4(R) , h in R
∗
+ and define

δ±φ(x) =
φ(x±h)−φ(x)

±h
, Δφ(x) =

φ(x+h)−2φ(x)+ φ(x−h)
h2 .

In particular, by a Taylor expansion, we obtain

|δ±φ(x)−Dφ(x)| � 1
2
h|D2φ |, |Δhφ(x)−D2φ(x)| � 1

12
h2|D4φ |.
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Now, an approximation uh to the solution of the coupled system (2.4) in dimension
N = 1, can be obtained by the finite difference scheme in R :

sup
α∈A i

{
− 1

2
ai(x,α)Δuh

i (x)−b+
i (x,α)δ+uh

i (x)

−b−i (x,α)δ−uh
i (x)+ λiu

h
i (x)− fi(x,α)

+
M

∑
j=1

di j(x,α)uh
j(x)

}
= 0,

for i = 1, . . . ,M , where b+
i (x,α) = max(bi(x,α),0) , and b−i (x,α) = min(bi(x,α),0) .

This scheme can be rewritten as:

Si(h,x,uh(x),uh
i ) = 0 in R, for i = 1, . . . ,M,

where the operator Si is defined on R
∗
+ ×R×R

M ×C0(R) by:

Si(h,x,r,w) := sup
α∈A i

{
− 1

2
ai(x,α)

w(x+h)−2ri +w(x−h)
h2

−b+
i (x,α)

w(x+h)− ri

h
−b−i (x,α)

ri −w(x−h)
h

+ λiri − fi(x,α)+
M

∑
j=1

di j(x,α)r j

}
. (5.1)

From the Taylor expansion, one can easily check that the monotonicity (C1) holds
(with c0 = λ0 ), and the consistency hypothesis (C4) is satisfied with Q(φ) = |D2φ |h+
|D4φ |h2 , i.e. k2 = 1 and k4 = 2. Then, by Propositions 4.1 and 4.4, we have

−Ch1/5 � u−uh � Ch1/2.

5.2. The generalized finite differences scheme

We consider the generalized finite differences scheme defined in [8]. Let φ be a
real valued function. Let h > 0, ξ ∈ Z

N and consider the finite difference operator
along direction ξ :

Δξ φ(x) :=
φ(x+ ξh)+ φ(x− ξh)−2φ(x)

h2 .

On the other hand, we consider

(D±φ(x)) j =

⎧⎪⎨
⎪⎩

φ(x+he j)−φ(x)
h

if [bi(x,α)] j � 0,

φ(x)−φ(x−he j)
h

if [bi(x,α)] j � 0.
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Let S be a finite set of Z \ {0} containing {e1, . . . ,eN} . We consider the following
scheme:

sup
α∈A i

{
− 1

2 ∑
ξ∈S

γ i
ξ (x,α)Δξ Φi(x)

−bi(x,α)D±Φi(x)+ λiΦi(x)− fi(x,α)

+
M

∑
j=1

di j(x,α)Φ j(x)
}

= 0, (5.2)

where the coefficients γ i
ξ are given by:∥∥ai(x,α)− ∑

ξ∈S

γ i
ξ ξ ξ T

∥∥ = min
(γξ )∈(R+)|S |

∥∥ai(x,α)−∑γξ ξ ξ T
∥∥.

For fast computations of the coefficients γ i
ξ we refer to [9]. In the sequel, we make the

strong consistency hypothesis (see also [23]):

ai(x,α) = ∑
ξ∈S

γ i
ξ (x,α)ξ ξ T , ∀x ∈ R

N ,∀α ∈ A i. (5.3)

The scheme defined in (5.2), can be rewritten as Si(h,x,uh(x),uh
i ) = 0, where for i =

1, . . . ,M , the operator Si is defined in R
∗
+ ×R

N ×R
M ×C0(RN) by:

Si(h,x,r,w) := sup
α∈A i

{
− 1

2 ∑
ξ∈S

γ i
ξ (x,α)

w(x+hξ )−2ri +w(x−hξ )
h2

−
N

∑
j=1

[
max(0, [bi(x,α)] j)

w(x+he j)− ri

h

−min(0, [bi(x,α)] j)
ri −w(x−he j)

h

]

+ λiri − fi(x,α)+
M

∑
j=1

di j(x,α)r j

}
.

With straightforward calculations, one can check that the above scheme satisfies (C1)
and (C2). Moreover, under condition (5.3), if we consider a function Φ ∈C0(RN ,RM)
with Φi ∈C4(RN) , then by applying a Taylor expansion, we obtain

|Fi(x,Φ(x),DΦi,D
2Φi)−Si(x,h,Φ(x),Φi)|

� sup
α∈A i

|bi(.,α)|0|D2Φi|0h+ sup
α∈A i

|σi(·,α)|20|D4Φi|0h2.

Then the scheme satisfies the strong consistency (C4) with k2 = 1 and k4 = 2. We
conclude that when the stencil S is chosen in such way condition (5.3) is satisfied,
for h sufficiently small, the upper bound of the error estimate for the generalized finite
difference scheme is of order h1/2 and the lower bound is of order h1/5 .
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REMARK 5.1. Equation (5.2) can be rewritten as a fixed-point equation with a
contraction operator. Indeed, let us introduce a fictitious time step τ > 0 and introduce
the operator T : C0(RN ,RM) →C0(RN ,RM) defined by

[T w]i(x) := (1− τλiwi(x))− τ sup
α∈A i

{
− 1

2 ∑
ξ∈S

γ ξ (x,α)Δξ wi(x)−bi(x,α)D±wi(x)

− fi(x,α)+
M

∑
j=1

di j(x,α)wj(x)
}

.

Then, we can easily see that (5.2) is equivalent to

u(x) = [T u](x) on R
N . (5.4)

Moreover, for τ small enough, the operator T is a monotone contraction, then the
fixed-point equation u = T u admits a unique solution, and this solution is limit to any
sequence defined by un+1 = T un , with u0 ∈C(RN ,RM) . This iterative process, called
value iterations method can be used to compute a numerical solution uh on a grid G .

5.3. Semi-Lagrangian schemes

Semi-Lagrangian schemes for second order Hamilton-Jacobi equations have been
already studied in several papers, we refer to [1, 11, 12, 24, 25] for more details. Here,
we use the Semi-Lagrangian scheme to approximate the weakly coupled system given
in Example 2.4. We recall that the system (2.1) with Fi as in (2.3) is the dynamic
programming equation of an infinite horizon optimal control problem with dynamics
given by the stochastic differential equation

dXt = bνt (Xt ,αt)dt + σνt (Xt ,αt)dWt , (5.5)

where X0 = x , Wt is a standard Brownian motion, αt is the control process and νt is a
continuous-time random process with state space {1, . . . ,M} for which

P
{

νt+Δt = j |νt = i, Xt = x,αt = α
}

= ci j(x,α)Δt +O(Δt) (5.6)

for Δt → 0, j �= i , i, j = 1, . . . ,M , i �= j . We consider an approximation of (5.5) via
a discrete-time control process (Xn,νn) ∈ R

N ×{1, . . . ,M} which evolves according to
the following rule⎧⎪⎨

⎪⎩
X0 = x,

Xn+1 = Xn +
[
hbνn(Xn,αn)+

√
h∑d

m=1 σνn,m(Xn,αn)ξ m
n

]
δνn,νn+1 ,

P{νn+1 = j |νn = i, Xn = x, αn = α} = hci j(x,α), j �= i

(5.7)

for n∈N , where σi,m denote the m-th column of σi and ξ m
n , m = 1, . . . ,D , are random

variables taking values in {−1,0,1} such that

P[{ξ i
n = ±1}] = 1

2D
and P[{ξ i

n �= 0}∩{ξ j
n �= 0}] = 0, i �= j
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and δn,n = 1 and δn,m = 0 for n �= m . The discrete control {αn} is a random variable
which is measurable with respect to the σ -algebra generated by X1, . . . ,Xn and such
that αn ∈ A νn . Set dii = ∑M

j=1 ci j , and di j = −ci j for every j �= i , then the generator
of the discrete process is

L h
i,α(x,Φ(x),Φi) =

Ex,i[Φν1(X1)]−Φi(x)
h

= Lh
i,α(x,Φ(x),Φi)−

M

∑
j=1

di j(x,α)Φ j(x)

for Φ ∈C0(RN ,RM) , where

Lh
i,α(x,r,φ) =

1
2Dh

D

∑
m=1

[
φ(x+hbi(x,α)+

√
hσi,m(x,α))+ φ(x+hbi(x,α)

−
√

hσi,m(x,α))−2ri

]
. (5.8)

Let uh = (uh
1, . . . ,u

h
M) be a solution of the system

Si(h,x,uh(x),uh) = 0 in R
N , i = 1, . . . ,M, (5.9)

where

Si(h,x,r,φ) := sup
α∈A i

{
−(1−λih)Lh

i,α(x,r,φ)− fi(x,α)− (1−λih)
M

∑
j=1

di j(x,a)r j

}

and Lh
i,a is as in (5.8). It is easy to see that the scheme (5.9) satisfies assumption (C1)-

(C3). Moreover, for 0 < h < 1, i = 1, . . . ,N and for any Φ ∈ C4(RN ,RM) satisfying
|Φi|0 + . . .+ |D4Φi|0 < ∞ , we have

|Fi(x,Φ(x),DΦi(x),D2Φi(x))−Si(h,x,Φ(x),Φi)|
� C1h(|D2Φi|0 + |D3Φi|0 + |D4Φi|0) (5.10)

also assumption (C4) is satisfied, giving a rate of convergence of order h1/4 as in the
case of the single equation (see [2]).

6. Appendix

We start by proving the regularity result given in Proposition 2.5.

PROOF OF PROPOSITION 2.5. The bound on the solution u follows by the com-
parison principle after checking that C

λ0
and −C

L are, respectively, a super and a subso-
lution of (2.1).
To get the bound on the gradient of u consider

m := sup
i=1,...,M, x,y∈RN

{ui(x)−ui(y)−L|x− y|}.
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If, by choosing a

L >

max
i=1,...,M

sup
α∈A i

| fi(·,a)|1 + max
i, j=1,...,M

sup
α∈A i

|di, j(·,a)|1 max
i=1,...,M

|ui|0
λ0− max

i=1,...,M
sup

α∈A i
|σi(·,a)|21 − max

i=1,...,M
sup

α∈A i
|bi(·,a)|1

we conclude that m � 0, the proof is achieved. Assume, for simplicity that the maxi-
mum is attained at (x̂, ŷ) (if it is not one can modify the test function in a standard way).
If x̂ = ŷ then m = 0 and we are done. If not, at (x̂, ŷ) the function L|x− y| is smooth
and the proof just follows a classical doubling argument and the same computation as in
the proof of Proposition 6.1 below. For more detail see also the proof of [18, Theorem
5]. �

In order to prove Lemma 4.2, we need the the following continuous dependence
estimate.

PROPOSITION 6.1. Let u, v ∈ C0,1(RN) be a solution of (2.3) with L α
i as in

(2.4) with coefficients {σi,bi,λi, fi,di j}M
i=1 and, respectively, {σ i,bi,λ i, f i,di j}M

i=1 sat-
isfying (2.5a), (2.5b) (with the same constant λ0 ). Then there is a constant C such
that

λ0 max
i=1,...,M

|ui− vi|0 � C sup
i=1,...,M

sup
α∈A i

{
|λi−λ i|(|ui|0∧|vi|0)

+ |σi(·,a)−σ i(·,a)|0 + |bi(·,a)−bi(·,a)|0
+ | fi(·,a)− f i(·,a)|0

+
M

∑
j=1

|di j(·,a)−di j(·,a)|0
}

.

Proof. The proof is a modification of [1, Theorem A.1], therefore we only details
the difference with that. Define m = supx∈RN ,i=1,...,M(ui − vi) , φ(x,y) := α|x− y|2 +
ε(|x|2 + |y|2) and ψi(x,y) = ui(x)− vi(y)−φ(x,y) . Then set

mα ,ε := sup
(x,y)∈RN×RN ,i=1,...,M

ψi(x,y).

A standard computation gives that there exists (x0,y0) ∈ R
N ×R

N and i0 ∈ {1, . . . ,M}
such that mα ,ε = ψi0(x0,y0) . In the following we drop any dependence on α and ε .
Arguing as in [1, Lemma A.2], we get

0 � sup
α∈A i0

{
− 1

2
Tr[ai0(y0,a)Y −ai0(x0,a)X ]−bi0(y0,a)(2α(x0− y0)−2εy0)

+bi0(x0,a)(2α(x0− y0)+2εx0)− f i0(y0,a)+ fi0(x0,a)

+
M

∑
j=1

(di0 j(y0,a)v j(y0)−di0 j(x0,a)u j(x0))+ λ i0vi0(y0)−λi0ui0(x0)
}
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for some matrices X , Y ∈ SN . The only additional term to estimate with respect to
Lemma [1, Theorem A.1] is the last line of the previous inequality. By

mα ,ε = ui0(x0)− vi0(y0)−φ(x0,y0) � u j(x0)− v j(y0)−φ(x0,y0),

we get vi0(y0)− ui0(x0) � −mα ,ε and u j(x0)− v j(y0) � mα ,ε + φ(x0,y0). Therefore,
recalling that dii � 0, di j � 0 we get

M

∑
j=1

(di0 j(y0,a)v j(y0)−di0 j(x0,a)u j(x0))+ λ i0vi0(y0)−λi0ui0(x0)

�
M

∑
j=1

|di0 j(y0,a)−di0 j(x0,a)||v j(y0)|

−mα ,ε(
M

∑
j=1

di0 j(x0,a)+ λi0)+ |λi0 −λ i0 ||vi0(y0)|

�
M

∑
j=1

|di0 j(·,a)−di0 j(·,a)|0 max
i

|vi|0 + |λi0 −λ i0 |max
i

|vi|0 −λ0mα ,ε

and we conclude as in [1, Lemma A.2]. �

PROOF OF LEMMA 4.2. For existence and uniqueness of the solution to (4.2), we
refer to [17, 19] (see also Theorem 2.2). The regularity of the solution, see (4.3), follows
by Proposition 2.5, while the second inequality in (4.3) is consequence of Proposition
6.1.

For the statement (ii) in (4.3), we refer to [1], Lemma 2.7. Note that, although
here we are dealing with a system, the weakly coupling term ∑M

j=1 di j(x,a)u j is linear
in u j, j = 1, . . . ,N therefore the proof of [1, Lemma A3] can be straightforward adapted.
�

We now give the proof of Lemma 4.5. We need a preliminary result.

LEMMA 6.2. Let V : R
N → R

M×L be the solution of

Fi j(x,V,DVi j,D
2Vi j) = 0, x ∈ R

N , i = 1, . . . ,M, j = 1, . . . ,L, (6.1)

where

Fi j(x,R, p,X) = max

{
sup

α∈A i j

(
L α

i (x,Ri j, p,X)+
M

∑
l=1

dil(x,α)Rl j

)
,Mi j(R)

}
,

where A i j ⊂ A i , i = 1, . . . ,M and Mi j(R) as in (4.10). Let u : R
N → R

M be the
solution of the system

sup
α∈∪M

j=1A i j

{
L α

i (x,ui,Dui,D
2ui)+

M

∑
l=1

dil(x,α)ul

}
= 0, i = 1, . . . ,M. (6.2)
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Then
0 � Vi j −ui � C�

1
3 , i = 1, . . . ,M, j = 1, . . . ,L, (6.3)

where C depends only on the bounds in the assumptions (2.5a) and (2.5b).

Proof. The proof is an adaptation of Theorem 2.3 in [2] to the system (6.1) so we
just sketch it. First observe that the function W : R

N → R
M×L such that Wij = ui , for

any j = 1, . . . ,M , where u is the solution of (6.2), is a subsolution of (6.1), hence

ui � Vi j, j ∈ {1, . . . ,M}. (6.4)

Now consider the system

Fε
i j(x,V

ε ,DV ε
i j,D

2V ε
i j) = 0, x ∈ R

N , i = 1, . . . ,M, j = 1, . . . ,L, (6.5)

where

Fε
i j(x,R, p,X)

= max

{
sup

α∈A i j ,|e|�ε

(
L α

i (x+ e,Ri j, p,X)+
M

∑
l=1

dil(x+ e,α)Rl j

)
,Mi j(R)

}

and let V ε the corresponding solution. For any e such |e| � ε , we have

sup
α∈A i j

(
L α

i (x+ e,V ε
i j,DV ε

i j,D
2V ε

i j)+
M

∑
l=1

dil(x+ e,α)V ε
l j

)
� 0.

Therefore, by change of variable, for any |e| � ε , V ε
i j(x− e) is a subsolution of the

system

sup
α∈A i j

(
L α

i (x,Wij,DWi j,D
2Wij)+

M

∑
l=1

dil(x,α)Wl j

)
= 0. (6.6)

Now define Vε : R
N → R

N×M by Vε,i j = V ε
i j ∗ρε . Then, by Lemma 4.2 (ii), Vε is a

subsolution to (6.6). Moreover since V ε is a subsolution of (6.5) we have

V ε
i j � min

l �= j
V ε

il + �, i = 1, . . . ,M, j = 1, . . . ,L.

It follows that
0 � max

j
V ε

i j −min
l

V ε
il � � (6.7)

hence |V ε
i j −V ε

il |0 � � , i = 1, . . . ,M, l, j = 1, . . . ,L . By the definition of Vε , we get

|DnVε,i j −DnVε,il|0 � C
�

εn , i = 1, . . . ,M, j, l = 1, . . . ,L, n ∈ N,

where C only depends on the mollifier ρε . Therefore for any j, l = 1 . . . ,L ,
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∣∣∣∣ sup
α∈A i j

L α
i (x,Vε,i j,DVε,i j,D

2Vε,i j)+
M

∑
r=1

dir(x,α)Vε,r j

− sup
α∈A i j

L α
i (x,Vε,il ,DVε,il,D

2Vε,il)+
M

∑
r=1

dir(x,α)Vε,rl

∣∣∣∣ � C
�

ε2 ,

where C now depends also on the bounds L in assumptions (2.5a) and (2.5b). Since Vε
is a subsolution of (6.6), we get that ∀i = 1, . . . ,M,

sup
α∈∪L

j=1A
i j
L α

i (x,Vε,i j,DVε,i j,D
2Vε,i j)+

M

∑
l=1

dil(x,α)Vε,l j � C
�

ε2 .

It follows that Vε,i j − 1
λ0

C �
ε2 , where λ0 as in (2.5b), is a subsolution of (6.2). By the

comparison principle for (6.2), we get

Vε,i j −ui �
C
λ0

�

ε2 , i = 1, . . . ,M, j = 1, . . . ,L.

Hence we conclude

Vi j −ui � Vi j −Vε,i j +Vε,i j −ui � Cε +
C
λ0

�

ε2 ,

recalling (6.4) and minimizing with respect to ε we get the result. �

PROOF OF LEMMA 4.5. The statement (i) follows by assumption (4.6) and Propo-
sition 6.1 for the estimate in ε and δ and by Lemma 6.2 for the estimate in � .

We now consider (ii). By the definition of Vε , it follows that

|Vε,i j −V ε
i j|0 � Cε, i = 1, . . . ,M, j = 1, . . . ,L, (6.8)

where C = maxi, j[V ε
i j]1 . Recalling (6.7) in the proof of Lemma 6.2, by (6.8) we get

(4.12).
We conclude with the proof of (iii). Let x∈ R

N , i∈ {1, . . . ,M} and j be such that

j = arg min
l=1,...,L

{Vε,il}.

Then
Vε,i j(x)−Mi jVε(x) = max

l �= j
{Vε,i j −Vε,il − �} � −�

since Vε,i j(x) � Vε,il for any l = 1, . . . ,L . By (4.12), we have

V ε
i j(x)−Mi jV

ε (x) � Vε,i j(x)−Mi jVε(x)+2max
l

|V ε
il (x)−Vε,il(x)|

� −�+2max
i, j

[V ε
i j]1ε.

Let |x− y| � ε and ε � (4maxi, j[V ε
i j]1)

−1� . Then by the Lipschitz continuity of V ε ,
we get

V ε
i j(x)−Mi jV

ε(x) � −�+2max
i, j

[V ε
i j ]1(ε + |x− y|) < 0.
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Hence by (4.8), we get

inf
|e|�ε

{
L

αi j
i (y+ e,V ε

i j(y),DV ε
i j(y),D

2V ε
i j(y))+

M

∑
l=1

dil(y+ e,αi j)V ε
l j(y)

}
= 0.

By this point the proof goes as in [2, Lemma 3.4(b)]. Note that the only difference
linked with the fact that here we are dealing with a system can be proved by arguing as
in the proof of Lemma 4.2 (ii). �
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