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NON–SIMULTANEOUS BLOW–UP FOR A SEMILINEAR

PARABOLIC SYSTEM WITH LOCALIZED REACTION TERMS

ATSUKO OKADA

(Communicated by Philippe Souplet)

Abstract. In this paper, we study positive blow-up solutions of the semilinear parabolic system
with localized reactions ut = Δu+ vr + up(0,t), vt = Δv + us + vq(0,t) in the ball B = {x ∈
R

N : |x| < R} , under the homogeneous Dirichlet boundary condition. It is shown that non-
simultaneous blow-up may occur according to the value of p , q , r , and s ( p,q,r,s > 1). We
also investigate blow-up rates of all total blow-up solutions when simultaneous blow-up occurs.

1. Introduction

In this paper, we are concerned with the initial-boundary value problem of the
following semilinear parabolic system with both local and nonlocal (localized) reaction
terms:

(P)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = Δu+ vr +up(0,t), (x,t) ∈ B× (0,T),

vt = Δv+us + vq(0,t), (x,t) ∈ B× (0,T),

u(x,t) = v(x,t) = 0, (x,t) ∈ ∂B× (0,T),

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ B,

where B is the ball {x ∈ R : |x| < R} with boundary ∂B and p,q,r,s > 1.
Throughout this paper, we always assume that

(A1)

⎧⎪⎪⎨
⎪⎪⎩

u0,v0 ∈C(B), u0(R) = v0(R) = 0,

for r = |x|, u0(x) = u0(r) � 0, v0(x) = v0(r) � 0,

u0(r) and v0(r) are nonincreasing in r ∈ [0,R],

and

(A2)

{
Δu0 +(1− ε)vr

0 +(1− εϕ0(x))u
p
0(0) � 0, x ∈ B,

Δv0 +(1− ε)us
0 +(1− εϕ0(x))v

q
0(0) � 0, x ∈ B,
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with ε ∈ (0,1) , where ϕ0 ∈C2(B)∩C(B) is a radially symmetric function which sat-
isfies ϕ0(R) = 0, ϕ ′

0(r) < 0 (r ∈ (0,R]) and

max
x∈B

|ϕ0(x)| � 1. (1.1)

Under assumption (A1), problem (P) has a unique pair of solutions (u,v) such that
u,v ∈C2,1(B× (0,T ))∩C(B× [0,T )) , where T denotes the maximal existence time of
(u,v) . It is well known that for large initial data (u0,v0) , (u,v) may blow up in a finite
time T , that is,

lim
t↗T

(‖u(t)‖∞ +‖v(t)‖∞) = ∞,

where ‖ · ‖∞ is the usual L∞ -norm.
We define

S = {x ∈ B : there exists a sequence (xn,tn) ∈ B× (0,T) such that

xn → x,tn ↗ T, u(xn,tn) → ∞ or v(xn,tn) → ∞ as n → ∞}.
The set S is called ”the blow-up set” of (u,v) and each x of S is called a ”blow-up
point” of (u,v) . When S = B , we call this blow-up phenomena ”total blow-up” and
when S consists of a single point of B , we call this ”single point blow-up”.

We say that the blow-up is ”simultaneous” if

limsup
t↗T

‖u(t)‖∞ = limsup
t↗T

‖v(t)‖∞ = ∞ (1.2)

and it is called ”non-simultaneous” if (1.2) does not hold, that is, if one of the two
component (u,v) remains bounded on B× [0,T) .

System (P) can be regarded as a combination of the following two systems:
ut = Δu+ vr, vt = Δv+ us and ut = Δu+ up(0,t), vt = Δv+ vq(0,t) . It is shown by
Escobedo-Herrero [3] that the first system allows the simultaneous blow-up generically.
Furthermore, Souplet [9] proved that the blow-up set S consists of the origin, that is, the
single point blow-up occurs. The second system is completely uncoupled for which it
has been proved that all blow-up solutions blow up on the whole domain, that is, the to-
tal blow-up occurs [2, 4, 8] and it is obvious that the blow-up times for u and v differ in
general. Hence one may easily expect that for our system, both simultaneous and non-
simultaneous blow-up may occur and moreover for the simultaneous blow-up case, the
single point blow-up and the total blow-up are both likely to occur. In fact, for a slightly
different system with usual reaction terms: ut = Δu + vr + up, vt = Δv + us + vq,
Rossi-Souplet [7] and Souplet-Tayachi [10] showed that both simultaneous and non-
simultaneous blow-up can occur.

There is also several studier devoted to more complicated local and nonlocal reac-
tion terms such as in the following equation:

ut = Δu+ f (t)+up, vt = Δv+g(t)+ vq. (P1)

The case where ( f (t),g(t))= (ur(0,t),vs(0,t)) gives essentially a single equation which
has been studied by Bebernes-Bressan-Lacey [1] and Okada-Fukuda [5]. They proved
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that the total blow-up occurs if Fr(t) =
∫ t
0 ur(0,τ) dτ = +∞ , and the single point blow-

up occurs if Fr(t) < +∞ . Zheng-Wang [11] studied the case where ( f (t),g(t)) =
(vr(0, t),us(0, t)) . They showed that both simultaneous and non-simultaneous blow-
up can occur. Moreover, they proved that the single point and the total blow-up occur
according to the boundedness of Fs(t) =

∫ t
0 us(0,τ) dτ and Gr(t) =

∫ t
0 vr(0,τ) dτ . In

particular, the boundedness of Fs(t) (or Gr(t)) easily leads to the fact that v (or u )
blows up only at x = 0. However, since our system can not be reduced to the single
equation such as in [1, 5], we can not make use of the results in [1, 5] directly. In
this sense, our system is much more complicated than that of [11] and the mechanism
for occurrences of the single point blow-up and the total blow-up would be more del-
icate than that for the system dealt by [11]. In fact, it is shown (in Section 4) that
the boundedness of Fp(t) =

∫ t
0 up(0,τ) dτ (or Gq(t) =

∫ t
0 vq(0,τ) dτ ) does not always

imply the single point blow-up of u (or v). To overcome this difficulty, we introduce
some devices which enable us to get minute estimates for the asymptotic behavior of
Fk(t) =

∫ t
0 uk(0,τ) dτ and G�(t) =

∫ t
0 v�(0,τ) dτ near the blow-up time.

For (P), Wang-Zheng [12] showed that there exist initial data such that non–
simultaneous blow-up can occur if r < q−1 or s < p−1 (Theorem 2.1 in [12]). Also,
the case where q−1 � r and p−1 � s , they proved that there exists initial data such
that u and v blow up on the whole domain if r � p/(s+ 1− p) or s � q/(r + 1− q)
(Theorem 3.3 in [12]), and u and v blow up only at x = 0 if (p+1)/(s− p) < r and
(q+1)/(r−q) < s with r = s (Theorem 4.1 in [12]).

One of main purposes of this paper is to clarify conditions on p,q,r,s to assure
that only non-simultaneous blow-up can occur. The other one is to investigate necessary
conditions to ensure that any blow-up solutions (u,v) blow up on the whole domain
when q−1 � r and p−1 � s , and to examine blow-up rates of solutions for the case
of total blow-up. We give several improvements on the results of Wang-Zheng. In
addition, a part of results in [11] can be improved by using our method developed here.

In section 2, we give some sufficient conditions in terms of p,q,r,s to ensure the
non-simultaneous blow-up.

Section 3 is devoted to the analysis for the total blow-up mainly relying on Lemma
3.2-Lemma 3.3 which is the main device in this section.

In section 4, we develop another argument concerning the asymptotic behavior of
Fk(t) =

∫ t
0 uk(0,τ) dτ and G� =

∫ t
0 v�(0,τ) dτ , from which we can derive another type

of results for the total blow-up.

2. Non-simultaneous Blow-up

Let c and c′ denote positive generic constants, which are not necessarily the same
at different places. We shall use the notation X ∼ Y to mean that there exist two con-
stants c′ and c satisfying c′Y � X � cY as long as X and Y are both defined, for the
case where X ,Y are functions of t , and c′Φ0(x)Y � X � cY for the case where X ,Y
are functions of (x, t) , where Φ0(x) is some positive continuous function on B .

We introduce the notation Tu < Tv (resp. Tv < Tu ) to signify that u (resp. v) blows
up at t = Tu (resp. t = Tv ) and v (resp. u ) remains bounded on [0,Tu) (resp. [0,Tv)),
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and Tu = Tv means that u and v simultaneously blow up at t = Tu = Tv . Tu � Tv (resp.
Tv � Tu ) represent Tu < Tv (resp. Tv < Tu ) or Tu = Tv .

The main result of this section is the following theorem which improves Theorem
2.1 of [12].

THEOREM 2.1. For the problem (P) , we have the following.

(i) If s < p− 1 and (q− 1)
(
1+ 1/(p− 1)

)
< r , then only non-simultaneous blow-up

(Tu < Tv ) occurs. Furthermore, u blows up on the whole domain, and moreover u
satisfies

u(x,t) ∼ (Tu − t)−
1

p−1 . (2.1)

(ii) If r < q−1 and (p−1)
(
1+1/(q−1)

)
< s, then only non-simultaneous blow-up

(Tv < Tu ) occurs. Furthermore, v blows up on the whole domain, and moreover v
satisfies

v(x,t) ∼ (Tv − t)−
1

q−1 . (2.2)

(iii) Let s < p− 1 and r < q− 1 . If Tu = Tv , then u and v blow up on the whole
domain. Furthermore, u and v satisfy (2.1) and (2.2) with Tu = Tv = T , respectively.

Let ϕ(x, t) be a radially symmetric solution of the linear heat equation with zero-
Dirichlet boundary condition satisfying ϕ(x,0) = ϕ0(x) . From (1.1), we note that

max
(x,t)∈B×[0,∞)

|ϕ(x,t)| � 1. (2.3)

Throughout this paper, we denote that

Fk(t) =
∫ t

0
uk(0,τ) dτ and G�(t) =

∫ t

0
v�(0,τ) dτ, (2.4)

where k , � > 1.
We here prepare two lemmas.

LEMMA 2.2. Let (u,v) be a solution of (P). Then

ϕ(x,t)Fp(t) � u(x,t) � Gr(t)+Fp(t)+ ||u0||∞, (2.5)

ϕ(x,t)Gq(t) � v(x,t) � Fs(t)+Gq(t)+ ||v0||∞, (2.6)

for any (x, t) ∈ B× [0,T ) .

LEMMA 2.3. Let (u,v) be a solution of (P). Then there exists a positive constant
η such that

ut � ηϕ(vr +up(0,t)), (2.7)

vt � ηϕ(us + vq(0,t)), (2.8)

for any (x, t) ∈ B× [0,T ) , where ϕ(x,t) is the same function as in Lemma 2.2.
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Lemma 2.2 and Lemma 2.3 can be proved by standard arguments similar to those
in the proof of Lemma 2.1 in [5] and Lemma 3.1 in [12], Lemma 2.2 in [5] and Lemma
2.1 in [12] respectively. For the sake of reader’s convenience, we give their proofs.

PROOF OF LEMMA 2.2 We first show the lower estimate of u of (2.5). Set
U(x,t) = u(x, t)−ϕ(x,t)Fp(t) . Then, by (2.3), we easily get

Ut −ΔU = vr +(1−ϕ)up(0,t)− (ϕt −Δϕ)Fp(t) � 0.

Since ϕ(x, t) satisfies the zero-Dirichlet boundary condition and Fp(0) = 0, we get
U(x,t) = 0 on the boundary and U(x,0) = u0(x) � 0. Using the maximum principle,
we obtain U(x, t) � 0 for B× [0,T) which implies ϕ(x,t)Fp(t) � u(x, t) .

To obtain the upper estimate of u of (2.5), we set

V (x,t) = Gr(t)+Fp(t)+‖u0‖∞ −u(x,t)

which satisfies

Vt −ΔV = vr(0,t)− vr(x,t) � 0,

V (x,t)|∂B = Fr(t)+Gp(t)+‖u0‖∞ � 0,

V (x,0) = ||u0||∞ −u0(x) � 0.

Using the maximum principle again, we obtain V (x,t) � 0 in B× [0,T ) which implies
u(x,t) � Gr(t)+Fp(t)+‖u0‖∞ .

The estimate for v can be proved by the same arguments as above with u , Fp(t)
and Gr(t) replaced by v , Gq(t) and Fs(t) respectively.

PROOF OF LEMMA 2.3 We set

I(x, t) = ut −ηϕ(vr +up(0,t)) and J(x,t) = vt −ηϕ(us + vq(0, t)),

where η > 0 is a small constant which is determined later.
By simple calculations, we get

It −ΔI− rvr−1J = p(1−ηϕ)ut(0,t)up−1(0,t)

+2ηr(∇ϕ ·∇v)vr−1 + ηr(r−1)ϕ |∇v|2vr−2.

The maximum principle together with (A1) implies that ut(0, t) � 0. We choose η so
small that 1−ηϕ(x, t) � 0. Since both u and ϕ are radially symmetric and monotone
decreasing with respect to r = |x| , we have ∇ϕ ·∇v � 0. Consequently, we find that

It −ΔI− rvr−1J � 0,

and in the same way as above, we can also show

Jt −ΔJ− sus−1I � 0.

Since ϕ = u = v = 0 on the boundary, we have I(x,t) = J(x,t) = 0 on ∂B× [0,T ) .
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Using (A2) and (1.1), we get

I(x,0) � (ε −η)(vr
0(x)+ ϕ0(x)u

p
0(0)),

J(x,0) � (ε −η)(us
0(x)+ ϕ0(x)v

q
0(0)).

We choose again η so small that ε −η � 0. Hence, I and J are nonnegative by the
maximum principle, which yields (2.7) and (2.8).

By Lemma 2.3, if u and v blow up at t = T (u) and t = T (v) respectively, the
standard argument on ODE such as in [6] assures

u(0,t) � c1(T (u)− t)−
1

p−1 , (2.9)

v(0,t) � c2(T (v)− t)−
1

q−1 . (2.10)

By virtue of (A1), it is easily seen that u(x,t) � u(0, t), v(x,t) � v(0,t) , which yield
Δu(0, t) � 0, Δv(0, t) � 0. Using (P) and (2.7)-(2.8) with x = 0, we get

ut(0,t) ∼ vr(0,t)+up(0,t), (2.11)

vt(0,t) ∼ us(0,t)+ vq(0,t). (2.12)

Integration of (2.11)-(2.12) over [0,t] gives

u(0,t) ∼ Gr(t)+Fp(t), (2.13)

v(0,t) ∼ Fs(t)+Gq(t). (2.14)

These facts are frequently quoted in this paper.

LEMMA 2.4. Let (u,v) be a solution of (P) .
(i) If Tu < Tv , then u blows up on the whole domain. Furthermore, u satisfies

u(x,t) ∼ (Tu − t)−
1

p−1 . (2.15)

(ii) If Tv < Tu , then v blows up on the whole domain. Furthermore, v satisfies

v(x,t) ∼ (Tv − t)−
1

q−1 . (2.16)

Proof. Case (i) Since u blows up and v remains bounded by the assumption,
(2.5) implies u(x, t) ∼ Fp(t) near t = Tu . Hence we can show

Fp(t) ∼ (Tu− t)−
1

p−1 .

In fact, since u(x, t) ∼ Fp(t) gives c′F p
p (t) � up(0,t) � cF p

p (t) , integrating this on
[t0,t] , we get

c′
∫ t

t0
F p

p (τ) dτ � Fp(t)−Fp(t0) � c
∫ t

t0
F p

p (τ) dτ.
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Then, by Corollary 2.5 and 2.6 of [6], we can conclude Fp(t) ∼ c(Tu − t)−
1

p−1 , which
implies that u blows up on the whole domain. This completes the proof of (i).

The proof of (ii) can be done similarly.

PROOF OF THEOREM 2.1 To prove (i) by contradiction, assume Tu = Tv = T .
Since Fs(t) is bounded when s < p− 1 by (2.9), v(0,t) ∼ Gq(t) follows from (2.14).
Hence, as in the proof of Lemma 2.4, we get

v(0,t) ∼ Gq(t) ∼ (T − t)−
1

q−1

which yields

Gr(t) ∼ (T − t)−
r+1−q
q−1 . (2.17)

Using (2.9) and (2.13), we get

cGr(t) � u(0,t) � (T − t)−
1

p−1 . (2.18)

On the other hand, if (q−1)
(
1+1/(p−1)

)
< r , then

(T − t)−
1

p−1 < (T − t)−
r+1−q
q−1 .

Hence, we have a contradiction.
By Lemma 2.4-(ii), if we assume Tv < Tu , then Gr(t) satisfies (2.17) with T = Tv

by (2.16). From this fact and (2.18), we get a contradiction.
The proof of (ii) is done by the same arguments as that of (i) with obvious modifi-

cations.
As for (iii), recall that Fs(t) and Gr(t) are bounded when s < p−1 and r < q−1

by (2.9) and (2.10) respectively, then we get u(x,t) ∼ Fp(t) and v(x,t) ∼ Gq(t) by
using (2.5) and (2.6), whence follows (iii).

REMARK 2.5. Since solution (u,v) of (P1) with ( f (t),g(t)) = (vr(0,t),us(0,t))
denoted by (P1)r,s also satisfies properties (2.9)-(2.14), we can easily see that (i) and
(ii) in Theorem 2.1 holds true also for (P1)r,s , that is, Theorem 2.2-(i) and Theorem
2.3-(i) in [11] are improved.

The existence of simultaneous blow-up solutions is open for the cases:

(i) s < p−1 and q−1 � r � (q−1)
(
1+ 1

p−1

)
,

(ii) r < q−1 and p−1 � s � (p−1)
(
1+ 1

q−1

)
.

3. Total Blow-up

The main purpose of this section is to investigate total blow-up and blow-up rates
for all simultaneous blow-up solutions. We always assume that p−1 � s and q−1 �
r . Since the contraposition of Theorem 2.1-(i) (Theorem 2.1-(ii)) in [12] implies that
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Tv � Tu (Tu � Tv ) holds if p− 1 � s (q− 1 � r ), the simultaneous blow-up always
occurs when both p−1 � s and q−1 � r are satisfied, so we here denote Tu = Tv = T .

The main theorem in this section is the following theorem which improves a part
of Theorem 3.3 of [12].

THEOREM 3.1. Let (u,v) be a solution of (P) . Then we have the following.

(i) If

q−1 < r and (p−1)
(
1+

1
q−1

)
< s � q

r+1−q
,

or

q−1 = r and (p−1)
(
1+

1
q−1

)
< s,

then u and v blow up on the whole domain. Moreover, u satisfies

u(x,t) �

⎧⎨
⎩c′(T − t)−

r+1−q
q−1 , q−1 < r,

c′ log(T − t)−1, r = q−1
(3.1)

on any compact subsets of B, and v satisfies

v(x,t) ∼ Gq(t) ∼ (T − t)−
1

q−1 .

(ii) If

p−1 < s and (q−1)
(
1+

1
p−1

)
< r � p

s+1− p
,

or

p−1 = s and (q−1)
(
1+

1
p−1

)
< r,

then u and v blow up on the whole domain. Moreover, u satisfies

v(x,t) �

⎧⎨
⎩ c(T − t)−

s+1−p
p−1 , p−1 < s,

c log(T − t)−1, s = p−1
(3.2)

on any compact subsets of B, and u satisfies

u(x,t) ∼ Fp(t) ∼ (T − t)−
1

p−1 .

We shall make use of the following lemma due to Wang-Zheng [12]. This lemma
gives the blow-up rates of solutions of (P1).

LEMMA 3.2. Let (u,v) be a solution of (P) on [0,T ] .
(i) If p−1 < s, then there exists some positive constant C such that

uα(0,t) � Cv(0,t), t ∈ (0,T ),
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where α = min(s+1− p, 1+s
1+r ,

s
q ) .

(ii) If q−1 < r , then there exists some positive constant C such that

vβ (0,t) � Cu(0,t), t ∈ (0,T ),

where β = min(r+1−q, 1+r
1+s ,

r
p ) .

In order to show total blow-up, we shall make use of the blow-up of Fp(t) and∫ t
0 Fs

p(τ) dτ , or Gq(t) and
∫ t
0 Gr

q(τ) dτ . To do this, we first recall the relation given in
the left hand side of (2.5) and (2.6), i.e.,

u(x,t) � ϕ(x,t)Fp(t), (3.3)

v(x,t) � ϕ(x,t)Gq(t). (3.4)

Substituting (3.3)-(3.4) in (2.7)-(2.8), we get

ut(x,t) � ηϕ(x,t)vr(x,t) � ηϕ1+r(x,T )Gr
q(t), (3.5)

vt(x,t) � ηϕ(x,t)us(x,t) � ηϕ1+s(x,T )Fs
p(t). (3.6)

Next we integrate (3.5) and (3.6) over [0,t] to get

u(x,t) � ηϕ1+r(x,T )
∫ t

0
Gr

q(τ) dτ, (3.7)

v(x,t) � ηϕ1+s(x,T )
∫ t

0
Fs

p(τ) dτ. (3.8)

Now it is evident from (3.3) and (3.8) that blow-up of Fp(t) and
∫ t
0 Fs

p(τ) dτ lead
to total blow-up of u and v . Similarly, blow-up of Gq(t) and

∫ t
0 Gr

q(τ) dτ lead to total
blow-up of u and v by (3.4) and (3.7). Therefore, we have the following lemma which
is the key in this section.

LEMMA 3.3. Let (u,v) be a solution of (P) on [0,T ] .

(i) If
∫ t

0
Fs

p(τ) dτ = +∞ , then u and v blow up on the whole domain.

(ii) If
∫ t

0
Gr

q(τ) dτ = +∞ , then u and v blow up on the whole domain.

By making use of Lemma 3.2, we get the following blow-up rates of solutions.

LEMMA 3.4. Let

p−1 < s � (p−1)
(
1+

1
q−1

)
and q−1 � r <

p
s+1− p

.

(i) If p− 1 < s < (p− 1)
(
1+ 1/(q− 1)

)
, then there exists a positive constant c such

that
v(0,t) � c(T − t)−

s+1−p
p−1 . (3.9)
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Furthermore, if s = (p−1)
(
1+1/(q−1)

)
, then

v(x,t) ∼ Gq(t) ∼ (T − t)−
1

q−1 . (3.10)

(ii) If (p+1)
(
1+1/q

)
� s < (p−1)

(
1+1/(q−1)

)
, then there exists a positive con-

stant c such that

Gq(t) �

⎧⎪⎨
⎪⎩

c(T − t)−
q

p−1

{
s−(p−1)

(
1+ 1

q

)}
, (p−1)

(
1+ 1

q

)
< s < (p−1)

(
1+ 1

q−1

)
,

c log(T − t)−1, s = (p−1)
(
1+ 1

q

)
.

(3.11)

Proof. Case (i). By assumption, α in Lemma 3.2-(i) is given by α = s+1− p .
Then we have us(0, t) � cv

s
α (0,t) , which together with (2.12) yields

vt(0,t) � cv
s
α (0,t). (3.12)

Hence, by Corollary 2.5 of [6], we obtain (3.9).
Since us(0, t) � cvq(0,t) if s = (p−1)

(
1+1/(q−1)

)
, we get vt(0,t) � cvq(0,t)

by using (2.12). Then, this fact and (2.12) conduce to

vt(0,t) ∼ vq(0,t),

from which we obtain v(0,t) ∼ (T − t)−
1

q−1 and v(0, t) ∼ Gq(t) . Hence, in of the fact
that v(x, t) � v(0, t) and (3.4), we can derive (3.10).

Case (ii). The property (3.11) is derived from (3.9) via integration.

Exchanging the roles of u and v in Lemma 3.4, we have the following lemma:

LEMMA 3.5. Let p, q , r , and s satisfy

q−1 < r � (q−1)(1+
1

p−1
) and p−1 � s <

q
r+1−q

.

(i) If r < (q−1)
(
1+1/(p−1)

)
, then there exists a positive constant c such that

u(0,t) � c(T − t)−
r+1−q
q−1 . (3.13)

Furthermore, if r = (q−1)
(
1+1/(p−1)

)
, then

u(x,t) ∼ Fp(t) ∼ (T − t)−
1

p−1 . (3.14)

(ii) If (q−1)
(
1+1/p

)
� r < (q−1)

(
1+1/(p−1)

)
, then there exists a positive con-

stant c such that

Fp(t) �

⎧⎪⎨
⎪⎩

c(T − t)−
p

q−1

{
r−(q−1)(1+ 1

p )
}
, (q−1)

(
1+ 1

p

)
< r < (q−1)

(
1+ 1

p−1

)
,

c log(T − t)−1, r = (q−1)
(
1+ 1

p

)
.

(3.15)
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These lemmas give the following theorem which improves a part of Theorem 3.1
of [12].

THEOREM 3.6. Let p, q , r , and s satisfy: q− 1 < r � (q− 1)
(
1+ 1/(p− 1)

)
and p−1 < s � (p−1)

(
1+1/(q−1)

)
.

(i) If

(q−1)
(
1+

1
p

)
� r < (q−1)

(
1+

1
p−1

)
,

(p−1)
(
1+

1
q

)
� s < (p−1)

(
1+

1
q−1

)
,

then u and v blow up on the whole domain. Furthermore, u and v are estimated from
below such as (3.15) and (3.11), respectively.

(ii) If r = (q− 1)
(
1+ 1/(p− 1)

)
or s = (p− 1)

(
1+ 1/(q− 1)

)
, then u and v blow

up on the whole domain. Furthermore, when r = (q− 1)
(
1+ 1/(p− 1)

)
, u satisfies

(3.14) and v is estimated from below such as (3.9), when s = (p−1)
(
1+1/(q−1)

)
,

v satisfies (3.10) and u is estimated from below such as (3.13).

Proof. The first assertion (i) is derived directly from Lemma 3.4-(ii) and Lemma
3.5-(ii). The second assertion (ii) can be proved by substituting (3.10) and (3.14) in
(3.7) and (3.8) respectively.

Using again Lemma 3.2, we have the following lemma:

LEMMA 3.7. If q− 1 < r and (p− 1)
(
1 + 1/(q− 1)

)
< s � q/(r + 1− q) , or

q−1 = r and (p−1)
(
1+1/(q−1)

)
< s, then

v(x,t) ∼ Gq(t) ∼ (T − t)−
1

q−1 . (3.16)

Proof. Since α = s
q in Lemma 3.2-(i) by the assumption, we have us(0,t) �

cvq(0, t) , from which we obtain vt(0,t) ∼ vq(0,t) . Hence, (3.14) can be derived from
arguments similar to those for (3.10).

Exchanging the roles of u and v in Lemma 3.7, we have the following lemma:

LEMMA 3.8. If p− 1 < s and (q− 1)
(
1 + 1/(p− 1)

)
< r � p/(s + 1− p) , or

p−1 = s and (q−1)
(
1+1/(p−1)

)
< r , then

u(x,t) ∼ Fp(t) ∼ (T − t)−
1

p−1 . (3.17)

From Lemma 3.7 and Lemma 3.8, we can prove Theorem 3.1 which improves a
part of Theorem 3.3 of [12].

PROOF OF THEOREM 3.1 To show (i), it suffices to prove that u blows up on
the whole domain, since it is obvious that v blows up on the whole domain by (3.16).
Substituting (3.16) in (3.7), we obtain (3.1), which means that u blows up on the whole
domain.

The proof of (ii) can be done similarly.
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REMARK 3.9. For the blow-up rate of u (resp. v) from above, when s (resp. r )
is restricted to s < (q− 1)/(r + 1− q) (resp. r < (p− 1)/(s + 1− p)), then u(x,t)
(resp. v(x, t)) is estimated from above by same order to the right hand side of (3.1)
(resp. (3.2)) (see Lemma 4.2-(ii) and Lemma 4.4-(ii)).

4. Total Blow-up II

In this section, we discuss the total blow-up for the case where (p,q,r,s) lie in the
region where results in §3 can not cover. In the previous section, we dealt with the case
where Fp(t) and

∫ t
0 Fs

p(τ) dτ (or Gq(t) and
∫ t
0 Gr

q(τ) dτ ) blow up at t = T . However
we here deal with the case where Fp(t) or Gq(t) might be bounded.

Throughout this section, without loss of generality, we let p � q .
The main result in this section is stated as follows.

THEOREM 4.1. For the problem (P), we have the following.

(i) Let q− 1 � r � (q− 1)
(
1+ 1/(p− 1)

)
and p− 1 � s < (p− 1)(1+ 1/q). If r �(

1+1/p
)
(p−1)/(s+1− p) , then all blow-up solutions blow up on the whole domain.

In particular, if
lim
t↗T

Gq(t) < +∞ (resp. lim
t↗T

Gq(t) = +∞),

then u and v satisfy

u(x,t) ∼ Fp(t) ∼ (T − t)−
1

p−1 ,

v(x, t) ∼ Fs(t) ∼
⎧⎨
⎩ (T − t)−

s+1−p
p−1 , p−1 < s < (p−1)(1+ 1

q),

log(T − t)−1, s = p−1.⎛
⎜⎜⎜⎜⎝

resp. v(x, t) ∼ Gq(t) ∼ (T − t)−
1

q−1 , cGr(t) � u(x, t) � c′(T − t)−
1

p−1

where Gr(t) satis f ies Gr(t) ∼
⎧⎨
⎩ (T − t)−

r+1−q
q−1 , q−1 < r,

log(T − t)−1, q−1 = r.

⎞
⎟⎟⎟⎟⎠

(ii) If p−1 � s � (p−1)/
(
1+1/(q−1)

)
and q−1 � r < (q−1)

(
1+1/p

)
, then all

blow-up solutions blow up on the whole domain. In particular, if

lim
t↗T

Fp(t) < +∞ (resp. lim
t↗T

Fp(t) = +∞),

then u and v satisfy

v(x,t) ∼ Gq(t) ∼ (T − t)−
1

q−1 ,

u(x, t) ∼ Gr(t) ∼
⎧⎨
⎩ (T − t)−

r+1−q
q−1 , q−1 < r < (q−1)(1+ 1

p ),

log(T − t)−1, r = q−1.
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⎛
⎜⎜⎜⎜⎝

resp. u(x, t) ∼ Fp(t) ∼ (T − t)−
1

p−1 , cFs(t) � v(x,t) � c′(T − t)−
1

q−1

where Fs(t) satis f ies Fs(t) ∼
⎧⎨
⎩ (T − t)−

s+1−p
p−1 , p−1 < s,

log(T − t)−1, p−1 = s.

⎞
⎟⎟⎟⎟⎠

We first analyze the case where Gq(t) or Gr(t) might be bounded.

LEMMA 4.2. Let p−1 � s < (p−1)
(
1+1/q

)
.

(i) If (q−1)
(
1+1/(p−1)

)
< r , then lim

t↗T
Gq(t) < +∞ .

(ii) If

p−1 < s and (q−1)
(
1+

1
p−1

)
< r <

p−1
s+1− p

,

or

p−1 = s and (q−1)
(
1+

1
p−1

)
< r,

then lim
t↗T

Gr(t) < +∞ . Moreover, u and v satisfy

u(x,t) ∼ Fp(t) ∼ (T − t)−
1

p−1 , (4.1)

v(x, t) ∼ Fs(t) ∼
⎧⎨
⎩ (T − t)−

s+1−p
p−1 , p−1 < s < (p−1)(1+ 1

q),

log(T − t)−1, s = p−1.
(4.2)

(iii) Let q−1 � r � (q−1)
(
1+1/(p−1)

)
.

(a) If lim
t↗T

Gq(t) = +∞ , then

v(x, t) ∼ Gq(t) ∼ (T − t)−
1

q−1 , cGr(t) � u(x, t) � c′(T − t)−
1

p−1 , (4.3)

where Gr(t) satisfies

Gr(t) ∼
⎧⎨
⎩ (T − t)−

r+1−q
q−1 , q−1 < r,

log(T − t)−1, q−1 = r.

(b) If lim
t↗T

Gq(t) < +∞ and r � (p−1)/(s+1− p) , then (4.1) and (4.2) hold.

Proof. Case (i) By (2.14), we have

Gq(t) ∼
∫ t

0
Fq

s (τ) dτ +
∫ t

0
Gq

q(τ) dτ.
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The first term of the right hand side of the above is bounded using (2.9) when p−1 �
s < (p−1)

(
1+1/q

)
, which yields

Gq(t) ∼
∫ t

0
Gq

q(τ) dτ. (4.4)

Let Gq(t) blow up as t goes to T . We solve (4.4) and get

∫ t

0
Gq

q(τ) dτ ∼ (T − t)−
1

q−1

which implies Gq(t) ∼ (T − t)−
1

q−1 . Using (2.10) and (3.4), we have

v(x,t) ∼ Gq(t) ∼ (T − t)−
1

q−1 . (4.5)

By (4.5), we can get the growth order of Gr(t) and use (3.7) which deduce that

u(x, t) � cϕ1+r(x,T )Gr(t) ∼
⎧⎨
⎩ (T − t)−

r+1−q
q−1 , q−1 < r,

log(T − t)−1, q−1 = r.
(4.6)

From (2.9) and (4.6), it follows that

c′(T − t)−
r+1−q
q−1 � u(x,t) � c(T − t)−

1
p−1 .

On the other hand, (T − t)−
1

p−1 < (T − t)−
r+1−q
q−1 since (q− 1)

(
1 + 1/(p− 1)

)
< r ,

which leads to a contradiction. Hence, we obtain the boundedness of Gq(t) .
Case (ii) Since the boundedness of Gq(t) is assured by the assumption and (i), we

have
v(0,t) ∼ Fs(t) (4.7)

by (2.14). Using (2.9) and (4.7), we get

Gr(t) �

⎧⎨
⎩

Const., r < p−1
s+1−p ,

c log(T − t)−1, r = p−1
s+1−p ,

(4.8)

when p−1 < s . Then the first half part of (ii) is derived. To obtain the boundedness of
Gr(t) for the case where p−1 = s , it suffices to note that

v(0,t) ∼ Fs(t) � c log(T − t)−1.

Since Gr(t) is bounded, we have u(0,t) ∼ Fp(t) by (2.13). Hence we get (4.1).
Furthermore, we have

∫ t

0
Fs

p(τ) dτ ∼ Fs(t) ∼
⎧⎨
⎩ (T − t)−

s+1−p
p−1 , p−1 < s,

log(T − t)−1, p−1 = s.
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Hence, (3.8) and (4.7) imply (4.2).

Case (iii) The assertion (a) can be easily verified by the first half part of the proof
for (i). As for the assertion (b), we notice that

p � q implies q � (q−1)
(
1+

1
p−1

)
.

For the case where r � q , the boundedness of Gr(t) follows from the boundedness of
Gq(t) . Hence, the statement of (b) for the case where r � q is proved by the same
arguments as those for (ii). For the case where q < r < (p−1)/(s+1− p) , since Gr(t)
is bounded by (4.8), we can get (4.1) -(4.2) from arguments similar to those for (ii). As
for the case where q < r = (p− 1)/(s+ 1− p) , by the boundedness of Gq(t) , (2.14)
and (4.8), we have

Gr(t) ∼
∫ t

0
Fr

s (τ) dτ � c log(T − t)−1.

From this and (2.13), it follows that Fp(t) ∼
∫ t
0 F p

p (τ) dτ which yields

Fp(t) ∼ (T − t)−
1

p−1 ,

so we get (4.1). Since

Gr(t) � c log(T − t)−1 � Fs(t) ∼
∫ t

0
Fs

p(τ) dτ

by (4.1) and (4.8). Hence, using (2.14) and (3.8), we obtain (4.2).

REMARK 4.3. If p = q , we can prove (iii)-(b) without the assumption r � p−1
s+1−p ,

since q = (q−1)
(
1+1/(p−1)

)
assures r � q .

Exchanging the roles of u and v , the following lemma holds.

LEMMA 4.4. Let q−1 � r < (q−1)(1+1/p) .

(i) If (p−1)
(
1+1/(q−1)

)
< s, then lim

t↗T
Fp(t) < +∞ .

(ii) If

q−1 < r and (p−1)
(
1+

1
q−1

)
< s <

q−1
r+1−q

,

or

q−1 = r and (p−1)
(
1+

1
q−1

)
< s,

then lim
t↗T

Fs(t) < +∞ . Moreover, u and v satisfy

v(x,t) ∼ Gq(t) ∼ (T − t)−
1

q−1 , (4.9)
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u(x, t) ∼ Gr(t) ∼
⎧⎨
⎩ (T − t)−

r+1−q
q−1 , q−1 < r < (q−1)

(
1+ 1

p

)
,

log(T − t)−1, r = q−1.
(4.10)

(iii) Let p−1 � s � (p−1)
(
1+1/(q−1)

)
.

(a) If lim
t↗T

Fp(t) = +∞ , then

u(x, t) ∼ Fp(t) ∼ (T − t)−
1

p−1 , cFs(t) � v(x,t) � c′(T − t)−
1

q−1 (4.11)

where Fs(t) satisfies

Fs(t) ∼
⎧⎨
⎩ (T − t)−

s+1−p
p−1 , p−1 < s,

log(T − t)−1, p−1 = s.

(b) If lim
t↗T

Fp(t) < +∞ , then (4.9) and (4.10) hold.

Proof. Lemma 4.4 can be proved by much the same arguments as in the proof of
Lemma 4.2. In particular, since p � q leads to s � (p− 1)

(
1 + 1/(q− 1)

)
< p , the

verification of (iii)-(b) is easier than the case for Lemma 4.2.

The functions Gr(t) , Fp(t) and Fs(t) blow up when

s < (p−1)
(
1+

1
q

)
and

p−1
s+1− p

< r � (q−1)
(
1+

1
p−1

)
,

by (3.9), Lemma 3.5-(ii) and (3.13), respectively. As for Gq(t) , however, it is not
known whether it blows up or not. If Gq(t) blows up in this region, then all blow-up
solutions (u,v) blow up on the whole domain such that (4.3) is satisfied. On the other
hand, by using Lemma 3.2 in [12], we can easily prove the existence of the initial data
so that Gq(t) remains bounded. For such a case, the following lemma gives blow-up
rates of solutions.

LEMMA 4.5. We suppose that p,q,r,s satisfy

p−1
s+ p−1

< r �
(
1+

1
p

) p−1
s+1− p

and p−1 < s < (p−1)
(
1+

1
q

)
,

and lim
t↗T

Gq(t) < ∞ . Then u and v blow up on the whole domain. Moreover, u and v

satisfy (4.1)-(4.2).

Proof. Using (2.9) and (3.9), we get

Fs(t) � c(T − t)−
s+1−p
p−1 � v(0,t).

Combining (2.14) with the boundedness of Gq(t) , we get

v(0,t) ∼ Fs(t) ∼ (T − t)−
s+1−p
p−1
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which yields

Gr(t) ∼
∫ t

0
Fr

s (τ) dτ ∼ (T − t)−
s+1−p
p−1 (r− p−1

s+1−p ),
p−1

s+1− p
< r. (4.12)

On the other hand, (2.13) implies

Fp(t) ∼
∫ t

0
Gp

r (τ) dτ +
∫ t

0
F p

p (τ) dτ.

Using (4.12), we obtain

∫ t
0 Gp

r (τ) dτ ∼
⎧⎨
⎩

Const., r < (1+ 1
p) p−1

s+1−p ,

log(T − t)−1, r = (1+ 1
p) p−1

s+1−p .

Hence, if

r <
(
1+

1
p

) p−1
s+1− p

,

then it follows that

Fp(t) ∼
∫ t

0
Fp

p (τ) dτ ∼ (T − t)−
1

p−1 . (4.13)

By (2.9), (4.13) and (3.3), we get

u(x,t) ∼ Fp(t) ∼ (T − t)−
1

p−1 (4.14)

which yields that Fs(t) ∼
∫ t
0 Fs

p(τ) dτ . Here using (3.8) and the boundedness of Gq(t) ,
we get

v(x,t) ∼ Fs(t) ∼ (T − t)−
s+1−p
p−1 . (4.15)

Hence, the assertion can be proved by (4.14) and (4.15).
As for the case where

r =
(
1+

1
p

) p−1
s+1− p

,

we have

Fp(t) ∼ log(T − t)−1 +
∫ t

0
Fp

p (τ) dτ.

If ∫ t

0
F p

p (τ) dτ � log(T − t)−1,

then
Fs(t) < Fp(t) ∼ log(T − t)−1,

since s � (p−1)(1+ 1
q−1) < p . From this fact and (4.12), we get

Gr(t) ∼
∫ t

0
Fr

s (τ) dτ < ∞
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which contradicts (4.12). Hence, it follows that log(T − t)−1 <
∫ t
0 Fp

p (τ) dτ , which
implies

Fp(t) ∼
∫ t

0
F p

p (τ) dτ.

Since Fp(t) blows up when t → T , we can repeat the same arguments as for the case
where r < (1+ 1

p) p−1
s+1−p .

REMARK 4.6. It is clear that Lemmas 4.2, 4.4 and 4.5 hold true also for (P1)r,s ,
and these lemmas are quite useful in analyzing the blow-up phenomena for (P1)r,s . For
example, in Theorem 4.2 and 4.4 of [11], it is shown that under suitable assumptions
on p,q,r,s , it is always possible to construct examples of solutions such that one com-
ponent of (u,v) blow up at a single point and the blow-up of the other component is
total blow-up. By applying lemmas above, we can show that under almost the same (a
little bit stranger) assumptions on p,q,r,s as those of Theorems 4.2 and 4.4 of [11], the
behavior of all blow-up solutions of (P1)r,s are the same one mentioned above (i.e., the
single point blow-up and the total blow-up appear at the same time).

REMARK 4.7. As for Lemma 4.1-(iii)-(b) and Lemma 4.5 (resp. Lemma 4.3-(iii)-
(b)), the existence of the initial data (u0,v0) so that

lim
t↗T

Gq(t) < +∞ (resp. lim
t↗T

Fp(t) < +∞)

can be proved by using Lemma 3.2 in [12]. However, the existence of the initial data
(u0,v0) so that lim

t↗T
Gq(t) = +∞ (resp. lim

t↗T
Fp(t) = +∞) is still open.

Proof of Theorem 4.1 Lemma 4.2-(iii), Lemma 4.4-(iii) and Lemma 4.5 assure
that u and v blow up on the whole domain. Hence, these lemmas assure the results of
Theorem 4.1.
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