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INTERVAL OSCILLATION CRITERIA FOR SECOND
ORDER MIXED NONLINEAR FORCED IMPULSIVE
DIFFERENTIAL EQUATION WITH DAMPING TERM

S. PANDIAN AND G. PURUSHOTHAMAN

(Communicated by Jurang Yan)

Abstract. In this paper, interval oscillation criteria are established for second order forced im-
pulsive differential equations with mixed nonlinearities of the form

(r(t)®a (¥ (1)) + p(t) Pa (¥ (1)) +q +zf11 )Dp, (x(1)) =e(t), t# 1,
Wu) =ax(n), ¥(ut)=bhx (), k:1:2:----

The results obtained in this paper extend some of the existing results and are illustrated by ex-
amples.

1. Introduction

In recent years the theory of impulsive differential equations emerging as an im-
portant area of research, since such equations have applications in the control theory,
physics, biology, population dynamics, economics, etc. For further applications and
questions concerning existence and uniqueness of solutions of impulsive differential
equation, see for example [, 5]. The oscillation of solutions of second order ordinary
differential equations are systematically studied by several authors. In [6, 12, 13, 14],
the authors studied the oscillation of solutions of second order ordinary differential
equations with mixed nonlinearities. Due to difficulties caused by impulsive perturba-
tions there is a less attention regarding the oscillation problem for impulsive differen-
tial equation [2, 7, 8, 9, 10, 15]. Motivated by the work of [2, 9], we use arithmetic-
geometric mean inequality, Riccati transformation to obtain the interval oscillation cri-
teria for second-order forced impulsive differential equation with mixed nonlineari-
ties.Our results are extension of some known results. Examples are also given to illus-
trate the results.

Consider the second-order impulsive differential equation,

(1)@ (¥ (2))) + p(£) e (¥ (1)) + q (1) Do (x(2))
+ X1 4i(1) P, (x(2)) = e(t), t# T, (1.1)
x(u ) =aqx(n), Y (uh)=b (%), k=1,2,...,
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where @,(s) = |s|*"'s , k€N, t > 19, {1} is the impulse moments sequence with
0<n=1<T1 <...<Tk<...k1im’l.'k=°°7 and

x(%) =x(t,) = lim x(¢), x(g*)= lim x(z),

-1 0 -0
Vi +h) —x(w) . x(m+h) —x(mh)
/ _ - x(Tk ") =1
e e

Throughout this paper, we always assume the following conditions hold:
(Al) re Cl([to’oo),(o,oo)), P.4q,4i,¢ € C([t07°°)’R)7 i=12...n;
(A2) B1>...>Bn>0a> By > ... > B, >0 are constants;
(A3) by 2 a;. > 0, k € N are constants.

Let J C R be an interval and define PC(J,R) = {x:J — R : x(¢) is piecewise-left-
continuous and has discontinuity of first kind at 7;s}.

By a solution of (1.1), we mean a function x € PC([fy,o°),R) such that x' €
PC([tg,),R) and x(t) satisfies (1.1) for 7 > 7. A nontrivial solution is called oscil-
latory if it is neither eventually positive nor eventually negative; otherwise, it is called
nonoscillatory. An equation is called oscillatory if all its solutions are oscillatory.

2. Main results

We begin with the following notation. Let k(s) = max{i:7p < 7; < s}, let r; =
max{r(r) : 1 € [cj,d;]} for ¢c; <d; and

F(cj,dj) = {u e C([cj,dj|,R)) s ult) £ 0,u(cj) = u(d;) =0}, j=1,2.

For two constants ¢,d ¢ {7} with ¢ <d and a function ¢ € C([c,d],R), we define an
operator Q : C([c,d],R) — R by

4 0, for k(¢) = k(d),
Qo] = kd)

¢(Tk(c‘)+l )9(6’) + 2i=k(c)+2 ¢(Tl‘)8(Ti>7 for k(C) < k(d)a

where
_ (re11)* — (ke 11)* (bi)* — (a;)®

(ar(ey+1)* (T(e)+1 — €)% (ai)* (T — 7i-1)"
Following Kong [4] and Philos [1 1], we introduce a class of functions: Let D = {(z,s) :
to < s<t}, H,H, € C'(D,R). A pair of functions (H;,H,) is said to belong to a
function class 2, if Hy(t,t) = Hy(t,t) =0, Hy(t,s) > 0, Hy(t,s) > 0 for t > s and
there exist A1,y € Lioc(D,R) such that

e(n) =

aI_Il (I,S)
ot

dH;(t,s)

Zhl(l7S)H1(l7S)7 Js

=h2(t7S)H2(Z,S). 2.1)

The following preparatory lemmas will be useful to prove our theorems.
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LEMMA 2.1. Let {B;}, i=1,2,...,n, be the n-tuple satisfying By > ... > B >
o> By > ... > By > 0. Then there exist an n-tuple (N1,M2,...,My) satisfying

i Bini = o, (2.2)
i=1
which also satisfies either
i”i<1: 0<n <1, (2.3)
or -
inizl, O<ni<l. (2.4)
i=1

The proof of Lemma 2.1 can be obtained easily from Lemma 1 of [14] by taking o; =

ﬁ,-/a.

REMARK 2.1. For a given set of exponents {f;} satisfying B; > ... > B, > a >
Bmt+1 > ... > B, >0, Lemma2.1 ensures the existence of an n-tuple (1n1,M2,...,Mn)
such that either (2.2) and (2.3) hold or (2.2) and (2.4) hold. When n =2 and 8; > o >
B> > 0, in the first case, we have

_o-hi-¢)  _Bl-C)-«a
B—B ¢ Bi—B

where { can be any positive number satisfying 0 < { < (f; — o¢)/B1 . This will ensure
that 0 < 1;,m2 < 1 and conditions (2.2) and (2.3) are satisfied. In the second case, we
simply solve (2.2) and (2.4) and obtain

_a—p B«
m_ﬂl—ﬁz’ nz_ﬁl—ﬁz'

The Lemma below can be found in [3].

m

LEMMA 2.2. Let A,B € R and y > 0 be a constant, then
ADy(A) + YBDy(B) > (y+ 1)Ady(B), (2.5)

where inequality holds if and only if A = B.

THEOREM 2.1. Suppose that for any T >0 , there exist cj,d; ¢ {t}, j=1,2
such that ¢y < d| < ¢y <dp, and

‘I(I)afb‘(t)>0; ZE[Cl,dl}U[CQ,dQ},i:1,2...,n;

. 2.6
(=1)le(r) <0, t€lcjdj],j=1,2. =0

Let {n;}, i=1,2,...,n, be an n tuple satisfying (2.2) and (2.3). If there exist u €
F(c;d;) and p(t) € C'([c1,d1])U[c2,da], (0,0)) such that
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dj
/ p(®) [Q(I)Iu(m“*l
r ) , .

d.
> rMQ [lu(@)[ 1], @D
for j=1,2, where M; is maximum value of p(t) in [cj,d;] and
n n
(1) = q(t) +mo~le)|™ [Tn; " (@:it)™, mo =1~ m, (2.8)
i=1 i=1
then (1.1) is oscillatory.

Proof. Let us suppose that x(¢) is a nonoscillatory solution of (1.1). Without loss
of generality, we may assume that x(¢) > 0 for 7 € [cy,d]. Define

r(t) e (x' (1))

W(Z) = p(t) CDa(x(t)) A [Chdl}' (2.9)
Then for 7 € [c],d;] and 7 # 74, we have
i (P(t)  p)
W(t) = (p@) - ﬁ)w(”
" le(?)]
#p0)| =40~ S 0) 5 x0) ~ 510

—— % w@F. @10

(p(1)r(t))=

Recall the arithmetic-geometric mean inequality,

n n
S nwvi=[vF, vizo.
i=0 i=0

Take

vo =15 ' gldly and vi =1, gi(0)@p o (x(1), i=1,2,..n

and applying (2.2) and (2.3), we get

: (1) I
_;qi(t)qbﬁi,a(x(t))— B0 (1)) < —1o "e()|" l.l:Ilni T (gi(e))™. (2.11)
Now, equation (2.10) becomes
< (PO POy e e
(< ( 0 rm) (0 =P00) =~ s I (2.12)
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where

0(6) = 4(t) + 0™ e(r) T [ ™ (1))
i=1

Fort =1, k=1,2,..., from (2.9), we have

w(n™) = yw(rk). (2.13)
ako‘
If k(c1) < k(d,),then there are all impulsive moments in [c1,d1]; Te(e )15 Ti(c))+2>
-» Ti(qy) - Multiplying both sides of (2.12) by lu(t)|*+!, where u(t) € F(cy,d;) and
integrating over [cy,d],then using integration by parts and the fact that u(c,) = u(d,),
we obtain

k(d1)
[ pewlunta- 3 u(®)] () = w(w)]
i=k(cy)+
< [y [y 1) Do (u(t))id (£)w
( / /TW / [0+ ) (ule))ud (i)
P/(’)_M w1 (s — o w2 ()4 +!
(5 e (pwm)y ()] u(e) |+ ar
< Tk(c1)+1+ Tk(rl)+2+“.+ dy ) Dy ()il
(/cl /%1)+1 Tkw)”(oc ) Do, (u(t))ud' (1)
p'(t) plt) w1 ()| — o WO 5 () |2+
(5 e o1 o) T ) Jar. @14
Use Lemma 2.2 with
Y=— and A= quT \u|“\v1/|7
(pr)at
:<(a+1)(i€)rlu|a(a+1>>m( +1)(Da(u)ul+<% f)'”‘aH ’

we have

!/
(o D)@y ()l + (2= B a1l = o] & !
pr (pr)*

! o+l
< ~(a+1) (e
< (o)~ (@ + 1 +(p ")l

)

where dependent variable t suppressed for clarity. By (2.13) and (2.14), we have

dy k(dl ) b o
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o+1

< (a1 [ o] et i) + (20 - 2D jugo)

It follows that

/Cdl p(r) [Q(t)\u(t)‘aﬂ —(o+ 1)—(a+1)r(t)

N
™M

(@) [ (). @.15)

i=k(cy)+1
On the other hand, for 7 € (c1, Ty(¢,)+1]» from (1.1), it is clear that

n

(r()®a (¥ (1)) + P () ol (1)) = e(t) — (1) Pur(x(1)) — 2. 4i(t) P, (x(1)) <0

i.e.
(@0 (X (1))] + <r (t)rz;)p(t)>¢a(x’(t)) <0
which implies that
@u(v)exp ([ HOLEI )

is non-increasing on (c1, (¢, )41] - So forany ¢ € (c1, (¢, )41 we have x(t) —x(c1) =
X (&)(t—c1),& € (c1,t), which implies from x(c;) > 0 that x(z) > x'(§)(t —c1),& €
(c1,1). According to stipulation of ¢, we have

(x(1)* > (/(6))*(r —e) = W () (W (E) (T —en)”. (2.16)

Since @y (x'(1))exp (7, rls)t 2(_Y) pls )ds) is non-increasing, then

R e ([T )

> ()% ’()exp([f%ds), 2.17)

where & € (cy,t). By (2.16) and (2.17), we obtain
~1 t 1 (s)+p(s)

¥ ()11 (yexp ( Ji, “pas)
exp (fq T”ds)

> ¥ (1) (1)t — 1)

(x()* >
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for some & € (c1,t). Thatis, @y (x(1)) = Py (X' (1))t — 1) It follows

P((1) _ 1

Po,(x(1)) (1 —c1)*

Letting t — Tk7(q) from (2.9) we have

+1°

M(T(er)+1) Lo (¥ (Te(ey)+1))

W(Tk(q)+1) = P(Tk(q)+1)

‘Doc(x(fk(q)ﬂ))
M
L (2.18)
(Th(er)+1 —€1)
Similarly we can prove that on (7;_1,7;),
riM .
V< — T fori—k 2, k(dy). 2.19
w(T) G—g e ord (c1)+ (d1) (2.19)

Using (2.18), (2.19) and (A3), we obtain
bi* —ai” a+l
S (T @)

bl(cxc 1 al(cxc 1
= ( ( 1)+a Ut >|u qu)+1)| (Tk(q)ﬂ)
(dy)

ak(cl)Jr
k(d; bi® — a;*
+ 3 (Pl e
i=k(cy)+ !
b% a
k(cy)+1 k(c1)+1> (T ol riMy
( a/?(q)ﬂ I Hev +1)| (/"-k(cl)Jrl c1)®
k(dy) Ry M
+ 3 (G e
i=k(cy)+2 ai (T o Tl_l)
= r M Q! [u(r)| %]

Thus, from (2.15) we have

dy
[ e
r(t)

RCES

(o4 1)id (1) + (p/(t) - M) Iu(t)lﬂaﬂ]df
<M QA [Ju(r)| ],

which contradicts (2.7).
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If k(c;) = k(d;) then Qélll [|u()|**'] = 0 and there is no impulsive moments in
[c1,d,]. Similar to the proof of (2.15), we obtain

[ e

—ﬁ (o 1 (1) + (

p(t)  r(t)

It is again a contradiction with (2.7). This completes the proof when x(z) is positive.
The proof when x(7) is eventually negative is analogous by repeating a similar argument
on the interval [cp,d5]. O

AONONW

o+1
}dt <0.

The next theorem is for the case e(¢) = 0.

THEOREM 2.2. Suppose that for any T > 0 , there exist c¢i,d; ¢ {}, such that
c1 <dy, and q(t),qi(t) 20, t € [c1,d,], i=1,2...,n. Let {n;}, i=1,2,...,n, be an
n tuple satisfying (2.2) and (2.3). If there exist u € F(c1,d;) and p(t) € C'([c1,d,],
(0,00)) such that

/cldlp(’) [é(f)lu(t)wﬂ

r(t) / p'(t) _p() ot
~ o ne | @ D@+ (p(t) - W)m(z)w ]dl

> M QO |u() "], (2.20)

where My is maximum value of p(t) in [c1,d,] and
n —_1N:
=q@)+[In " (@)™, (2:21)
then (1.1) with e(t) = 0 is oscillatory.

Proof. The proof of the above theorem is immediate by putting e(r) =0 and 19 =
0 in the proof of Theorem 2.1. O

THEOREM 2.3. Suppose that for any T >0 , there exist c¢j,d;,0; ¢ {t}, j=1,2
suchthat ¢} < 01 <dy < ¢y < & <dp, and (2.6) holds. Let {n;}, i=1,2,...,n, be an
n tuple satisfying (2.2) and (2.3). If there exist (Hy,Hy) € 5 and p(t) € C'([c1,d\|U
[c2,d2],(0,00)) such that

r(t)
(o4 1)t

# [ " H (e )p () [Q(z) mteen+(

L (t)
+ m/@ Hy(dj,1)p (1) [Q(’) Tl nEt
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4 a+1
x’hz(dj,z)+(’;((t’)>—%> +}dt>A(H1,H2;cj,d,»), (2.22)
where
A(Hl,Hz;cj7dj):rJ%A/IjQ(S’f[Hl(.,cj)}—i— riM; Q [Hz(d ), (2.23)

H1(6jacj> “ H2(dj76 )

0(1) =q(t) +mo le)|™ [Tn; ™(q:(e)™ and mo=1-3 m;,
i=1 i=1

then (1.1) is oscillatory.

Proof. Without loss of generality, we suppose that the solution x(7) of (1.1) is
eventually positive. Proceed as in the proof of Theorem 2.1,we get (2.12) and (2.13).
Notice that whether there are or not impulsive moments in [c1, 6] and [;,d;], we must
consider the following 4 cases, namely, k(c1) < k(01) < k(dy); k(c1) = k(1) < k(dy);
k(Cl) < k(61) = k(dl) and k(Cl) = k(61) = k(dl)

CASE 1. If k(c1) < k(81) < k(d1), then there are impulsive moments Ty, )11,
Th(c)+25-+ > Th(8;) in [Cl, 51} and Th(8))+15 Th(8)+2> - - > Th(dy) in [51,d1] respectively.
Multiplying both sides of inequality (2.12) by H|(z,c1), then integrating it from ¢; to
81, we have

" o ()0 < — [ Hy(t,er)w! (1)t + /51 t—p—)>w(t)

C1 1 t t)
+1
————[w(t)| @ |Hi(t,c1)
(p(t)r(r))a |
Applying integration by parts on first integral of RHS inequality we get,
]
p(t)H(t,c1)Q()dt
1
k(oy) b:% — a®
< Z Hl(ﬁ;ﬂ)(%) (i) = Hi(81,c1)w(d1)
i:k(cl)+l di
T cy) (¢ 51
+</k(‘“+/k” +.. +/ 1, c0)w()
1 k(cp)+1
pl1)  p() o 21
——2 ) w(t) — ————|w(t)| @ |Hi(t,cy)dt
<p(t) r(t)> © (p(t)r(z))é| 2 ] (e
kél
< (T, 1 ) 7) — Hy(61,¢1)w(d1)
i=k(

(o
/ / )
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mteen+ (B - 28) e

—7|W(I)\T}H1(t,cl)dt. (2.24)

BZ(%)W

we have

" (1) (1.c1)Q(1)d

k(81) a

< Y Hl(Ti,Cl)(bi

i=k(cy)+1

C

—a®

)w(ri) —H(61,¢1)w(0r)

ai

+/661 [((X-i-1)*(0‘+1)p(t)r(t)’hl(t,cl)_|_ (p’(t) B &)

that is

]

p)H(t,c1) [Q(t) —(o+ 1)_(a+l)r(t))h1(t,cl) n <P'(f) i p(f)>

¢
k(61) b:o a

< Y Hl(ThCl)(l

i=k(c1)+1 ai

—a;

)w(ri)—H1(51,cl)w(51). (2.25)

Next, multiplying both sides of inequality (2.12) by H(d,,¢) and using similar analysis
to the above, we obtain

0 . i) p’(t) B & a+1
/61 p(t)Ha(dy 1) [Q(z) (a+1) b r(t)‘hz(dl’t)—'_(p(t) r(t)> }dl
k(dy) o_ 0
< X Hﬁ@m)(%)wm +Hy(d1,81)w(81).  (2.26)
i=k(81)+1 !

Dividing (2.25) and (2.26) by H;(0;,c¢1) and H(dy,0;) respectively, then adding them,
we get

1 " —(o+1)
G J, POt |00) = (ot 1y r(r)

dy
x‘hl(ncl)—k( ——=

1
P ) S Jy PO

~(a p'(t) :v(t)
X [Q(z)—(a+1) ( +1>r(z))h2(d1,t)+ (p(t) —m>

p'(t) p(t)>

O£+l}

OC+11|
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l k(él) biOC _aia
ST H (7, ¢ w( T
Hi(01,c¢1) i:k((,zl)Jrl 1 1)( e ) (%)

) b-a —a®
Hy(dy, ) ——— )w(w). (2.27)
+1 ( a;” )

i

1 k

(
_l’_ JE—
Hy(dy,61) i:k(z’)

d;
g1
In view of (2.18) and (2.19) we obtain

0y
e . POmen 00— (@ 1) )

p'(t)  plr)y et 1 &
X )hl(t’cl)+(p(t) —m> ] H42(d1,51) 5 p(t)Hz(d,1)
[0 (et )70 e -+ (B35 - 2D
riM \ M, 1 .
< mgfl [Hi(.,c1)]+ mﬂﬁl [Ha(dj,.)]
= A(H,Hy;cy,dy),

which contradicts (2.22).

CASE 2. If k(c1) = k(61) < k(d1), there is no impulsive moment in [cy, ;] ,then
(2.24) is replaced by

Y D H (1.c1) 00 )ds

€1

< —1"11(51,01)W(51)4-/:1 Uhl(t,cl)Jr (p’(t) - &) X )\W(fﬂ

p(t) ()
o o+l

- Clw(e)| e [Hi(t,cq)dt.

(p(0)r(1)@ ]1 !

Using Lemma 2.2, we have

0

p(t)H(t,c1) [Q(t)— (a+ l)*(ourl)r(t)’hl(t,q)_F (I;/((t,)) - %> aH]dr

< —H(01,c1)w(61). (2.28)

€1

Dividing (2.26) and (2.28) by H»(d;,0;) and H;(6;,c1) respectively, then adding them,
we get

1 8

Hy(81,¢1) Jey P(t)Hl(t,cl){Q(;)_(a+1)7(a+1>r(t)

X )hl(t7cl)+ (p/(l) - P(”) a+l]dt+m f:l

p(1)H2(d 1)
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e 8-
! & b* —a;”
Hy(dy,81) i:k(51)+1H2(d1,Ti) (7)“’(@')
r1M1

Qj;’: [Hy(dy,.)] < A(Hy,Ha;cy,dy).
which is a contradiction.By a similar argument, we can prove the other two cases.
Hence the proof is complete. O

The next Theorem is for the case e(¢) = 0.

THEOREM 2.4. Suppose that for any T > 0 , there exist c1,d; ¢ {t}, such
that ¢; < dy, and q(t),qi(t) 20, t € [c1,d1] i =1,2...,n. Let {n;}, i=1,2,....n,

be an n tuple satisfying (2.2) and (2.3). If there exist (H\,H,) € S and p(t) €
C'([e1,d1],(0,0)) such that

1 i — r
H71(51,01)/q Hl(fycl)P(t)[Q(t)——a+(;;a+1’h1(1701)+<p(t) )

(
1 dy _
Ha(ey,1)p (1) [Q(0) ~ o
)

_’_7
Hy(dy,61) Js,

X ‘hg(a’l,tH— (p

where A is defined as in Theorem 2.1 and Q(t) = q(t) + T n; " (qi(t))™, then equa-
tion (1.1) with e(t) = 0 is oscillatory.

Proof. The proof of the above theorem is immediate by putting e(r) =0 and 19 =
0 in the proof of Theorem 2.3. O

REMARK 2.2. When oo =1 and p(t) = 1, Theorem 2.1 and Theorem 2.3 reduces
to Theorem 2.6 and Theorem 2.3 of [15].

REMARK 2.3. When p(r) =0 and p(¢) = 1, Theorem 2.1 reduces to Theorem
2.1 of [10].

REMARK 2.4. When p(r) = 0, Theorem 2.1 and Theorem 2.3 reduces to Theo-
rem 2.1 and Theorem 2.3 of [2] with ot = p/q, where p and g are odds.
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3. Examples
In this section, we give some examples to illustrate our results.

EXAMPLE 3.1. Consider the impulsive differential equation

(W)X (0)) + (cos20) (| ()] 732(1)) + (v cost)x(o)] ~x(r)

+ (v % cost)|x(r)|"3x(r) = sin2z, t;«ézkn—% G.1)

T
X(TkJr) = akx(‘rk), x’(’L’;ﬁ) = bkx/(Tk)7 Tk = 2km — 27
where t > 19 > 0, v;, i = 1,2 are positive constants, by > ai,k € N. We see that:

r(t) = 1, p(t) = cos2t, q(t) =0, q1(t) = vi2cost, qa(t) =v» 5 cost, e(t) = sin2r,
a=1/4, i =1/3, Br=1/5.

For any T > 0,we can choose n large enough such that 7 < ¢y =2nw — J,d; = c2 =
2nm,dy =2nw+ 5,n = 1,2,.... Then, (2.6) in Theorem 2.1 is satisfied. Now choose
no=1/12, n1 =1/2, ny = 1/8, therefore

0(1) = (2.504)vv>(cost) T2 | sin 27|12

Let u(t) =sin2s and p(¢) = 1. Then by using the mathematical software Maple 6, we

obtain
/:l p(t) {Q(t)lu(t)w+1 _ #‘(a-‘r )il (1) + (’;/((;)) _ %) (o)l a+1]dt
- 2::”/2 |:(2.504)v1v2(c0sz)% |sin2¢[*/3
- (4/5>5/4\ [(5/2) — |sin2¢]] cosztf“} di
= (2.504)v1v2(0.62947) — (0.757)(7.28316)
= (1.5762)vivy —5.51335
and
/Cjzp(t) {Q(t)|u(t)|°‘+1 _ #‘(a—i— ) (1) + (’;/((t’)) - %) (o)l aH]dt
- 2::”/2 |:(2.504)v1v2(c0sz)% | sin2¢[*/3

_ (4/5)5/4‘ [(5/2) — |sin2¢]] cosZt‘S/q dt

= (2.504)v11,(0.62947) — (0.757)(7.28316)
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= (1.5762)v;v, — 5.51335.
Since k(c1)=n—1, k(d1) =n, r; =1 and k(cp) = k(d>), we obtain

J4_ (g )14
AMLQ a1 = [sin2(5,) /4 (4/ )14 [%]

= |sin(4nm — n/2)|5/4(4/n)1/4{

14 _ (g,)1/4
= (1.06222) {%]

(bn)1/4 o (an)1/4
(an)1/4 ]

and r2M2szz?§ [|u|**1] = 0. So, if we choose the constants vy,v, large enough such that

(bn)1/4 o (an)l/4]

1.5762v1vz>5.51335+(1.06222)[ TALE
an

1.5762v1v, > 5.51335,

then by Theorem 2.1 equation (3.1) is oscillatory.

EXAMPLE 3.2. Consider the impulsive differential equation

(W32 @) -+ (sine) (W 0320 ) + (prsing) (o) |~x(1)
+ (U2 cost)\x(t)r%x(t) =—cos2t, t#1, (3.2)
.
)

X(Tk = akx(‘rk)7 x/(Tk+) = bkx’(rk),

where t >ty > 0,b; > a,k € N, We see that

r(t) =1, p(t) =sint, q(t) =0, q1 (1) = pisint, g2(t) = pacost, e(t) = —cos2t,
a:1/37 ﬁ1:5/6a ﬁ2:1/6

The numbers Ty, = 21w+ ¢, Topr1 = 20w+ 5, n=0,1,2,..., Uy, Uy are positive con-
stants. For any T > 0, we can choose n large enough such that

T<c1=2n77:<51=2n7r+%<d1:2nﬂ:—|—g
zcz<52=2nrc+3?n <d2:2n7'c—|—g.
Let 1o = 1/5, 11 =3/10, 1, = 1/2, then
O(t) = (2.8001)| — cos2¢ |3 u Oy 2 sin®/ 10 cos' /21

If we choose H, (t,s) = Ha(t,s) = (t —s)? and p(t) =1 then hy(z,s) = —hy(t,s) = 2.

t—s
Then by using the mathematical software Maple 6, the left hand side of the inequality

(2.22) with j=11is
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1 &
Al b, "eP0]o0

() Pl plo)
~ e e+ (G = 7)
()

+H—2(dh . /5 Hald,0p(0)[00) ~ o

0H-1]

p'(t)  ple)y|ot
ho(dy,t _ 2/
<ot )+(p(t) r(t)) ]
2nm+ %
:% *(t = 20m)? [ (2.8001) | — cos2e| 3y} ) sin® 10 cos' 21
2nm
2 4/3
_ 44/3) o )
(3/4) 5 sin }dt
2nn+Z
% 4(2n7‘c—|—%—t)2[(2.8001)| cosZt\l/5 3/10 1/2szn3/10c0s 124
2nm+%
4/3
)4/ .
—(3/4) ‘2n7t+4 smt‘ }dt
= (0.23459) 1) /% — (1.34283) + (0.240716) 1 **ua/* — (1.518068)

~ (0.475307) 1)1y * — (2.860903).

Note that there is no impulsive moment in (cy,8;) and T, € (01,d;). Also
k(01) =2n—1,k(d;) = 2n. Take r; =1 = M; = 1.Hence the right side of the in-
equality (2.22) with j =1 is

r
Hy(dy, 51)

64
= ?H2(d1772n)9(61)

Yo )2[ (bigoy+1)'" = (axgan )" }
n? (a(s,)+1) "> (Te(sy )41 — 61)1/3

64 12 [ (ban)'? = (agn)'/?
T a2 144 [ (azn)'/3(m/24)1/3 }

A(H17H2,Cl,d1) [Hz(dl,.)}

— (0.87524) {(bmm - (az")m}

(a2n)1/3
Thus (2.22) is satisfied with j =1 if

1/3 _ 1/3
(0.475307)u"°)/? > (2.860903) + (0.87524) |:(b2n) (a20) ]

(azn)'/3
In a similar way, the left hand side of the inequality (2.22) with j =2 is
1 % r(t) p'(t)  pt)yet!
—_— H(t, - )h - —= dt
Ty [, er®]en - e near+ (5 - 20
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1 d
+ Hy(dy,t)p(t
Hy(d2,8,) Js, (0P (1)
p'(t)  p(r)y|ot!
I h e
. [Q(t) (o +l 0‘“‘ 2(d21) <p(t) r(t)) ]
4 2nm+3E
:%/ /8 (1 — 207 — 7/4)%[ (2.8001) | — cos20 " Oy Psin® 10 cos' 24
2nw+m/4
2 4/3
_ 4/3) . )
3/4) t—2nm—m/4 st }dt
2nn+Z
% 32(2nn+g—z)2[(2.8001)| cos2t V3 0y sind/ 10 cos' 24
2nﬂ+%
4/3
4/3) . )
—(3/4 72%:_’_” sint }dt

= (0.211854)> 13 /? — (1.210017) + (0.184395) 7 ' pa/* — (1.631927)

~ (0.396249) 1 u)/* — (2.841945).

Note that 75,41 € (¢2,0,) and there is no impulsive moment in (J,,d5). Also k(cy) =
2n, k(&) =2n+ 1. Hence the right side of the inequality (2.22) with j =2 is

M-
A(Hy,Hyey,dy) = #Q%[Hl(-,cz)}
64
= ﬁHl(Tan,Cz)@(Cz)
_ % Cz)2|: (bg(es)+)'? = (ax(eys)'? }
p2 (ak(cz)+1)l/3(fk(cz)+1—62)1/3

T 2144 | (ages)'A(m/12)1/3

(b2n+1 ) 13 (a2n+l )

64 72 [(b2n+1)1/3—(a2n+1)1/3:|
1/3
(a2n+1)1/3 ]

= (0.69468) [
Thus (2.22) is satisfied with j =2 if

(0.396249) 17/ °13/? > (2.841945) + (0.69468) [

(baps1)'/3 — (azn)l/g}
(az) 13 :

So,if we choose the constants iy, > large enough such that

by )3 — ()3
JTHATIES (6.019063)4—(1.841423)[( 2 “za )1/(3"2 ) }
2n

13 _ 1/3
L0 (7.172119)+(1.75314){(bz"“za )1/(3&2") ]
2n

then by Theorem 2.3, equation (3.2) is oscillatory.
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