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Abstract. This paper is devoted to the study of the oscillatory and nonoscillatory behavior of
even order nonlinear functional differential equations with deviating argument of the type(

p(t)|x(n)(t)|α sgnx(n)(t)
)(n) +q(t)|x(g(t))|β sgnx(g(t)) = 0. (Ag)

1. Introduction

The objective of this paper is to study the oscillatory and nonoscillatory behavior
of nonlinear functional differential equations with deviating arguments of the type(

p(t)|x(n)(t)|αsgnx(n)(t)
)(n) +q(t)|x(g(t))|β sgnx(g(t)) = 0, (Ag)

where the following conditions are assumed to hold:

(a) α and β are positive constants;

(b) p(t) and q(t) are positive continuous functions on [a,∞) , a � 0;

(c) p(t) satisfies ∫ ∞

a

dt

p(t)
1
α

= ∞; (1.1)

(d) g(t) is a positive continuously differentiable function on [a,∞) such that g′(t) > 0
and lim

t→∞
g(t) = ∞ .

Equation (Ag ) is said to be half-linear, super-half-linear or sub-half-linear ac-
cording to whether α = β , α < β or α > β .

By a solution of (Ag ) we mean a function x : [Tx,∞) → R which is n times con-
tinuously differentiable together with p(t)|x(n)(t)|αsgnx(n)(t) and satisfies (Ag ) at all
sufficiently large t . Our attention will be restricted to those solutions x(t) of (Ag )
which are nontrivial in the sense that sup{|x(t)| : t � T} > 0 for any T � Tx . A solu-
tion is said to be oscillatory if it has an infinite sequence of zeros clustering at t = ∞ ;
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otherwise a solution is said to be nonoscillatory. By definition, equation (Ag ) is oscil-
latory if all of its solutions are oscillatory and nonoscillatory otherwise.

In Section 2 we first classify the set of all possible nonoscillatory solutions of (Ag )
into a finite number of subclasses according to their asymptotic behavior as t → ∞ , and
then derive integral equations for the subclasses appearing in the classification list. Such
integral equations will play a crucial role in the subsequent discussions. We notice that,
since if x(t) satisfies (Ag ), then so does −x(t) , it suffices for us to restrict our attention
to eventually positive solutions of (Ag ).

Let P denote the set of all eventually positive solutions of (Ag ). We introduce the
set of 2n functions ϕ j(t) , j ∈ {0,1, · · · ,2n−1} defined by

ϕ j(t) = (t−a) j, j ∈ {0,1, · · · ,n};

ϕ j(t) =
∫ t

a
(t − s)n−1

[
(s−a) j−n

p(s)

] 1
α
ds, j ∈ {n+1,n+2, · · ·,2n−1}.

(1.2)

It is easy to see that these functions are particular solutions of the unperturbed ordinary
differential equation

L2nx(t) =
(
p(t)|x(n)(t)|αsgnx(n)(t)

)(n) = 0 (1.3)

and satisfy

lim
t→∞

ϕ j+1(t)
ϕ j(t)

= ∞ ( j = 0, 1, · · · ,2n−2). (1.4)

We denote by P(I j) , j ∈ {0,1, · · · ,2n− 1} , the subclass consisting of positive
solutions x(t) satisfying

lim
t→∞

x(t)
ϕ j(t)

= const > 0, (1.5)

and by P(IIk) , k ∈ {1,3, · · · ,2n−1} , the subclass consisting of positive solutions x(t)
satisfying

lim
t→∞

x(t)
ϕk−1(t)

= ∞ and lim
t→∞

x(t)
ϕk(t)

= 0, (1.6)

and use the notation

P(I) = P(I0)∪P(I1)∪·· ·∪P(I2n−1), (1.7)

and
P(II) = P(II1)∪P(II3)∪·· ·∪P(II2n−1). (1.8)

It can be shown that any positive solution of (Ag ) is a member of P(I) or of P(II) ,
that is, P = P(I)∪P(II) . In Section 3 the integral equations derived for each subclass
of P(I) and P(II) are solved by means of fixed point techniques to establish necessary
and sufficient conditions for the existence of positive solutions belonging to P(I) on
the one hand, and sufficient conditions for the existence of solutions belonging to P(II)
on the other. Section 4 is devoted to the derivation of the comparison principles which
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relate the oscillation (or nonoscillation) of functional differential equation (Ag ) to that
of suitably associated differential equations with or without functional arguments. In
Section 5 using the comparison principles of Section 4 effectively, we establish criteria
for oscillation of all solutions of equation (Ag ) for the super-half-linear and sub-half-
linear cases. Extensive use is made of known oscillation results for the companion
ordinary differential equation(

p(t)|x(n)(t)|α sgnx(n)(t)
)(n) +q(t)|x(t)|β sgnx(t) = 0. (A)

The obtained oscillation criteria are shown to be sharp for restricted classes of the func-
tion p(t) and the deviating argument g(t) . An example illustrating our main results
will be presented in Section 6.

The oscillation theory of higher order nonlinear differential equations of Emden-
Fowler type was initiated by Kiguradze [8, 9] and have had a great impact upon the
development of the qualitative theory of ordinary differential equations until today. See
e.g. Kiguradze and Chanturia [10]. The study of oscillation of higher order nonlinear
functional differential equations with deviating arguments was attempted for the first
time by Onose [28, 29]. A typical generalization of Onose’s oscillation theorem can
be found in [11]. Recently, wide attention of the researchers has been attracted to the
investigation of oscillation (or nonoscillation) of differential equations whose principal
differential operators involve nonlinear Sturm-Liouville type differential operators [12,
20, 22, 30 – 34]. The present work was motivated by the observation that little analysis
has been made of functional differential equations involving the differential operator
(p(t)|x(n)(t)|α sgnx(n)(t))(n) from the viewpoint of oscillation.

2. Integral representation of positive solutions

We begin by examining the structure of the set of P of all possible positive solu-
tions of equation (Ag ).

A) Classification of positive solutions. Let x(t) be an eventually positive solution
of (Ag ). We want to determine the asymptotic behavior of x(t) as t → ∞ . For this
purpose we need to know how the “quasi-derivatives”of x(t) :

Ljx(t) = x( j)(t), j = 0,1, · · · ,n,

Ljx(t) =
(
p(t)|x(n)(t)|αsgnx(n)(t)

)( j−n)
, j = n+1,n+2, · · ·,2n

behave as t → ∞ . Note that

Lj+1x(t) = (Ljx(t))′ , j = 0,1, · · · ,n−2,n,n+1, · · ·,2n−1;

Lnx(t) = p(t)|(Ln−1x(t))′|αsgn(Ln−1x(t))′ .

It can be shown that all the quasi-derivatives of a positive solution x(t) of (Ag )
are eventually of constant sign and that the possible combinations of their signs are
determined by a simple law as stated in the following lemma.
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LEMMA 2.1. If x(t) is a positive solution of (Ag ) on [T,∞) , T � a, then there
exists an odd integer k ∈ {1,3, · · · ,2n−1} and T � a such that

L jx(t) > 0, t � T , 0 � j � k−1; (−1) j−kL jx(t) > 0, t � T , k � j � 2n−1. (2.1)

For the proof of Lemma 2.1 see Tanigawa in [32, Lemma 2.1]. This lemma is
often referred to as the generalized Kiguradze lemma.

The set of all positive solutions x(t) of (Ag ) satisfying (2.1) is denoted by Pk . The
above lemma asserts that P has the decomposition

P = P1∪P3∪·· ·∪P2n−1. (2.2)

Let x(t) ∈ P . All quasi-derivatives Ljx(t) , j = 0,1, · · · ,2n− 1, are eventually
monotone and hence have finite or infinite limits as t → ∞ , that is,

wj = lim
t→∞

Ljx(t) ∈ [0,∞], j = 0,1, · · · ,2n−1. (2.3)

Let x(t) ∈ Pk for some k ∈ {1,3, · · · ,2n− 1} . Then, wk is a finite non-negative
constant and the set of its asymptotic values {wj} falls into one of the following three
cases:

w1 = w2 = · · · = wk−1 = ∞, wk ∈ (0,∞), wk+1 = wk+2 = · · · = w2n−1 = 0; (2.4)

w1 = w2 = · · · = wk−1 = ∞, wk = wk+1 = · · · = w2n−1 = 0; (2.5)

w1 = w2 = · · · = wk−2 = ∞, wk−1 ∈ (0,∞), wk = wk+1 = · · · = w2n−1 = 0. (2.6)

It is easily verified (cf. Tanigawa [32]) that (2.4), (2.5) and (2.6) are equivalent, respec-
tively, to

(i) lim
t→∞

x(t)
ϕk(t)

= const > 0;

(ii) lim
t→∞

x(t)
ϕk(t)

= 0, lim
t→∞

x(t)
ϕk−1(t)

= ∞ ;

and

(iii) lim
t→∞

x(t)
ϕk−1(t)

= const > 0,

where the functions ϕ j(t) , j = 0,1, · · · ,2n− 1, are defined by (1.2). Taking into ac-
count that the above cases (i) and (iii) are of the same category, we conclude that any
positive solution x(t) of equation (Ag ) satisfies either (1.5) for some j ∈ {0,1, · · · ,2n−
1} , or (1.6) for some k∈ {1,3, · · · ,2n−1} , which means that it is natural to decompose
the set P of all positive solutions of (Ag ) into the two classes P(I) and P(II) defined
by (1.7) and (1.8).

We note that any function x(t) ∈ Pk satisfies the inequality

ckϕk−1(t) � x(t) � Ckϕk(t) for all large t (2.7)

for some positive constants ck and Ck .
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B) Integral representation for positive solutions. Let us now form the explicit
integral equations for positive solutions of (Ag ) belonging to P(I j) , j ∈ {0,1, · · · ,2n−
1} , and P(IIk) , k∈ {1,3, · · · ,2n−1} . Solving the integral equations will be the subject
of the next section.

We first derive the integral representation for a solution x(t) ∈ P(I j) , j ∈ {0,1, · · · ,
2n− 1} . Suppose that x(t) > 0 and x(g(t)) > 0 on [t0,∞) , t0 � a . Suppose that
j ∈ {n,n+1, · · ·,2n−1} . In this case, integrating (Ag ) first 2n− j times from t to ∞
and then j times from t0 to t , we obtain the following expressions for x(t) .
(i) If j ∈ {n+1,n+2, · · ·,2n−1} , then

x(t) = ξ (t)+
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

{
ξ j(s)+ (−1)2n− j−1

∫ s

t0

(s− r) j−n−1

( j−n−1)!

×
∫ ∞

r

(σ − r)2n− j−1

(2n− j−1)!
q(σ)x(g(σ))β dσdr

}] 1
α
ds. (2.8)

(ii) If j = n , then

x(t) = ξ (t)+
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

{
wn

+(−1)n−1
∫ ∞

s

(r− s)n−1

(n−1)!
q(r)x(g(r))β dr

}] 1
α
ds, (2.9)

where

ξ j(t) =
j−1

∑
l=n

Llx(t0)
(t − t0)l−n

(l−n)!
+wj

(t− t0) j−n

( j−n)!
(n+1 � j � 2n−1);

ξ (t) =
n−1

∑
l=0

Llx(t0)
(t− t0)l

l!
.

Next, suppose that j ∈ {0,1, · · · ,n−1} . Then, integrating (Ag ) first 2n− j(= n+(n−
j)) times from t to ∞ and then j times from t0 to t yields the following expressions
for x(t) :
(i) If j ∈ {1,2, · · · ,n−1} , then

x(t) = ξ ∗
j (t)+ (−1)2n− j−1

∫ t

t0

(t − s) j−1

( j−1)!

∫ ∞

s

(r− s)n− j−1

(n− j−1)!

×
[

1
p(r)

∫ ∞

r

(σ − r)n−1

(n−1)!
q(σ)x(g(σ))β dσ

] 1
α
drds, (2.10)

where

ξ ∗
j (t) =

j−1

∑
l=0

Llx(t0)
(t − t0)l

l!
+wj

(t− t0) j

j!
(1 � j � n−1).
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(ii) If j = 0, then

x(t) = w0 +(−1)2n−1
∫ ∞

t

(s− t)n−1

(n−1)!

×
[

1
p(s)

∫ ∞

s

(r− s)n−1

(n−1)!
q(r)x(g(r))β dr

] 1
α
ds. (2.11)

To obtain integral representations for members x(t) of P(IIk) , k ∈ {1,3, · · · ,2n−
1} we note that the asymptotic values {wj} of x(t) satisfies (2.5), implying in particu-
lar that wk = 0, and integrate (Ag ) 2n− k times on [t,∞) and then k times on [t0,∞) .
As a result we find that:
(i) if n+1 � k � 2n−1, then

x(t) = ξ (t)+
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

{
ξ̃k(s)+

∫ s

t0

(s− r)k−n−1

(k−n−1)!

×
∫ ∞

r

(σ − r)2n−k−1

(2n− k−1)!
q(σ)x(g(σ))β dσdr

}] 1
α
ds, (2.12)

(ii) if k = n , n being odd, then

x(t) = ξ (t)+
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{∫ ∞

s

(r− s)n−1

(n−1)!
q(r)x(g(r))β dr

}] 1
α
ds, (2.13)

(iii) if 1 � k � n−1, then

x(t) = ξ ∗
k (t)+

∫ t

t0

(t− s)k−1

(k−1)!

∫ ∞

s

(r− s)n−k−1

(n− k−1)!

×
[

1
p(r)

∫ ∞

r

(σ − r)n−1

(n−1)!
q(σ)x(g(σ))β dσ

] 1
α
drds, (2.14)

for t � t0 , where the function ξ (t) , ξ̃k(t) and ξ ∗
k (t) are defined, respectively, by

ξ (t) =
n−1

∑
l=0

Llx(t0)
(t− t0)l

l!
,

ξ̃k(t) =
k−1

∑
l=n

Llx(t0)
(t − t0)l−n

(l−n)!
,

ξ ∗
k (t) =

k−1

∑
l=0

Llx(t0)
(t − t0)l

l!
.
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3. Existence of positive solutions

It is natural to ask whether one can actually verify the existence of positive so-
lutions of equation (Ag ) belonging to P(I) or to P(II) . The aim of this section is to
answer this question in the affirmative by presenting necessary and sufficient conditions
for (Ag ) to have members of P(I j) , j ∈ {0,1, · · · ,2n−1} , and sufficient conditions for
(Ag ) to have members of P(IIk) , k ∈ {1,3, · · · ,2n−1} . Integral representations (2.8)-
(2.14) for positive solutions of (Ag ) obtained in the preceding section will be employed
for this purpose.

THEOREM 3.1. A necessary and sufficient condition for equation (Ag ) to possess
a solution in P(I j) , j ∈ {0,1, · · · ,2n−1} , is that

∫ ∞

b
tn− j−1

[
1

p(t)

∫ ∞

t
(s− t)n−1q(s)ϕ j(g(s))β ds

] 1
α
dt < ∞ for j = 0,1, · · · ,n−1;

(3.1)∫ ∞

b
t2n− j−1q(t)ϕ j(g(t))β dt < ∞ for j = n,n+1, · · ·,2n−1, (3.2)

where b � a is a constant such that g(t) � a for t � b.

Proof. (The necessity part) Assume that x(t) ∈ P(I j) for some j ∈ {0,1, · · · ,2n−
1} . Then, it satisfies one of (2.8), (2.9), (2.10) and (2.11) for all large t , say t � t0 ,
from which it readily follows that⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫ ∞

t0
tn− j−1

[
1

p(t)

∫ ∞

t
(s− t)n−1q(s)x(g(s))β ds

] 1
α
dt < ∞ for j = 0,1, · · · ,n−1;∫ ∞

t0
t2n− j−1q(t)x(g(t))β dt < ∞ for j = n,n+1, · · · ,2n−1.

(3.3)
Combining (3.3) with the obvious inequality

c jϕ j(t) � x(t) � Cjϕ j(t), t � t0,

where c j and Cj are constants, we conclude that (3.1) or (3.2) holds according to
whether j ∈ {0,1, · · · ,n−1} or j ∈ {n,n+1, · · ·,2n−1} .

(The sufficiency part) We first consider the case where j ∈ {n,n+1, · · · ,2n−1} .
Suppose that (3.2) is satisfied. Let c > 0 be an arbitrarily fixed constant and choose
t0 � b so that∫ ∞

t0

t2n− j−1

(2n− j−1)!
q(t)ϕ j(g(t))β dt � A[( j−n)!]

β
α [(n−1)!]βc1− β

α , (3.4)

where A is a constant such that A = 2−
β
α if j is odd and A = 2−1 if j is even. We may

assume that inf
t�t0

g(t) � max{a,1} and put T = min{t0, inf
t�t0

g(t)} . Define the constants
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k1 and k2 by

ki =
ci

[( j−n)!]
1
α (n−1)!

, i = 1,2, (3.5)

where c1 = c
1
α and c2 = (2c)

1
α if j is odd, and that c1 = (c/2)

1
α and c2 = c

1
α if j is

even. We define ϕ̃ j(t) by

ϕ̃ j(t) =

{
ϕ j(t;t0), t � t0;

0, t � t0,
(3.6)

where

ϕ j(t; t0) = (t − t0) j, j ∈ {0,1, · · · ,n};

ϕ j(t; t0) =
∫ t

t0
(t− s)n−1

[
(s− t0) j−n

p(s)

] 1
α
ds, j ∈ {n+1,n+2, · · ·,2n−1}

and let X denote the set

X = {x ∈C[T,∞) : k1ϕ̃ j(t) � x(t) � k2ϕ̃ j(t), t � T}. (3.7)

Clearly, X is a closed convex subset of the Frechét space C[T,∞) with the topology of
uniform convergence on compact subintervals of [T,∞) . Consider the integral operator
F j : X →C[T,∞) defined as follows: if j ∈ {n+1,n+2, · · ·,2n−1} , then⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F jx(t) =
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{
c(s− t0) j−n

( j−n)!
+(−1)2n− j−1×

×
∫ s

t0

(s− r) j−n−1

( j−n−1)!

∫ ∞

r

(σ − r)2n− j−1

(2n− j−1)!
q(σ)x(g(σ))β dσdr

}] 1
α
ds, t � t0;

F jx(t) = 0, T � t � t0,
(3.8)

and if j = n , then⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fnx(t) =
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{
c+(−1)n−1×

×
∫ ∞

s

(r− s)n−1

(n−1)!
q(r)x(g(r))β dr

}] 1
α
ds, t � t0;

Fnx(t) = 0, T � t � t0.

(3.9)

It can be shown that F j is a continuous self-map on X and sends X into a relatively
compact subset of C[T,∞) .

(i) F j maps X into itself. Let x(t) ∈ X . Using (3.4) and (3.5), we see that if j is
odd, then

F jx(t) �
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)
c(s− t0)
( j−n)!

] 1
α
ds = k1ϕ̃ j(t), t � t0,
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and

F jx(t) �
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

{
c(s− t0)
( j−n)!

+
∫ s

t0

(s− r) j−n−1

( j−n−1)!

×
∫ ∞

r

(σ − r)2n− j−1

(2n− j−1)!
q(σ)(k2ϕ̃ j(g(σ)))β dσdr

}] 1
α
ds

�
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

{
c(s− t0) j−n

( j−n)!

+ kβ
2 A[( j−n)!]

β
α [(n−1)!]βc1− β

α

∫ s

t0

(s− r) j−n−1

( j−n−1)!
dr

}] 1
α
ds

� (2c)
1
α

[( j−n)!]
1
α (n−1)!

∫ t

t0
(t − s)n−1

[
(s− t0) j−n

p(s)

] 1
α
ds = k2ϕ̃ j(t), t � t0,

while if j is even, then we obtain

F jx(t) �
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)
c(s− t0) j−n

( j−n)!

] 1
α
ds = k2ϕ̃ j(t), t � t0,

and

F jx(t) �
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

{
c(s− t0) j−n

( j−n)!

− kβ
2 A[( j−n)!]

β
α [(n−1)!]βc1− β

α

∫ s

t0

(s− r) j−n−1

( j−n−1)!
dr

}] 1
α
ds

�
(

c
2

) 1
α 1

[( j−n)!]
1
α (n−1)!

∫ t

t0
(t− s)n−1

[
(s− t0) j−n

p(s)

] 1
α
ds

= k1ϕ̃ j(t), t � t0.

This shows that F jx(t) ∈ X , implying that F (X) ⊂ X .

(ii) F j is a continuous mapping. Let {xm(t)} be a sequence in X converging to x(t) ∈
X as m → ∞ uniformly on compact subintervals of [T,∞) . We need to prove that
lim
m→∞

F jxm(t) = F jx(t) uniformly on any compact subinterval of [T,∞) .

The proof of this convergence for the case where j ∈ {n + 1,n + 2, · · · ,2n− 1}
proceeds as follows. Define the functions Qm(t) and Q(t) by

Qm(t) =
c(t− t0) j−n

( j−n)!
+(−1)2n− j−1

∫ t

t0

(t− s) j−n−1

( j−n−1)!

×
∫ ∞

s

(r− s)2n− j−1

(2n− j−1)!
q(r)xm(g(r))β drds, t � t0, (3.10)
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and

Q(t) =
c(t− t0) j−n

( j−n)!
+(−1)2n− j−1

∫ t

t0

(t − s) j−n−1

( j−n−1)!

×
∫ ∞

s

(r− s)2n− j−1

(2n− j−1)!
q(r)x(g(r))β drds, t � t0.

(3.11)

A simple calculation gives

Qm(t) � K(t− t0) j−n and Q(t) � K(t − t0) j−n, t � t0, (3.12)

for some K > 0 independent of m . The inequality

|Qm(t)−Q(t)|�
∫ t

t0

(t − s) j−n−1

( j−n−1)!

∫ ∞

s

(r− s)2n− j−1

(2n− j−1)!
q(r)|xm(g(r))β − x(g(r))β |drds

� (t− t0) j−n

( j−n)!

∫ ∞

t0

(r− t0)2n− j−1

(2n− j−1)!
q(r)|xm(g(r))β − x(g(r))β |dr, (3.13)

where t � t0 , combined with the fact that

|xm(g(t))β − x(g(t))β | � 2kβ
2 ϕ̃ j(t) and |xm(g(t))β − x(g(t))β | → 0 as m → ∞

implies via the Lebesgue dominated convergence theorem that Qm(t)→Q(t) as m→∞
uniformly on any compact subinterval of [T,∞) . We now combine the inequality

|F jxm(t)−F jx(t)| �
∫ t

t0

(t− s)n−1

(n−1)!
1

p(s)
1
α
|Qm(s)

1
α −Q(s)

1
α |ds

� ϕ̃n(t)
(n−1)!

max
t0�s�t

|Qm(s)
1
α −Q(s)

1
α |, t � t0, (3.14)

with the inequalities

|Qm(t)
1
α −Q(t)

1
α | � 1

α
[K(t − t0) j−n]

1
α −1|Qm(t)−Q(t)| for α � 1 (3.15)

and
|Qm(t)

1
α −Q(t)

1
α | � |Qm(t)−Q(t)| 1

α for α > 1, (3.16)

concluding that F jxm(t) → F jx(t) (m → ∞) uniformly on compact subintervals of
[T,∞) . This establishes the continuity of F j for j ∈ {n + 1,n + 2, · · ·,2n− 1} . The
proof of the continuity of F j for j = n is similar but simpler, and so it is omitted.

(iii) F j(X) is relatively compact in C[T,∞) . The inclusion F j(X) ⊂ X proven in
(i) implies that F j(X) is locally uniformly bounded on [T,∞) . The inequality

|(F jx(t))′| � (2c)
1
α

∫ t

t0

(t − s)n−2

(n−2)!

[
(s− t0) j−n

p(s)

] 1
α
ds, t � t0, (3.17)
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holding for all x(t) ∈ X guarantees that F j(X) is locally equi-continuous on [T,∞) .
Then, the relative compactness of F j(X) follows from the Ascoli-Arzela lemma.

Thus all the hypotheses of the Schauder-Tychonofffixed point theorem are fulfilled.
Therefore, there exists a fixed element x(t)∈X of F j , i.e. x(t)= F jx(t) , t �T , which
means that x(t) satisfies the integral equation,

x(t) =
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{
c(s− t0) j−n

( j−n)!
+(−1)2n− j−1

∫ s

t0

(s− r) j−n−1

( j−n−1)!

×
∫ ∞

r

(σ − r)2n− j−1

(2n− j−1)!
q(σ)x(g(σ))β dσdr

}] 1
α
ds, (3.18)

if n+1 � j � 2n−1 and for t � t0 ;

x(t) =
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{
c+(−1)n−1

∫ ∞

s

(r− s)n−1

(n−1)!

×q(r)x(g(r))β dr

}] 1
α
ds, (3.19)

if j = n and for t � t0 . Note that (3.18) and (3.19) are special cases of (2.8) and (2.9),
respectively. Differentiation of (3.18) or (3.19) shows that x(t) is a positive solution of
equation (Ag ) for t � t0 . Differentiating (3.18) or (3.19) j times and letting t → ∞ , we
see that lim

t→∞
Ljx(t) = c , which is equivalent to lim

t→∞
x(t)/ϕ j(t) = c . Thus the existence

of a solution in P(I j) has been established for the case j ∈ {n,n+1, · · ·,2n−1} .
Next we consider the case where j ∈ {0,1, · · · ,n−1} . Suppose that (3.1) is satis-

fied. Let c > 0 be any given constant, choose t0 > a large enough so that∫ ∞

t0

tn− j−1

(n− j−1)!

[
1

p(t)

∫ ∞

t

(s− t)n−1

(n−1)!
q(s)ϕ j(g(s))β ds

] 1
α
dt � B( j!)

β
α c1− β

α , (3.20)

where B is a constant such that B = 2−
β
α if j is odd and B = 2−1 if j is even, and

define the constants k1 and k2 as follows:

k1 =
c
j!

and k2 =
2c
j!

if j is odd; (3.21)

k1 =
c

2 j!
and k2 =

c
j!

if j is even. (3.22)

Define the set X by (3.7) with these k1 and k2 and consider the mapping F j defined
by the following formulas: if j ∈ {1,2, · · · ,n−1} , then⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F jx(t) =
c(t− t0) j

j!
+(−1)2n− j−1

∫ t

t0

(t − s) j−1

( j−1)!

∫ ∞

s

(r− s)n− j−1

(n− j−1)!

×
[

1
p(r)

∫ ∞

r

(σ − r)n−1

(n−1)!
q(σ)x(g(σ))β dσ

] 1
α
drds, t � t0;

F jx(t) = 0, T � t � t0

(3.23)
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and if j = 0, then⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F0x(t) = c+(−1)2n−1
∫ ∞

t

(s− t)n−1

(n−1)!
×

×
[

1
p(s)

∫ ∞

s

(r− s)n−1

(n−1)!
q(r)x(g(r))β dr

] 1
α
ds, t � t0;

F0x(t) = 0, T � t � t0.

(3.24)

It can be verified without difficulty that (i) F j(X) ⊂ X , (ii) F j is a continuous map-
ping, and (iii) F j(X) is relatively compact in C[T,∞) . The verification is left to the
reader. Consequently, by the Schauder-Tychonoff fixed point theorem F j has a fixed
point x(t) ∈ X , which satisfies the integral equations, for j ∈ {1,2, · · · ,n−1} ,

x(t) =
c(t − t0) j

j!
+(−1)2n− j−1

∫ t

t0

(t − s) j−1

( j−1)!

∫ ∞

s

(r− s)n− j−1

(n− j−1)!

×
[

1
p(r)

∫ ∞

r

(σ − r)n−1

(n−1)!
q(σ)x(g(σ))β dσ

] 1
α
drds (3.25)

and, for j = 0,

x(t) = c+(−1)2n−1
∫ ∞

t

(s− t)n−1

(n−1)!

×
[

1
p(s)

∫ ∞

s

(r− s)n−1

(n−1)!
q(r)x(g(r))β dr

] 1
α
ds. (3.26)

Note that (3.25) and (3.26) are special cases of (2.10) and (2.11), respectively. Differen-
tiating (3.25) and (3.26), we see that x(t) is a solution of (Ag ) such that lim

t→∞
Ljx(t) = c .

Thus the existence of a positive solution of (Ag ) in P(I j) has been established for the
case j ∈ {0,1, · · · ,n−1} . This completes the proof of Theorem 3.1. �

Let us now turn our attention to the class P(II) = P(II1)∪P(II3)∪·· · ∪P(II2n−1) .
Recall that P(IIk) is a collection of positive solutions x(t) of (Ag ) satisfying (1.6).
Since unlike the classes P(I j) it seems difficult to characterize the membership of
P(II) , we content ourselves with giving sufficient conditions for the existence of so-
lutions belonging to each P(IIk) , k ∈ {1,3, · · · ,2n−1} .

THEOREM 3.2. (i) Let k be an odd integer such that 0 < k < n. Equation (Ag )
possesses a solution of class P(II k ) if∫ ∞

b
tn−k−1

[
1

p(t)

∫ ∞

t
(s− t)n−1q(s)ϕk(g(s))β ds

] 1
α
dt < ∞ (3.27)

and ∫ ∞

b
tn−k

[
1

p(t)

∫ ∞

t
(s− t)n−1q(s)ϕk−1(g(s))β ds

] 1
α
dt = ∞. (3.28)
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(ii) Let n be an odd integer and let k = n. Equation (Ag ) possesses a solution of class
P(II k ) if ∫ ∞

b
tn−1q(t)ϕn(g(t))β dt < ∞ (3.29)

and ∫ ∞

b

[
1

p(t)

∫ ∞

t
(s− t)n−1q(s)ϕn−1(g(s))β ds

] 1
α
dt = ∞. (3.30)

(iii) Let k be an odd interger such that n < k < 2n. Equation (Ag ) possesses a solution
of class P(II k ) if ∫ ∞

b
t2n−k−1q(t)ϕk(g(t))β dt < ∞ (3.31)

and ∫ ∞

b
t2n−kq(t)ϕk−1(g(t))β dt = ∞. (3.32)

Here b � a is a constant such that g(t) � a for t � b.

Proof. In each case of (i), (ii) and (iii) the desired solution of (Ag ) will be con-
structed by means of the Schauder-Tychonoff fixed point theorem.

(i) Let k be an odd integer less than n . Suppose that (3.27) and (3.28) hold. Let
c > 0 be any fixed constant and choose t0 � b so that

∫ ∞

t0

tn−k−1

(n− k−1)!

[
1

p(t)

∫ ∞

t

(s− t)n−1

(n−1)!
q(s)ϕk(g(s))β ds

] 1
α
dt � 2−

β
α k!c1− β

α . (3.33)

This is possible because of (3.27). We may assume that inf
t�t0

g(t) � max{a,1} and put

T = min{t0, inf
t�t0

g(t)} . Define the set X by

X = {x ∈C[T,∞) : cϕ̃k−1(t) � x(t) � 2cϕ̃k(t), t � T} (3.34)

and the mapping Gk by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Gkx(t) = cϕ̃k−1(t)+
∫ t

t0

(t − s)k−1

(k−1)!

∫ ∞

s

(r− s)n−k−1

(n− k−1)!
×

×
[

1
p(r)

∫ ∞

r

(σ − r)n−1

(n−1)!
q(σ)x(g(σ))β dσ

] 1
α
drds, t � t0;

Gkx(t) = 0, T � t � t0.
(3.35)
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If x(t) ∈ X , then using (3.33), we have

∫ t

t0

(t− s)k−1

(k−1)!

∫ ∞

s

(r− s)n−k−1

(n− k−1)!

[
1

p(r)

∫ ∞

r

(σ − r)n−1

(n−1)!
q(σ)x(g(σ))β dσ

] 1
α
drds

�
∫ t

t0

(t − s)k−1

(k−1)!
ds

∫ ∞

t0

sn−k−1

(n− k−1)!

[
1

p(s)

∫ ∞

s

(r− s)n−1

(n−1)!
q(r)(2cϕ̃k(g(r)))β dr

] 1
α
ds

� (t− t0)k

k!
· (2c)

β
α ·2− β

α k!c1− β
α = cϕ̃k(t), t � t0,

which, combined with (3.35), implies that cϕ̃k−1(t) � Gkx(t) � 2cϕ̃k(t) for t � t0 . This
shows that Gk maps X into itself. Since it can be proved routinely that Gk is contin-
uous in the topology of C[T,∞) and that Gk(X) is relatively compact in C[T,∞) , the
Schauder-Tychonoff fixed point theorem ensures the existence of a fixed point x(t) ∈ X
of Gk , which satisfies the integral equation, for t � t0 ,

x(t) = cϕ̃k−1(t)+
∫ t

t0

(t − s)k−1

(k−1)!

∫ ∞

s

(r− s)n−k−1

(n− k−1)!

×
[

1
p(r)

∫ ∞

r

(σ − r)n−1

(n−1)!
q(σ)x(g(σ))β dσ

] 1
α
drds. (3.36)

Note that (3.36) is a special case of (2.14). Differentiation of (3.36) shows that x(t)
is a solution of equation (Ag ). Furthermore, by differentiating (3.36) k− 1 times, we
obtain, for t � t0 ,

Lk−1x(t) = c(k−1)!+
∫ t

t0

∫ ∞

s

(r− s)n−k−1

(n− k−1)!

×
[

1
p(r)

∫ ∞

r

(σ − r)n−1

(n−1)!
q(σ)x(g(σ))β dσ

] 1
α
drds. (3.37)

Noting that the last (repeated) integral in (3.37) is bounded from below by

∫ t

t0

(s− t0)n−k

(n− k)!

[
1

p(s)

∫ ∞

s

(r− s)n−1

(n−1)!
q(r)x(g(r))β dr

] 1
α
ds,

we find from (3.37) and (3.34) that

Lk−1x(t) � c
β
α

∫ t

t0

(s− t0)n−k

(n− k)!

[
1

p(s)

∫ ∞

s

(r− s)n−1

(n−1)!
q(r)ϕ̃k−1(g(r))β dr

] 1
α
ds

for t � t0 , which because of (3.28) implies that lim
t→∞

Lk−1x(t) = ∞ . One more differen-

tiation of (3.37) yields

Lkx(t) =
∫ ∞

t

(s− t)n−k−1

(n− k−1)!

[
1

p(s)

∫ ∞

s

(r− s)n−1

(n−1)!
q(r)x(g(r))β dr

] 1
α
ds,
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from which it follows that lim
t→∞

Lkx(t) = 0. Therefore, the solution x(t) belongs to

P(IIk) .
(ii) Let n be odd and let k = n . Given any fixed constant c > 0, choose t0 � b so

that inf
t�t0

g(t) � max{a,1} and

∫ ∞

t0

tn−1

(n−1)!
q(t)ϕn(g(t))β dt � 2−β [(n−1)!]αcα−β . (3.38)

We define the mapping Hn by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Hnx(t) = cϕ̃n−1(t)+
∫ t

t0

(t − s)n−1

(n−1)!
×

×
[

1
p(s)

∫ ∞

s

(r− s)n−1

(n−1)!
q(r)x(g(r))β dr

] 1
α
ds, t � t0;

Hnx(t) = 0, T � t � t0,

(3.39)

and let it act on the set X ⊂C[T,∞) defined by (3.34) with T = min{t0, inf
t�t0

g(t)} . It

can be verified that Hn is a continuous self-map on X which sends X into a relatively
compact subset of C[T,∞) , and hence the Schauder-Tychonoff fixed point theorem is
applicable to Hn . Let x(t) ∈ X be a fixed point of Hn . Then, it satisfies the integral
equation, for t � t0 ,

x(t) = cϕ̃n−1(t)+
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

∫ ∞

s

(r− s)n−1

(n−1)!
q(r)x(g(r))β dr

] 1
α
ds, (3.40)

which is a special case of (2.13). It is easy to check that x(t) is a solution of equation
(Ag ) and satisfies lim

t→∞
Ln−1x(t) = ∞ and lim

t→∞
Lnx(t) = 0. This guarantees that x(t) ∈

P(IIn) as desired.
(iii) Let k be an odd integer such that n < k < 2n . For any given c > 0 one can

choose t0 � b so that inf
t�t0

g(t) � max{a,1} and

∫ ∞

t0

t2n−k−1

(2n− k−1)!
q(t)ϕk(g(t))β dt � 2−β (k−n)![(n−1)!]αcα−β . (3.41)

Let X be defined by (3.34) with T = min{t0, inf
t�t0

g(t)} and define the mapping Ik

by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ikx(t) = cϕ̃k−1(t)+
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)
×

×
∫ s

t0

(s− r)k−n−1

(k−n−1)!

∫ ∞

r

(σ − r)2n−k−1

(2n− k−1)!
q(σ)x(g(σ))β dσdr

] 1
α
ds, t � t0;

Ikx(t) = 0, T � t � t0.
(3.42)
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Since it can be proved routinely that Ik is continuous and sends X into a relatively
compact subset of X , by the Schauder-Tychonoff theorem there exists x(t) ∈ X such
that x(t) = Ikx(t) for t � t0 . i.e., for t � t0 ,

x(t) = cϕ̃k−1(t)+
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

×
∫ s

t0

(s− r)k−n−1

(k−n−1)!

∫ ∞

r

(σ − r)2n−k−1

(2n− k−1)!
q(σ)x(g(σ))β dσdr

] 1
α
ds. (3.43)

This is a special case of (2.12). Differentiation of (3.43) shows that x(t) is a so-
lution of equation (Ag ). One easily sees that x(t) satisfies lim

t→∞
Lk−1x(t) = ∞ and

lim
t→∞

Lkx(t) = 0, and so x(t) must be member of P(IIk) . This completes the proof of

Theorem 3.2. �

REMARK 3.1. One may ask if it is possible to obtain necessary and sufficient
conditions for (Ag ) to have positive solutions belonging to class P(IIk) . This question
is extremely difficult even for ordinary differential equations of the form (A). To the
best of our knowledge Kusano and Naito [16] is the only paper that gives an affirmative
answer to the question for the special case of (A) with α = 1 > β and p(t) ≡ 1.

4. Comparison theorems

When it is not easy to acquire information about the oscillation (or nonoscillation)
of a given differential equation directly, it would be natural to compare the equation in
question with another differential equation, more or less of similar type, whose oscilla-
tory (or nonoscillatory) behavior is already known or can be analyzed with relative ease.
In this section we will establish comparison principles which correlate the oscillation
(or nonoscillation) of the equation(

p(t)|u(n)(t)|αsgnu(n)(t)
)(n) +F(t,u(h(t))) = 0, (4.1)

with that of the equation(
p(t)|v(n)(t)|sgnv(n)(t)

)(n) +G(t,v(k(t))) = 0 (4.2)

or (
p(t)|y(n)(t)|sgny(n)(t)

)(n) +
l′(t)

h′(h−1(l(t)))
F(h−1(l(t)),y(l(t))) = 0. (4.3)

With regard to the above equations the following conditions are always assumed
to hold:
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(a) h(t) , k(t) and l(t) are continuously differentiable functions on [a,∞) such that

h′(t) > 0, k′(t) > 0, l′(t) > 0, lim
t→∞

h(t) = lim
t→∞

k(t) = lim
t→∞

l(t) = ∞ ;

(b) F(t,u) and G(t,u) are continuous nonnegative functions on [a,∞)×R which are
non-decreasing in u and such that uF(t,u) � 0 and uG(t,u) � 0 for any fixed
t � a .

THEOREM 4.1. Assume that

h(t) � k(t), t � a, (4.4)

and
F(t,u)sgn u � G(t,u)sgn u, (t,u) ∈ [a,∞)×R. (4.5)

If equation (4.1) has a nonoscillatory solution, then so does equation (4.2), or equiva-
lently, if equation (4.2) is oscillatory, then so is (4.1).

THEOREM 4.2. Assume that l(t) � h(t) for t � a. If equation (4.3) is oscillatory,
then so is equation (4.1).

We remark that a prototype of comparison principle of type Theorem 4.1 was
given by Chanturia [1] and Kusano and Naito [17]. A comparison principle of type
Theorem 4.2 was first obtained Mahfoud [21] and extended by Kusano and Naito [17].
Our results generalize earlier comparison results [17, 20 – 22, 30, 34] for nonlinear
differential equations involving the operator (p(t)|u(n)(t)|αsgnu(n)(t))(n) , n � 2. The
proof of Theorems 4.1 and 4.2 is based on the following lemma describing the relation
between (4.1) and the differential inequality(

p(t)|z(n)(t)|αsgnz(n)(t)
)(n) +F(t,z(h(t))) � 0. (4.6)

LEMMA 4.1. If these exists an eventually positive function satisfying (4.6), then
equation (4.1) possesses a positive solution.

Proof. Let z(t) be a positive function satisfying (4.6). By Lemma 2.1 there exists
k ∈ {1,3, · · · ,2n−1} such that⎧⎨⎩Ljz(t) > 0, t � t0 for 0 � j � k−1;

(−1) j−kL jz(t) > 0, t � t0 for k � j � 2n−1
(4.7)

for sufficiently large t0 > a . We may assume h(t) � max{a,1} for t � t0 and put
T = min{t0, inf

t�t0
h(t)} . Note that wk = lim

t→∞
Lkz(t) � 0 is finite. Define the set U by

U = {u ∈C[T,∞) : 0 � u(t) � z(t), t � T}, (4.8)
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which is closed convex in C[T,∞) . Suppose that n < k � 2n− 1. Integrating (4.6)
2n− k times on [t,∞) gives(

p(t)|z(n)(t)|αsgnz(n)(t)
)(k−n) � wk +

∫ ∞

t

(s− t)2n−k−1

(2n− k−1)!
F(s,z(h(s)))ds, t � t0,

which integrated further k = (k−n)+n times on [t0,t] yields, for t � t0 ,

z(t) � z(t0)+
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

{
wk

(s− t0)k−n

(k−n)!
+

∫ s

t0

(s− r)k−n−1

(k−n−1)!

×
∫ ∞

r

(σ − r)2n−k−1

(2n− k−1)!
F(σ ,z(h(σ)))dσdr

}] 1
α
ds. (4.9)

We now consider the mapping Φ : X →C[T,∞) defined by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Φu(t) = z(t0)+
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

{
wk

(s− t0)k−n

(k−n)!
+

∫ s

t0

(s− r)k−n−1

(k−n−1)!

×
∫ ∞

r

(σ − r)2n−k−1

(2n− k−1)!
F(σ ,u(h(σ)))dσdr

}] 1
α
ds, t � t0;

Φu(t) = z(t), T � t � t0.

(4.10)

It is a matter of routine computation to verify that (i) Φ(U) ⊂U , (ii) Φ is continuous,
and (iii) Φ(U) is relatively compact. Therefore, Φ has a fixed point u(t) ∈U which
satisfies the integral equation, for t � t0 ,

u(t) = z(t0)+
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{
wk

(s− t0)k−n

(k−n)!
+

∫ s

t0

(s− r)k−n−1

(k−n−1)!

×
∫ ∞

r

(σ − r)2n−k−1

(2n− k−1)!
F(σ ,u(h(σ)))dσdr

}] 1
α
ds. (4.11)

From which it follows that u(t) is a solution of the differential equation (4.1). A similar
arguments applies to the remaining cases of k . In fact, if k = n , which is possible for
odd n , then, integrating (4.6) n times on [t,∞) and then n times on [t0, t] , we have for
t � t0 ,

z(t) � z(t0)+
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{
wn +

∫ ∞

s

(r− s)n−1

(n−1)!
F(r,z(h(r)))dr

}] 1
α
ds, (4.12)

and if 1 � k < n , then integrating (4.6) first 2n− k(= n+(n− k)) times on [t,∞) and
then k times on [t0, t] , we obtain for t � t0 ,

z(t) � z(t0)+
∫ t

t0

(t − s)k−1

(k−1)!

∫ ∞

s

(r− s)n−k−1

(n− k−1)!

×
[

1
p(r)

∫ ∞

r

(σ − r)n−1

(n−1)!
F(σ ,z(h(σ)))dσ

] 1
α
drds. (4.13)
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Applying the same fixed-point argument which has solved (4.11) on the basis of (4.9),
we conclude from (4.12) or (4.13) that there exist a positive solution u(t) � z(t) of the
integral equation for t � t0 (k = n) ,

u(t) = z(t0)+
∫ t

t0

(t− s)n−1

(n−1)!

×
[

1
p(s)

{
wn +

∫ ∞

s

(s− r)n−1

(n−1)!
F(r,u(h(r)))dr

}] 1
α
ds; (4.14)

or for t � t0 (1 � k < n) ,

u(t) = z(t0)+
∫ t

t0

(t− s)k−1

(k−1)!

∫ ∞

s

(r− s)n−k−1

(n− k−1)!

×
[

1
p(r)

∫ ∞

r

(σ − r)n−1

(n−1)!
F(σ ,u(h(σ)))dσ

] 1
α
drds, (4.15)

respectively. It is clear that each of the above u(t) is a positive solution of equation
(4.1). This completes the proof of Lemma 4.1. �

Proof of Theorem 4.1. Suppose that (4.1) has a nonoscillatory solution u(t) which
may be assumed to be positive for all large t . By Lemma 2.1 u(t) is monotone increas-
ing, so that because of (4.4) and (4.5) there exists t0 > a so large that u(h(t)) � u(k(t))
and F(t,u(h(t))) � G(t,u(k(t))) for t � t0 . It follows that u(t) satisfies the differential
inequality (

p(t)|u(n)(t)|αsgnu(n)(t)
)(n) +G(t,u(k(t))) � 0, t � t0, (4.16)

and application of Lemma 4.1 then ensures that the existence of a positive solution of
the differential equation (4.2). This completes the proof. �

Proof of Theorem 4.2. It is sufficient to prove that if (4.1) has a positive solution,
then so does (4.3). Let u(t) be a positive solution of (4.1). By Lemma 2.1 there exists
k ∈ {1,3, · · · ,2n−1} such that

Lju(t) > 0, 0 � j � k−1, (−1) j−kL ju(t) > 0, k � j � 2n−1, (4.17)

for all large t . Let wk denote the k -th asymptotic value of u(t) , i.e. wk = lim
t→∞

Lku(t)�
0, which is finite.

Let n < k � 2n−1. Then, repeated integration of (4.1) gives

u(t) = u(t0)+
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{
wk

(s− t0)k−n

(k−n)!
+

∫ s

t0

(s− r)k−n−1

(k−n−1)!

×
∫ ∞

r

(σ − r)2n−k−1

(2n− k−1)!
F(σ ,u(h(σ)))dσdr

}] 1
α
ds, (4.18)
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for sufficiently large t , say t � t0 . To proceed further we transform the last inner
integral by the change of variables σ = h−1(l(ρ)) . Using the inequalities h−1(l(ρ)) �
ρ and r � l−1(h(r)) , we find that

∫ ∞

r

(σ − r)2n−k−1

(2n− k−1)!
F(σ ,u(h(σ)))dσ

�
∫ ∞

l−1(h(r))

(ρ − r)2n−k−1

(2n− k−1)!
F(h−1(l(ρ)),u(l(ρ)))

l′(ρ)
h′(h−1(l(ρ)))

dρ

�
∫ ∞

r

(ρ − r)2n−k−1

(2n− k−1)!
F(h−1(l(ρ)),u(l(ρ)))

l′(ρ)
h′(h−1(l(ρ)))

dρ . (4.19)

Combining this with (4.18), we obtain for t � t0 ,

u(t) � u(t0)+
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{
wk

(s− t0)k−n

(k−n)!
+

∫ s

t0

(s− r)k−n−1

(k−n−1)!

×
∫ ∞

r

(ρ − r)2n−k−1

(2n− k−1)!
F(h−1(l(ρ)),u(l(ρ)))

l′(ρ)
h′(h−1(l(ρ)))

dρdr

}] 1
α
ds. (4.20)

We may assume that t0 is chosen so large that l(t) � max{a,1} for t � t0 .
Put T = min{t0, inf

t�t0
l(t)} . Define the set Y and the mapping Ψ : Y →C[T,∞) by

Y = {y ∈C[T,∞) : 0 � y(t) � u(t), t � T} (4.21)

and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ψy(t) = u(t0)+
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{
wk

(s− t0)k−n

(k−n)!
+

∫ s

t0

(s− r)k−n−1

(k−n−1)!

×
∫ ∞

r

(ρ − r)2n−k−1

(2n− k−1)!
F(h−1(l(ρ)),u(l(ρ)))

l′(ρ)
h′(h−1(l(ρ)))

dρdr

}] 1
α
ds, t � t0

Ψy(t) = u(t), T � t � t0.
(4.22)

There is no difficulty in showing that Ψ is a continuous self-map on Y such that Ψ(Y )
is relatively compact in C[T,∞) , and hence the Schauder-Tychonoff theorem implies
the existence of y(t) ∈ Y such that y(t) = Ψy(t) for t � T , which provides a positive
solution of equation (4.3) for t � t0 .

The remaining cases where k = n and 1 � k < n can be dealt with in a similar
manner. In fact, it suffices to notice that if k = n , n being odd, then for t � t0 the
repeated integration of (4.1) gives

u(t) = u(t0)+
∫ t

t0

(t − s)n−1

(n−1)!

[
1

p(s)

{
wn +

∫ ∞

s

(r− s)n−1

(n−1)!
F(r,u(h(r)))dr

}] 1
α
ds,
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then, using (4.19) in the above equality, we obtain

u(t) � u(t0)+
∫ t

t0

(t− s)n−1

(n−1)!

[
1

p(s)

{
wn

+
∫ ∞

s

(r− s)n−1

(n−1)!
F(h−1(l(r)),u(l(r)))

l′(r)
h′(h−1(l(r)))

dr

}] 1
α
ds, (4.23)

and that if 1 � k < n , then the repeated integrations of (4.1) give

u(t) = u(t0)+
∫ t

t0

(t− s)k−1

(k−1)!

∫ ∞

s

(r− s)n−k−1

(n− k−1)!

×
[

1
p(r)

{∫ ∞

r

(ρ − r)n−1

(n−1)!
F(σ ,u(h(σ)))dσ

}] 1
α
drds, t � t0.

then, using (4.19) in the above equality, we get for t � t0 that

u(t) � u(t0)+
∫ t

t0

(t− s)k−1

(k−1)!

∫ ∞

s

(r− s)n−k−1

(n− k−1)!

×
[

1
p(r)

{∫ ∞

r

(ρ − r)n−1

(n−1)!
F(h−1(l(ρ)),u(l(ρ)))

l′(ρ)
h′(h−1(l(ρ)))

dρ
}] 1

α
drds. (4.24)

As is easily seen the fixed point argument which was used for the case n < k � 2n−1
can also be applied to the case where k = n (or 1 � k < n ) to establish the existence
of a positive solution y(t) for equation (4.3) on the basis of the inequality (4.23) (or
(4.24)). The details may be omitted. This completes the proof of Theorem 4.2. �

5. Oscillation theorems

This section is concerned with oscillation criteria for equation (Ag ), that is, con-
ditions (preferably sharp) under which all of its solutions are oscillatory. With respect
to the nonlinearity of (Ag ) we require that (Ag ) is either sub-half-linear (α > β ) or
super-half-linear (α < β ). In establishing the desired criteria a central role is played
by the comparison principles of Section 4 combined with the known result (see the two
Propositions below) on the oscillation of ordinary differential equations of the form
(A).

PROPOSITION 5.1. Let α � 1 > β . All solutions of equation (A) are oscillatory
if and only if ∫ ∞

a
q(t)ϕ2n−1(t)β dt = ∞. (5.1)
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PROPOSITION 5.2. Let α � 1 < β . All solutions of equation (A) are oscillatory
if and only if either ∫ ∞

a
tn−1q(t)dt = ∞ (5.2)

or else ∫ ∞

a
tn−1q(t)dt < ∞ (5.3)

and ∫ ∞

a
tn−1

[
1

p(t)

∫ ∞

t
(s− t)n−1q(s)ds

] 1
α
dt = ∞. (5.4)

For the proof of these Propositions see Tanigawa [32]. We first present sufficient
conditions for oscillation of equation (Ag ).

THEOREM 5.1. Let α � 1 > β . Suppose that there exists a continuously differ-
entiable function h : [a,∞) → (0,∞) such that h′(t) > 0 , lim

t→∞
h(t) = ∞ , and

h(t) � min{t,g(t)} for all large t. (5.5)

All solutions of equation (Ag ) are oscillatory if∫ ∞

b
q(t)ϕ2n−1(h(t))β dt = ∞, (5.6)

where b � a is such that h(t) � a for t � b.

Proof. Consider the two differential equations(
p(t)|z(n)(t)|αsgnz(n)(t)

)(n) +q(t)|z(h(t))|β sgnz(h(t)) = 0, (5.7)

and (
p(t)|y(n)(t)|αsgny(n)(t)

)(n) +
q(h−1(t))
h′(h−1(t))

|y(t)|β sgny(t) = 0. (5.8)

Since (5.6) implies

∫ ∞

h(b)

q(h−1(t))
h′(h−1(t))

ϕ2n−1(t)β dt =
∫ ∞

b
q(t)ϕ2n−1(h(t))β dt = ∞,

from Proposition 5.1 it follows that equation (5.8) is oscillatory. We now compare (5.8)
with (5.7), concluding from Theorem 4.2 that equation (5.7) is oscillatory. Finally,
comparison of (5.7) with equation (Ag ) on the basis of Theorem 4.1 shows that, because
of the assumed inequality g(t) � h(t) , equation (Ag ) is oscillatory, which means that
all of its solutions are oscillatory. This completes the proof. �
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THEOREM 5.2. Let α � 1 < β . Assume that there exists a continuously differen-
tiable function h : [a,∞) → (0,∞) such that h′(t) > 0 , lim

t→∞
h(t) = ∞ , and (5.5) holds.

If ∫ ∞

b
(h(t))n−1q(t)dt = ∞ (5.9)

or∫ ∞

b
(h(t))n−1q(t)dt < ∞,

∫ ∞

b
tn−1

[
1

p(t)

∫ ∞

h−1(t)
(h(s)−t)n−1q(s)ds

] 1
α
dt = ∞, (5.10)

then all solutions of (Ag ) are oscillatory. Here b � a is such that h(t) � a for t � b.

Proof. We also consider the two differential equations (5.7) and (5.8) as handled
in the proof of Theorem 5.1. Since, by conditions (5.9) and (5.10),∫ ∞

b
tn−1 q(h−1(t))

h′(h−1(t))
dt =

∫ ∞

h(b)
(h(t))n−1q(t)dt = ∞

and∫ ∞

b
tn−1

[
1

p(t)

∫ ∞

t
(s− t)n−1 q(h−1(s))

h′(h−1(s))
ds

] 1
α
dt

=
∫ ∞

b
tn−1

[
1

p(t)

∫ ∞

h−1(t)
(h(s)− t)n−1q(s)ds

] 1
α
dt = ∞,

we find that equation (5.8) is oscillatory by Proposition 5.2. Moreover, by the com-
parison principle (Theorem 4.2), (5.7) is also oscillatory. Here, applying another com-
parison principle (Theorem 4.1) to compare (5.7) with (Ag ), we conclude that (Ag ) is
oscillatory. This completes the proof. �

It remains to consider the possibility of establishing necessary and sufficient con-
ditions for oscillation of equation (Ag ) which is either super-half-linear or sub-half-
linear. This seems to be a difficult task for equation (Ag ) with general positive continu-
ous function p(t) satisfying (1.1), and so we focus our attention on the case where p(t)
is a regularly varying function in the sense of Karamata [7] and show that for such a
restricted class of equations of the form (Ag ) sharp oscillation criteria can be obtained
for both super-half-linear and sub-half-linear cases.

DEFINITION 5.1. A measurable function f : (0,∞) → (0,∞) is said to be regu-
larly varying of index ρ ∈ R if

lim
t→∞

f (λ t)
f (t)

= λ ρ for any λ > 0, (5.11)

or equivalently, if f (t) is expressed in the form

f (t) = c(t)exp

{∫ t

t0

δ (s)
s

ds

}
, t � t0,
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for some t0 > 0 and some measurable functions c(t) and δ (t) such that

lim
t→∞

c(t) = c ∈ (0,∞) and lim
t→∞

δ (t) = ρ .

The totality of regularly varying functions of index ρ is denoted by RV(ρ) . If
in particular ρ = 0, we use the notation SV for RV(0) , referring to a member of SV
as a slowly varying function. If f (t) ∈RV(ρ) , then f (t) = tρg(t) for some g(t) ∈SV,
and so the class SV of slowly varying functions is of fundamental importance in the
theory of regular variation. Typical examples of slowly varying functions are: positive
functions tending to positive constants as t → ∞ ,

N

∏
i=1

(logi t)
mi (mi ∈ R), and exp

{ N

∏
i=1

(logi t)
ni

}
(ni ∈ (0,1)),

where logi t denotes the i-th iteration of the logarithm.
For an almost complete exposition of theory and applications of regular variation

we refer to Bingham et al. [2]. A comprehensive survey of results up to 2000 on
asymptotic analysis of second order linear and nonlinear ordinary differential equations
can be found in Marić [23].

We begin with a necessary and sufficient condition for oscillation of the sub-half-
linear equation (Ag ).

THEOREM 5.3. Let α � 1 > β . Assume that p(t) is a regularly varying function
of index ρ satisfying (1.1) and that

limsup
t→∞

g(t)
t

< ∞. (5.12)

Then, all solutions of (Ag ) are oscillatory if and only if∫ ∞

b
q(t)ϕ2n−1(g(t))β dt = ∞, (5.13)

where b � a is such that g(t) � a for t � b.

Proof. (The “only if”part) If (5.13) does not hold, then by Theorem 3.1 equation
(Ag ) has a positive solution of class P(I2n−1) . Note that the regularity of p(t) is
unnecessary here.

(The “if”part) Suppose that (5.13) holds. Note that since p(t) satisfies (1.1) its
regularity index ρ must not greater than α . Let k ∈ (0,1) be any fixed constant.
Choose b > a so that kb � a . Since p(t) satisfies lim

t→∞
p(kt)/p(t) = kρ (cf. (5.11)),

there exists a positive constant l such that

l p(kt) � p(t), t � b. (5.14)
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Using (5.14) we compute:

ϕ2n−1(kt;kb) =
∫ kt

kb
(kt − s)n−1

[
(s− kb)n−1

p(s)

] 1
α
ds

= kn+ 1
α (n−1)

∫ t

b
(t− s)n−1

[
(s−b)n−1

p(ks)

] 1
α
ds

� kn+ 1
α (n−1)l

1
α

∫ t

b
(t− s)n−1

[
(s−b)n−1

p(s)

] 1
α
ds

= kn+ 1
α (n−1)l

1
α ϕ2n−1(t;b), t � b,

from which it follows that for any k ∈ (0,1) ,∫ ∞
q(t)ϕ2n−1(g(t))β dt = ∞ =⇒

∫ ∞
q(t)ϕ2n−1(kg(t))β dt = ∞. (5.15)

By (5.12) there exists a constant c > 1 such that

g(t) � ct for all large t. (5.16)

Now consider the ordinary differential equation

(
p(t)|y(n)(t)|αsgny(n)(t)

)(n) +
cq(g−1(ct))
g′(g−1(ct))

|y(t)|β sgny(t) = 0. (5.17)

Since (5.15) (with k = 1/c) implies∫ ∞
(ϕ2n−1(t))β cq(g−1(ct))

g′(g−1(ct))
dt =

∫ ∞
q(t)

(
ϕ2n−1

(
g(t)
c

))β
dt = ∞, (5.18)

equation (5.17) is oscillatory by Proposition 5.1. The comparison theorem (Theorem
4.1) then implies the oscillation of

(
p(t)|u(n)(t)|αsgnu(n)(t)

)(n) +
cq(g−1(ct))
g′(g−1(ct))

|u(ct)|β sgnu(ct) = 0 (5.19)

which, compared with (Ag ) via another comparison principle (Theorem 4.2), guaran-
tees that (Ag ) is oscillatory. This completes the proof. �

The following theorem provides a necessary and sufficient condition for the super-
half-linear equation (Ag ) to be oscillatory.

THEOREM 5.4. Let α � 1 < β . Assume that p(t) is a regularly varying function
of index ρ and

liminf
t→∞

g(t)
t

> 0. (5.20)

Then, all solutions of equation (Ag ) are oscillatory if and only if either (5.2) holds or
else (5.3) and (5.4) hold.
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Proof. (The “only if”part) Suppose that (Ag ) is oscillatory. If (5.4) would fail to
hold, that is, ∫ ∞

a
tn−1

[
1

p(t)

∫ ∞

t
(s− t)n−1q(s)ds

] 1
α
dt < ∞,

then by Theorem 3.1 equation (Ag ) would possess a positive solution of class P(I0) , a
contradiction. Note that the regularity of p(t) is not needed here.

(The “if”part) Because of (5.20) there exists a positive constant c < 1 such that

g(t) � ct for all sufficiently large t. (5.21)

With this c form the ordinary differential equation

(
p(t)|z(n)(t)|αsgnz(n)(t)

)(n) +
1
c
q

(
t
c

)
|z(t)|β sgnz(t) = 0. (5.22)

Choose b � a so that g(t) � a for t � b . Since p(t) is regularly varying, there exists
a constant L > 0 such that

p(t) � Lp

(
t
c

)
, t � b. (5.23)

We notice that if (5.2) holds, then∫ ∞

a
tn−1 1

c
q

(
t
c

)
dt = cn−1

∫ ∞

a
c

tn−1q(t)dt = ∞ (5.24)

and if (5.3) and (5.4) hold, then using (5.23), we easily see that

∫ t

b
sn−1

[
1

p(s)

∫ ∞

s
(r− s)n−1 1

c
q

(
r
c

)
dr

] 1
α
ds

=
∫ t

b
sn−1

[
1

p(s)

∫ ∞

s
c

(cr− s)n−1q(r)dr

] 1
α
ds

= c(n−1)
(
1+ 1

α

) ∫ t

b

(
s
c

)n−1[ 1
p(s)

∫ ∞

s
c

(
r− s

c

)n−1

q(r)dr

] 1
α
ds

� c(n−1)
(
1+ 1

α

)
L

1
α

∫ t

b

(
s
c

)n−1[ 1

p
(

s
c

) ∫ ∞

s
c

(
r− s

c

)n−1

q(r)dr

] 1
α
ds → ∞, (5.25)

as t → ∞ . Therefore, equation (5.22) is oscillatory by Proposition 5.2. With the help of
Theorem 4.2 the oscillation of (5.22) implies that of the equation(

p(t)|u(n)(t)|αsgnu(n)(t)
)(n) +q(t)|u(ct)|β sgnu(ct) = 0. (5.26)
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We now apply Theorem 4.1 to compare (5.26) with our equation (Ag ). Because of
(5.21) this comparison is possible and leads us to the conclusion that (Ag ) is oscillatory.
This completes the proof. �

Finally we are interested in the situation in which the oscillation of the functional
differential equation (Ag ) is equivalent to that of the companion ordinary differential
equation (A) in the sense that the oscillation of (A) implies that of (Ag ) and vice versa.
A partial answer to this question will be given below.

THEOREM 5.5. Let either α � 1 > β or α � 1 < β . Suppose that p(t) is a
regularly varying function satisfying (1.1). Suppose moreover that g(t) satisfies (5.12)
and (5.20), that is,

0 < liminf
t→∞

g(t)
t

, limsup
t→∞

g(t)
t

< ∞.

Then, the oscillation of equation (Ag ) is equivalent to that of equation (A).

Proof. (The case where α � 1 > β .) We claim that the following equivalence
holds under the assumption that p(t) is regularly varying:∫ ∞

q(t)ϕ2n−1(t)dt = ∞ ⇐⇒
∫ ∞

q(t)ϕ2n−1(ct)dt = ∞ for all c > 0 . (5.27)

In fact, let b be such that cb � a . From the regularity of p(t) for any c > 0 there are
two positive constants l and L such that

l p(ct) � p(t) � Lp(ct), t � b. (5.28)

It is easy to see that

ϕ2n−1(ct;cb) =
∫ ct

cb
(ct− s)n−1

[
(s− cb)n−1

p(s)

] 1
α
ds

= cn+ 1
α (n−1)

∫ t

b
(t− s)n−1

[
(s−b)n−1

p(cs)

] 1
α
ds

� cn+ 1
α (n−1)l

1
α

∫ t

b
(t− s)n−1

[
(s−b)n−1

p(s)

] 1
α
ds

= cn+ 1
α (n−1)l

1
α ϕ2n−1(t;b), t � b,

where the left-hand side of (5.28) has been used. Likewise, using the right-hand side of
(5.28), we have

ϕ2n−1(ct;cb) � cn+ 1
α (n−1)L

1
α ϕ2n−1(t;b), t � b.

It is clear that (5.27) is an immediate consequence of the above observation.
By hypothesis there exist positive constants c1 and c2 such that

c1t � g(t) � c2t for t � t0. (5.29)
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We may assume that c1 < 1 and c2 > 1.
Suppose now that equation (A) is oscillatory. Since (5.1) holds by Proposition 5.1,

we see from (5.27) that ∫ ∞
q(t)ϕ2n−1(c1t)β dt = ∞,

which implies in view of Theorem 5.3 that all solutions of the equation(
p(t)|x(n)(t)|αsgnx(n)(t)

)(n) +q(t)|x(c1t)|β sgnx(c1t) = 0, (5.30)

are oscillatory. Since g(t) � c1t for large t , the oscillation of (5.30) ensures that of
equation (Ag ) by Theorem 4.1.

Conversely suppose that equation (Ag ) is oscillatory. Then, (5.13) holds by The-
orem 5.3. Since g(t) � c2t for large t , this implies∫ ∞

q(t)ϕ2n−1(c2t)β dt = ∞, (5.31)

from which (5.1) follows immediately. (cf. (5.27)) This means that equation (A) is
oscillatory. This completes the proof.

(The case where α � 1 < β .) We first remark that if p(t) is regularly varying,
then the integral ∫ ∞

tn−1
[

1
p(t)

∫ ∞

t
c

(cs− t)n−1q(s)ds

] 1
α
dt (5.32)

either converge for all c > 0 or diverges for all c > 0. In fact, let any c > 0 be given
and choose b so that cb � a . Noting that

∫ ∞

t
c

(cs− t)n−1q(s)ds = cn−1
∫ ∞

t
c

(
s− t

c

)n−1

q(s)ds,

and using the inequality l p(t) � p(t/c) � Lp(t) , t � b , l > 0 and L > 0 being con-
stants, which is implied by the regularity of p(t) , we see that there exist positive con-
stants m and M such that

m

p
(

t
c

) ∫ ∞

t
c

(
s− t

c

)n−1

q(s)ds � 1
p(t)

∫ ∞

t
c

(cs− t)n−1q(s)ds

� M

p
(

t
c

) ∫ ∞

t
c

(
s− t

c

)n−1

q(s)ds

for t � b . This shows that for any c > 0 the convergence or divergence of (5.32) is
identical with that of the integral

∫ ∞
tn−1

[
1

p(t)

∫ ∞

t
(s− t)n−1q(s)ds

] 1
α
dt.



EVEN ORDER NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS 367

Suppose now that equation (A) is oscillatory. By Proposition 5.2 we may assume
that (5.4) holds without loss of generality. Hence from the above remark (5.32) holds
with c = c1 < 1, which implies by Theorem 5.2 (with h(t) = c1t ) that the equation(

p(t)|x(n)(t)|αsgnx(n)(t)
)(n) +q(t)|x(c1t)|β sgnx(c1t) = 0

is oscillatory. Since c1t < g(t) , Theorem 4.1 ensures that equation (Ag ) is oscillatory.
Conversely, suppose that equation (Ag ) is oscillatory. Since g(t) � c2t , the equa-

tion (
p(t)|x(n)(t)|αsgnx(n)(t)

)(n) +q(t)|x(c2t)|β sgnx(c2t) = 0

is necessarily oscillatory. We may assume that
∫ ∞
a tn−1q(t)dt < ∞ , in this case (5.1)

must hold by Theorem 5.4. This implies the oscillation of equation (A) (cf. Proposition
5.2.) This completes the proof. �

6. Example

We present an example which illustrate our main results developed in the previous
sections. Consider the equation

(t−γ |x(n)(t)|αsgnx(n)(t))(n) + t−δ |x(tλ )|β sgnx(tλ ) = 0, t � 1, (6.1)

where γ , δ and λ are constants such that γ > α and λ > 0. We let γ and λ be
fixed and regard δ as a varying parameter. It is clear that the regularly varying function
p(t) = t−γ with γ > α satisfies condition (1.1). The particular solutions ϕ j(t) , j ∈
{0,1, · · · ,2n−1} , of the ordinary differential equation

(t−γ |x(n)(t)|αsgnx(n)(t))(n) + t−δ |x(t)|β sgnx(t) = 0 (6.2)

defined by (1.2) satisfy

ϕ j(t) ∼ t j, j ∈ {0,1, · · · ,n}, ϕ j(t) ∼ tn+ γ+ j−n
α , j ∈ {n+1,n+2, · · ·,2n−1}, (6.3)

where the symbol ∼ denotes the asymptotic equivalence

f (t) ∼ g(t), t → ∞ ⇐⇒ lim
t→∞

g(t)
f (t)

= 1.

A simple calculation shows that condition (3.1) holds if and only if

δ > n+ α(n− j)+ γ + β λ j, j ∈ {0,1, · · · ,n}, (6.4)

and that (3.2) holds if and only if

δ > 2n− j +
(

n+
j−n+ γ

α

)
β λ , j ∈ {n+1,n+2, · · ·,2n−1}. (6.5)
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Thus, from Theorem 3.1 applied to equation (6.1) it follows that if δ satisfies (6.4) or
(6.5) then (6.1) posseses a positive solution belonging to class P(I j) , j ∈ {0,1, · · · ,2n−
1} .

Let k be an integer in {1,3, · · · ,2n− 1} . In order to apply Theorem 3.2 to (6.1)
we need to express the conditions (3.27)-(3.32) as the relations between k and the
parameters defining equation (6.1). This can be done without difficulty as follows:

(3.27) ⇐⇒ δ > n+ α(n− k)+ γ + β λk for 0 < k < n;

(3.28) ⇐⇒ δ � n+ α(n− k)+ γ + β λk+ α −β λ for 0 < k < n;

(3.29) ⇐⇒ δ > n+ β λn = (1+ β λ )n for k = n;

(3.30) ⇐⇒ δ � (1+ β λ )n+ γ + α −β λ for k = n;

(3.31) ⇐⇒ δ > 2n− k+ β λ
(

n+
k−n+ γ

α

)
for n < k � 2n−1;

(3.32) ⇐⇒ δ � 2n− k+ β λ
(

n+
k−n+ γ

α

)
+1− β λ

α
for n < k � 2n−1.

From Theorem 3.2 we then conclude that if {(3.27), (3.28)} , {(3.29), (3.30)} or
{(3.31),(3.32)} holds, then (6.1) possesses a positive solution of class P(IIk) for the
corresponding value of odd k .

Next, we refer to oscillation criteria for (6.1). A simple calculation shows that

(5.1) ⇐⇒ δ � 1+ β
(

n+
n−1+ γ

α

)
;

(5.2) ⇐⇒ δ � n;

(5.3) ⇐⇒ δ > n;

(5.4) ⇐⇒ δ � (α +1)n+ γ;

(5.9) with h(t) = tλ ⇐⇒ δ � λ (n−1)+1;

(5.10) with h(t) = tλ ⇐⇒ λ (n−1)+1 < δ � λ (α +1)n+ γλ ;

(5.13) ⇐⇒ δ � 1+ β λ
(

n+
n−1+ γ

α

)
.

Assume that α � 1 > β . If 0 < λ � 1, then from Theorem 5.3 we see that all
solutions of (6.1) are oscillatory if and only if

δ � 1+ β λ
(

n+
n−1+ γ

α

)
.



EVEN ORDER NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS 369

If λ > 1, then from Theorem 5.1 we find that all solutions of (6.1) are oscillatory if

δ � 1+ β
(

n+
n−1+ γ

α

)
.

Assume that α � 1 < β . In the case where 0 < λ � 1, it follows from Theorem
5.2 that all solution (6.1) are oscillatory if either δ � λ (n−1)+1 holds or else λ (n−
1)+ 1 < δ � λ (α + 1)n+ γλ hold. In the case where λ > 1, we see from Theorems
5.2 and 5.4 that all solutions of (6.1) are oscillatory if and only if either δ � n holds or
else n < δ � (α +1)n+ γ hold.
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