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Abstract. We prove the existence result of monotone solutions, in Hilbert space, for the differen-
tial inclusion ẍ(t) ∈ f (t,T (t)x, ẋ(t))+F(T (t)x, ẋ(t)) , where f is a Carathéodory single-valued
mapping and F is an upper semicontinuous set-valued mapping with compact values contained
in the Clarke subdifferential ∂cV(x) of a uniformly regular function V.

1. Introduction

Let H be a separable Hilbert space with the norm ‖.‖ and the scalar product
〈., .〉. For any segment I in R, we denote by C (I,H) the Banach space of continuous
functions from I to H equipped with the norm ‖x(.)‖∞ := sup{‖x(t)‖; t ∈ I}. For all
positive number a, we put Ca := C ([−a,0],H) and for any t ∈ [0,T ], T > 0, we
define the operator T (t) from C ([−a,T ],H) to Ca by (T (t)x)(s) = x(t + s). For a
given nonempty subset K of H, we introduce the set K0 :=

{
ϕ ∈ Ca;ϕ(0) ∈ K

}
.

This paper is devoted to prove the existence of solutions to the following Cauchy
problem: ⎧⎪⎨

⎪⎩
ẍ(t) ∈ f (t,T (t)x, ẋ(t))+F(T (t)x, ẋ(t)) a.e. on [0,τ],
x(s) = ϕ(s), ∀s ∈ [−a,0],
x(s) ∈ P(x(t)), ∀t ∈ [0,τ], ∀s ∈ [t,τ],

(1.1)

where F is an upper semicontinuousmultifunctionwith compact values, f is a Carathé-
odory function and P is a lower semicontinuous multifunction.

Existence of solutions of second-order differential inclusions has been studied by
many authors. For instance see [1, 2, 4, 6, 14, 15] and the references therein.

Existence of viability result for functional differential inclusions was first sug-
gested by Haddad [10, 11], when the right-hand side is upper semicontinuous with
convex and compact values, in finite dimensional vector space. For review of other re-
sults on functional differential inclusions, we refer the reader to the papers by Gavioli
and Malaguti [9], Syam [17] and the references therein.

The viability result for second order differential inclusions (1.1) was given by
Lupulescu [13] in the case in which f ≡ 0 and P(x) = K. Ibrahim and Al-Adsani
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[12] proved the existence of monotone solutions for (1.1) without perturbation ( f ≡
0) . Note that in [12, 13], the right hand-side is contained in the subdifferential of a
proper convex function. Cernia [6] considered the same situation but the right hand-
side is contained in the Fréchet subdifferential of a φ -convex function of order two.
Here it is necessary to mention that the works [6, 12, 13] has been studied in the finite
dimensional space.

This work extends results which are presented in [6, 12, 13] to the infinite dimen-
sional case. Furthermore, we assume that F is contained in the Clarke subdifferential
∂cV, where V belongs to the class of uniformly regular functions which contains strictly
the class of convex functions and the class of lower-C2 functions. As is known, viabil-
ity problems need tangential conditions. For the problems (1.1), we shall use a tangency
condition which is weaker than that used in [6, 12, 13].

The paper is organized as follows. In Section 2, we recall some preliminary facts
that we need in the sequel, in Section 3, we give some preliminary results, while in
Section 4, we prove the existence of solutions for (1.1).

2. Preliminaries and statement of the main result

For x ∈ H and r > 0 let B(x,r) := {y ∈ H;‖y− x‖< r} be the open ball centered
at x with radius r, B(x,r) be its closure and let B = B(0,1). For ϕ ∈Ca let Ba(ϕ ,r) :=
{ψ ∈ Ca;‖ϕ −ψ‖∞ < r} and Ba(ϕ ,r) be its closure. For x ∈ H and for a set A ⊂ H
we denote by dA(x) the distance from x to A given by dA(x) := inf{‖y− x‖ : y ∈ A}.

We shortly review the definitions of the various extensions of derivatives used in
this paper (see [7, 8, 16] as general references).

Let V : H → R∪{+∞} be a lower semicontinuous function and x be any point
where V is finite. The generalized Rockafellar directional derivative V ↑(x, .) is

V ↑(x,v) := limsup
x′→x,V (x′)→V (x),t→0+

inf
v′→v

V (x′ + tv′)−V(x′)
t

.

The Clarke subdifferential of V at x is defined by

∂cV (x) :=
{
y ∈ H : 〈y,v〉 � V ↑(x,v), for all v ∈ H

}
,

and that the proximal subdifferential ∂pV (x) of V at x is the set of all y ∈ H for which
there exist δ , σ > 0 such that for all x′ ∈ x+ δB ,

〈y,x′ − x〉 � V (x′)−V(x)+ σ‖x′ − x‖2.

Note that ∂cV (x) is convex and closed and ∂pV (x) is convex, but not necessarily closed.
On the other hand, one always has ∂pV (x) ⊂ ∂cV (x).

In the following proposition we summarize some useful properties of Clarke gen-
eralized directional derivatives.

PROPOSITION 2.1. [7, 8] Let V : H → R∪{+∞} be locally Lipschitz. Then the
following conditions hold:
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(i) ∂cV (x) =
{

p∈H :Vo(x,v) � 〈p,v〉, ∀v∈H
}

=
{

p∈H :Vo(x,v) � 〈p,v〉,∀v∈H
}
;

(ii) Vo(x,v) = max
{〈p,v〉, p ∈ ∂cV (x)

}
and Vo(x,v) = min

{〈p,v〉, p ∈ ∂cV (x)
}

=
−Vo(x,−v).

Let us recall the definition of the concept of regularity that will be used in the
sequel.

DEFINITION 2.2. [5] Let V : H →R∪{+∞} be a lower semicontinuous function
and let U ⊂ Dom(V ) be a nonempty open subset. We will say that V is uniformly
regular over U if there exists a positive number β such that for all x ∈U and for all
ξ ∈ ∂pV (x) one has

〈ξ ,x′ − x〉 � V (x′)−V(x)+ β‖x′ − x‖2 for all x′ ∈U.

We say that V is uniformly regular over a closed set S if there exists an open set U
containing S such that V is uniformly regular over U .

The class of functions that are uniformly regular over sets is so large. Any l.s.c.
proper convex function V is uniformly regular over any nonempty subset of its domain
with β = 0. For more details to the concept of regularity, we refer the reader to [5].

The following proposition summarizes some important properties for uniformly
regular locally Lipschitz functions over sets needed in this paper.

PROPOSITION 2.3. [5] Let V : H → R be a locally Lipschitz function and S a
nonempty closed set. If V is uniformly regular over S , then the following conditions
hold:

(a) the proximal subdifferential of V is closed as a multifunction over S , that is, for
every xn → x ∈ S with xn ∈ S and every ξn → ξ weakly with ξn ∈ ∂pV (xn) one has
ξ ∈ ∂pV (x);

(b) the proximal subdifferential of V coincides with the Clarke subdifferential of V for
any point x;

(c) the proximal subdifferential of V is upper semicontinuous over S , that is, the sup-
port function x → σ

(
v,∂pV (x)

)
is u.s.c. over S for every v ∈ H .

Assume that the following hypotheses hold:

(H1) (a) K is a nonempty locally compact subset in H and Ω is a nonempty open
subset in H such that Ω is compact and K×Ω ⊂ Graph(TK), where TK(x)
is the Bouligand’s contingent cone of K at x,

(b) P : H → 2K is a lower semicontinuous set-valued map satisfying:

(i) for all x ∈ K, x ∈ P(x),
(ii) for all x ∈ K and all y ∈ P(x) we have P(y) ⊆ P(x);
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(H2) F : K0×Ω→ 2H is an upper semicontinuous multifunction with compact values
satisfying F(ϕ ,y)⊂ ∂cV (y)∩W for all (ϕ ,y) ∈ K0×Ω, where W is a compact
subset of H and V : H → R is a locally Lipschitz function and uniformly regular
over Ω;

(H3) f : R×Ca×H → H is a function with the following properties:

(i) for all (ϕ ,y) ∈ Ca ×H, t → f (t,ϕ ,y) is measurable,

(ii) for all t ∈ R, (ϕ ,y) → f (t,ϕ ,y) is continuous,

(iii) for all bounded subset S of Ca×H, there exists a nonempty compact subset
C of H such that f (t,ϕ ,y) ∈C for all (t,ϕ ,y) ∈ R×S;

(H4) (Tangential condition) ∀(t,ϕ ,y) ∈ [0,1]×K0×Ω, ∃v ∈ F(ϕ ,y) such that

liminf
h →0+

2
h2 dP(ϕ(0))

(
ϕ(0)+hy+

h2

2
v+

∫ t+h

t
(t +h− s) f (s,ϕ ,y)ds

)
= 0.

We shall prove the following result:

THEOREM 2.4. If assumptions (H1)-(H4) are satisfied, then there exist T > 0
and an absolutely continuous function x(.) : [−a,T ] → H, for which ẋ(.) : [0,T ] → H
is also absolutely continuous such that x(.) is a solution of (1.1).

In all the paper, we suppose that the assumptions (H1)-(H4) are satisfied, we fix
(ϕ ,y0)∈K0×Ω and we choose r > 0 such that K0 = K∩B(ϕ(0),r) is compact, Ω0 =
B(y0,r) ⊂ B(y0,2r) ⊂ Ω and V is Lipschitz continuous on B(y0,2r) with Lipschitz
constant λ > 0. Then ∂cV (y)⊂ λB for every y∈ Ω0. Let σ > 0 such that Ω⊂ B(0,σ)
and let C be a compact subset of H such that

f (t,ψ ,y) ∈C, ∀(t,ψ ,y) ∈ R× (
K0∩Ba(ϕ ,2r)

)×B(0,σ).

Let M > 0 such that C ⊂ B(0,M). For ε > 0 set

η(ε) := sup
{

ρ ∈]0,ε] : ‖ϕ(t1)−ϕ(t2)‖ < ε if |t1− t2| � ρ
}
. (2.1)

REMARK 2.5. If K ∩ B(ϕ(0),r) is closed in H, then K0 ∩ Ba(ϕ ,r) is closed
in Ca. Indeed, let (ψn)n∈N a sequence in K0 ∩Ba(ϕ ,r) which converges to ψ . We
have ψn ∈ Ba(ϕ ,r) for all n ∈ N, so ψ ∈ Ba(ϕ ,r). On the other hand since ψn ∈
K0 ∩Ba(ϕ ,r) for all n ∈ N, one has ψn(0) ∈ K ∩B(ϕ(0),r) for all n ∈ N, so by the
closedness of K∩B(ϕ(0),r) we get ψ(0) ∈ K. Hence ψ ∈ K0∩Ba(ϕ ,r).

3. Preliminary results

In this section, we shall prove some auxiliary results needed in the next section.
Consider first the following hypotheses which we shall use throughout this section.
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(A1) G : K×Ω → 2H is an upper semicontinuous multifunction with compact values
satisfying G(x,y) ⊂ ∂cV (y)∩W for all (x,y) ∈ K×Ω;

(A2) g : R×H×H → H is a function with the following properties:

(i) for all (x,y) ∈ H×H, t → g(t,x,y) is measurable,

(ii) for all t ∈ R, (x,y) → g(t,x,y) is continuous,

(iii) g(t,x,y) ∈C for all (t,x,y) ∈ R×B(ϕ(0),2r)×B(0,σ);

(A3) (Tangential condition) ∀(t,x,y) ∈ [0,1]×K×Ω, ∃v ∈ G(x,y) such that

liminf
h →0+

2
h2 dP(x)

(
x+hy+

h2

2
v+

∫ t+h

t
(t +h− s)g(s,x,y)ds

)
= 0.

In the sequel, we will use the following important Lemma. It will play a crucial
role in the proof of Proposition 3.3.

LEMMA 3.1. If assumptions (A1)-(A3) are satisfied, then for all ε > 0, there ex-
ists η > 0 (η < ε) such that ∀(t,x,y) ∈ [0,1]×K0×Ω0, there exist ht,x,y ∈ [η , 1

4η( ε
4 )]

and u ∈ G(x,y)+ εB such that

(
x+ht,x,yy+

h2
t,x,y

2
u+

∫ t+ht,x,y

t
(t +ht,x,y− s)g(s,x,y)ds

)
∈ P(x).

Proof. Let ε > 0 and (t,x,y) ∈ [0,1]×K0×Ω0 be fixed. Since G is upper semi-
continuous on (x,y), there exists δx,y > 0 such that G(x , y) ⊂ G(x,y) + ε

2B for all
(x , y)∈ B((x,y),δx,y). Let (s, x , y)∈ [0,1]×K0×Ω. By the tangential condition, there
exist v ∈ G(x , y) and hs,x,y ∈]0, 1

4 η( ε
4 )] such that

dP(x)

(
x +hs,x,y y +

h2
s,x,y

2
v+

∫ s+hs,x ,y

s
(s+hs,x,y − τ)g(τ, x, y)dτ

)
<

hs,x,yε
8

.

Consider the subset N(s, x, y) of all (s̃, x̃, ỹ) in R×B(ϕ(0),2r)×B(0,σ) such that

dP(x̃)

(
x̃+hs,x,y ỹ+

h2
s,x,y

2
v+

∫ s̃+hs,x ,y

s̃
(s̃+hs,x,y − τ)g(τ, x̃, ỹ)dτ

)
<

h2
s,x,yε
8

.

Moreover, by hypothesis (A2), the dominated convergence theorem applied to the se-
quence of functions

(
χ[s̃,s̃+hs,x ,y ](.)ϕs̃(., x̃, ỹ)

)
s̃, where ϕs̃(τ, x, y) = (s̃+hs,x,y − τ)g(τ, x̃, ỹ),

shows that the function

(s̃, x̃, ỹ) → x̃+hs,x,yỹ+
h2

s,x,y

2
v+

∫ s̃+hs,x ,y

s̃
(s̃+hs,x,y − τ)g(τ, x̃, ỹ)dτ
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is continuous. Since P is lower semicontinuous, by Corollary 1.2.1 in [3], the function

(s̃, x̃, ỹ) → dP(x̃)

(
x̃+hs,x,yỹ+

h2
s,x,y

2
v+

∫ s̃+hs,x ,y

s̃
(s̃+hs,x,y − τ)g(τ, x̃, ỹ)dτ

)

is upper semicontinuous. So N(s, x, y) is open. Furthermore, since (s, x , y) belongs
to N(s, x, y), there exists 0 < ηs,x,y < δx,y such that B((s, x, y),ηs,x,y) is contained
in N(s, x, y), therefore, the compact subset [0,1]×K0×Ω can be covered by q such
balls B((si, xi, yi),ηsi ,xi,yi

). For simplicity, set hi := hsi,xi,yi
and ηi := ηsi,xi,yi

, i =
1, ...,q. Put η = min{hi/1 � i � q}. There exists i ∈ {1, ...,q} such that (t,x,y) ∈
B((si, xi, yi),ηsi,xi,yi

), hence (t,x,y) ∈ N(si, xi, yi). Then there exists vi ∈ G(xi, yi)
such that

dP(x)

(
x+hiy+

h2
i

2
vi +

∫ t+hi

t
(t +hi− τ)g(τ,x,y)dτ

)
<

h2
i ε
8

.

Let xi ∈ P(x) such that

2

h2
i

∥∥∥∥xi −
(

x+hiy+
h2

i

2
vi +

∫ t+hi

t
(t +hi− τ)g(τ,x,y)dτ

)∥∥∥∥
� 2

h2
i

dP(x)

(
x+hiy+

h2
i

2
vi +

∫ t+hi

t
(t +hi− τ)g(τ,x,y)dτ

)
+

ε
4
,

hence ∥∥∥∥ 2

h2
i

(
xi− x−hiy−

∫ t+hi

t
(t +hi− τ)g(τ,x,y)dτ

)
− vi

∥∥∥∥ <
ε
2
.

Set

u =
2

h2
i

(
xi − x−hiy−

∫ t+hi

t
(t +hi− τ)g(τ,x,y)dτ

)
,

then u ∈ G(xi, yi)+ ε
2B and

xi =
(

x+hiy+
h2

i

2
u+

∫ t+hi

t
(t +hi− τ)g(τ,x,y)dτ

)
∈ P(x).

Since ‖(x,y)− (xi, yi)‖ � δx,y we have u ∈ G(x,y)+ εB. �

In the sequel, we need the following Lemma.

LEMMA 3.2. For all 0 < ε < a there exists 0 < α < ε such that for all z ∈
B(y0,r) and x ∈ B(ϕ(0),r), there exist ρ ∈]0,1] and b ∈ [α, inf{ 1

4η( ε
4 ),1}] satisfying

B(z,ρ) ⊂ B(y0,r), B(x,ρ) ⊂ B(ϕ(0),r) and b(‖z‖+a+ ρ + λ +2M) � ρ/2.

Proof. Let 0 < ε < a, z∈B(y0,r) and x∈B(ϕ(0),r) be fixed. Consider 0 < ρ � 1
such that B(z,ρ) ⊂ B(y0,r) and B(x,ρ) ⊂ B(ϕ(0),r). Let (ρ , z) ∈ [0,1]×Ω. There
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exists bρ,z ∈]0, inf{ 1
4η( ε

4 ),1}] such that bρ,z(‖z‖+a+ρ +λ +2M) < ρ/4. Consider
the open subset

N(ρ , z) =
{

(μ ,ν) ∈ R×H : bρ,z(‖ν‖+a+ μ + λ +2M) <
μ
4

}
.

Since (ρ , z) ∈ N(ρ , z) there exists τ > 0 such that B((ρ, z),τ) ⊂ N(ρ , z). The
compact subset [0,1]×Ω can be covered by q such balls B((ρ i, z i),τi). Set bi = bρ i,zi

and α = inf{bi,0 � i � q}. Let i ∈ {1, . . . ,q} such that (ρ ,z) ∈ B((ρ i, z i),τi). Hence
(ρ ,z) ∈ N(ρ i, z i). So

bi(‖z‖+a+ ρ + λ +2M) < ρ/4,

where bi ∈ [α, inf{ 1
4η( ε

4 ),1}]. �

In all the paper, for ε > 0 we denote α(ε) the number α given by Lemma 3.2. In
the next section, we need the following Proposition.

PROPOSITION 3.3. If assumptions (A1)-(A3) are satisfied, then for all ε ∈]0,a[,
t0 ∈ [0,1], x0 ∈K∩B(ϕ(0),r) and z0 ∈ B(y0,r) there exist b0 ∈ [α(ε), inf{ 1

4η( ε
4 ),1}],

continuous functions x(.),y(.) : [t0,+∞[→ H, a function v(.) : [t0,+∞[→ H and step
functions θ (.),θ (.) : [t0,+∞[→ [t0,+∞[ such that

(i) x(t0) = x0, x(t0 + b0) ∈ K ∩B(ϕ(0),r), x(θ (t)) ∈ P(x(θ (t))) and x(θ (t)) ∈ K ∩
B(ϕ(0),r) for all t ∈ [t0,t0 +b0];

(ii) ẍ(t)−g(t,x(θ (t)),y(θ (t))) ∈ G(x(θ (t)),y(θ (t)))+ εB a.e. on [t0,t0 +b0];

(iii) y(t0) = z0, y(t0 +b0)∈ B(y0,r), y(θ (t))∈ B(y0,r) for all t ∈ [t0,t0 +b0], ‖ẋ(t)−
y(t)‖ � ε, ‖ẍ(t)− ẏ(t)‖ � ε and ‖ẋ(t)‖ � ‖y0‖+ r + λ + a + M for almost all t ∈
[t0,t0 +b0];

(iv) y(t) = y(t0)+
t∫

t0

(
g(s,x(θ (s)),y(θ (s)))+ v(s)

)
ds for all t ∈ [t0,t0 +b0];

(v) 0 � t − θ (t) � 1
4 η( ε

4 ), 0 � θ (t)− t � 1
4η( ε

4 ) and v(t) ∈ G(x(θ (t)),y(θ (t))) for
all t ∈ [t0, t0 +b0].

Proof. Let 0 < ε < a, t0 ∈ [0,1] , x0 ∈ K ∩ B(ϕ(0),r) and z0 ∈ B(y0,r). By
Lemma 3.2 there exist ρ ∈]0,1] and b0 ∈ [α(ε), inf{ 1

4η( ε
4 ),1}] such that B(x0,ρ) ⊂

B(ϕ(0),r), B(z0,ρ) ⊂ B(y0,r) and

b0(‖z0‖+a+ ρ + λ +2M) � ρ
2

. (3.1)

By Lemma 3.1, there exist η > 0, h0 ∈ [η , 1
4 η( ε

4 )] and u0 ∈ G(x0,z0)+ εB such
that

x1 =
(

x0 +h0z0 +
h2

0

2
u0 +

∫ t0+h0

t0
(t0 +h0− s)g(s,x0,z0)ds

)
∈ P(x0).



396 MYELKEBIR AITALIOUBRAHIM

Set

t1 = t0 +h0 and z1 = z0 +h0v0 +
t0+h0∫
t0

g(s,x0,z0)ds,

where v0 ∈ G(x0,z0) such that ‖u0− v0‖ � ε. If h0 � b0, by (A1), (A2) and (3.1), we
have

‖x1− x0‖ =
∥∥∥∥h0z0 +

h2
0

2
u0 +

∫ t0+h0

t0
(t0 +h0− s)g(s,x0,z0)ds

∥∥∥∥
� (‖z0‖+ λ +a+2M)b0

< ρ

and

‖z1− z0‖ =
∥∥∥∥h0v0 +

∫ t0+h0

t0
g(s,x0,z0)ds

∥∥∥∥
� (λ +M)b0

< ρ .

Thus x1 ∈K∩B(ϕ(0),r) and z1 ∈ B(y0,r). Set h−1 = 0. We reiterate this process
for constructing sequences (hp)p�0 ⊂ [η , 1

4 η( ε
4 )], (tp)p�0, (xp)p�0, (zp)p�0, (up)p�0,

(vp)p�0 such that

(a) tp = t0 +
p−1
∑
i=0

hi and xp ∈ P(xp−1);

(b) xp = xp−1 +hp−1zp−1 +
h2

p−1
2 up−1 +

tp∫
tp−1

(tp− s)g(s,xp−1,zp−1)ds;

(c) zp = zp−1 +hp−1vp−1 +
tp∫

tp−1

g(s,xp−1,zp−1)ds;

(d) xp ∈ K ∩B(ϕ(0),r) and zp ∈ B(y0,r) if
p−1
∑
i=0

hi � b0;

(e) up−1 ∈ G(xp−1,zp−1)+ εB, vp−1 ∈ G(xp−1,zp−1) and ‖up−1− vp−1‖ � ε.

It is easy to see that for p = 1 the assertions (a)-(e) are fulfilled. Let now p � 1.
Assume that (a)-(e) are satisfied for any p = 1, ...,q. If t0 + b0 � tq, then we stop
this process of iterations and we get (a)-(e) satisfied with tq−1 < t0 + b0 � tq. In the
other case, we can apply for (tq,xq,zq) the same technique applied for (t0,x0,z0) at the
beginning of this proof, and we get (a) , (b) , (c) and (e) satisfied for p = q + 1. It
remains to prove (e) . By induction, we have

xq+1 = x0 +
q

∑
i=0

hizi +
q

∑
i=0

h2
i

2
ui +

q

∑
j=0

∫ t0+
j

∑
i=0

hi

t0+
j

∑
i=0

hi−1

(t0 +
j

∑
i=0

hi− s)g(s,x j,z j)ds



FUNCTIONAL DIFFERENTIAL INCLUSIONS IN HILBERT SPACES 397

and

zq+1 = z0 +
q

∑
i=0

hivi +
q

∑
j=0

∫ t0+
j

∑
i=0

hi

t0+
j

∑
i=0

hi−1

g(s,x j,z j)ds.

Then, if
q
∑
i=0

hi � b0, by (A1), (A2), and (3.1) we have

‖zq+1− z0‖ �
q

∑
i=0

hiλ +
q

∑
i=0

hiM

� b0(λ +M)
< ρ

and

‖xq+1− x0‖ �
q

∑
i=0

hi(‖z0‖+ ρ)+
q

∑
i=0

hi(λ +a)+
q

∑
i=0

hi(2M)

� b0(‖z0‖+ ρ + λ +a+2M)
< ρ .

Hence zq+1 ∈ B(y0,r) and xq+1 ∈ K ∩B(ϕ(0),r). Since hp � η > 0 there exists an
integer s such that

ts = t0 +
s−1

∑
i=0

hi < t0 +b0 � ts+1 = t0 +
s

∑
i=0

hi.

Define on [t0,+∞[ the functions x(.), y(.), v(.), θ (.) and θ (.) as follows:

x(t) = xq−1 +(t− tq−1)zq−1 +
(t− tq−1)2

2
uq−1 +

∫ t

tq−1

(t− s)g(s,xq−1,zq−1)ds

y(t) = zq−1 +(t− tq−1)vq−1 +
∫ t

tq−1

g(s,xq−1,zq−1)ds for all t ∈ [tq−1, tq];

θ (t) = tq−1, v(t) = vq−1 and θ (t) = tq for all t ∈ [tq−1, tq[.

Finally, the above definitions will enable us to derive the assertions (i)-(v) . �

4. Proof of the Theorem 2.4

Set ϕ(0) = x0 and let

T = inf

{
1,

1
4

η
(

r
4(1+‖y0‖+ r+ λ +a+M)

)}
.

We shall show the following Proposition. It will be used in order to obtain a sequence
of approximated solutions.
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PROPOSITION 4.1. For all 0 < ε < a there exist continuous maps:

x(.) : [−a,+∞[→H, y(.) : [0,+∞[→ H, Γ(.) : [0,+∞[→ Ca,

a function v(.) : [0,+∞[→H and step functions θ (.),θ (.), θ̃ (.) : [0,+∞[→ [0,+∞[ such
that

(i) x(θ (t)) ∈ K∩B(ϕ(0),r) and x(θ (t)) ∈ P(x(θ (t))), for all t ∈ [0,T ] and x≡ ϕ on
[−a,0];

(ii) ẍ(t)− f (t,Γ(t),y(θ (t))) ∈ F(Γ(t),y(θ (t)))+ εB for almost all t ∈ [0,T ];

(iii) 0 � t − θ (t) � 1
4η( ε

4 ), 0 � t − θ̃(t) � 1
4η( ε

4 ) and 0 � θ (t)− t � 1
4 η( ε

4 ) for all
t ∈ [0,T ];

(iv) y(θ (t)) ∈ B(y0,r) for all t ∈ [0,T ], ‖ẋ(t)− y(t)‖ � ε, ‖ẍ(t)− ẏ(t)‖ � ε and
‖ẋ(t)‖ � ‖y0‖+ r+ λ +a+M for almost all t ∈ [0,T ];

(v) y(t) = y(0)+
t∫
0

(
f (s,Γ(s),y(θ (s)))+ v(s)

)
ds and v(t) ∈ F(Γ(t),y(θ (t))) for all

t ∈ [0,T ];

(vi) For all t ∈ [0,T ]

Γ(t)(s) =

⎧⎪⎨
⎪⎩

x(θ̃ (t)+ 1
4 η( ε

4 )+ s), −a � s � − 1
4η( ε

4 ),

− 4s
η( ε

4 )x(θ̃ (t))+
(
1+ 4s

η( ε
4 )

)
x(θ (t)), − 1

4η( ε
4 ) � s � 0.

Proof. Let 0 < ε < a be fixed. Set t0 = 0 and put x(t) = ϕ(t) for all t ∈ [−a,0].
Consider the function Γ0 : H → Ca defined as follows: for all x ∈ H

Γ0(x)(s) =

⎧⎪⎨
⎪⎩

x(t0 + 1
4η( ε

4 )+ s), −a � s � − 1
4η( ε

4 ),

− 4s
η( ε

4 )x(t0)+
(
1+ 4s

η( ε
4 )

)
x, − 1

4η( ε
4 ) � s � 0.

The set-valued maps

G0 : K×Ω → 2H and g0 : R×H×H → H

defined by G0(x,y) = F(Γ0(x),y) and g0(t,x,y) = f (t,Γ0(x),y) satisfy all assump-
tions (A1)-(A3). By Proposition 3.3, there exist b0 ∈ [α(ε), inf{ 1

4η( ε
4 ),1}], continu-

ous maps x0(.),y0(.) : [t0,+∞[→ H, a function v0(.) : [t0,+∞[→ H and step functions
θ0(.),θ 0(.) : [t0,+∞[→ [t0,+∞[ such that:

(i) x0(t0) = x0, x(t0 + b0) ∈ B(ϕ(0),r), x0(θ 0(t)) ∈ P(x0(θ0(t))) and x0(θ0(t)) ∈
K∩B(ϕ(0),r) for all t in [t0,t0 +b0];
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(ii) ẍ0(t)− f (t,Γ0(x0(θ0(t))),y0(θ0(t))) ∈ F(Γ0(x0(θ0(t))),y0(θ0(t))) + εB for al-
most all t ∈ [t0, t0 +b0];
(iii) ‖ẋ0(t)− y0(t)‖ � ε, ‖ẍ0(t)− ẏ0(t)‖ � ε and ‖ẋ0(t)‖ � ‖y0‖+ r+λ +a+M for
almost all t ∈ [t0, t0 + b0], y0(t0) = y0, y0(t0 + b0) ∈ B(y0,r) and y0(θ0(t)) ∈ B(y0,r)
for all t ∈ [t0, t0 +b0];

(iv) y0(t) = y0(t0)+
t∫

t0

(
f (s,Γ0(x0(θ0(s))),y0(θ0(s)))+ v0(s)

)
ds for all t in [t0,t0 +

b0];

(v) For all t ∈ [t0, t0 +b0], 0 � t−θ0(t) � 1
4 η( ε

4 ), 0 � θ 0(t)− t � 1
4 η( ε

4 ) and v0(t) ∈
F(Γ0(x0(θ0(t))),y0(θ0(t))).

Set t1 = t0 +b0, x(t) = x0(t) and y(t) = y0(t) for all t ∈ [t0,t1].
We reiterate this process for constructing sequences bi ∈ [α(ε), inf{ 1

4η( ε
4 ),1}],

xi(.), yi(.),vi(.) : [ti,+∞[→ H, θi(.),θ i(.) : [ti,+∞[→ [ti,+∞[, Γi : H → Ca and con-
tinuous functions x(.) : [−a,ti+1] → H and y(.) : [0,ti+1] → H satisfying the following
assertions for i � 0 :

(a) ti+1 = ti + bi, xi(ti + bi) ∈ B(ϕ(0),r), x(t) = xi(t), xi(θ i(t)) ∈ P(xi(θi(t))) and
xi(θi(t)) ∈ K ∩B(ϕ(0),r) for all t ∈ [ti,ti+1];
(b) ẍi(t)− f (t,Γi(xi(θi(t))),yi(θi(t))) ∈ F(Γi(xi(θi(t))),yi(θi(t)))+ εB for almost all
t ∈ [ti, ti+1];
(c) yi(ti + bi) ∈ B(y0,r), y(t) = yi(t) and yi(θi(t)) ∈ B(y0,r) for all t ∈ [ti, ti+1], and
‖ẋi(t)− yi(t)‖ � ε, ‖ẍi(t)− ẏi(t)‖ � ε and ‖ẋi(t)‖ � ‖y0‖+ r+ λ +a+M for almost
all t ∈ [ti, ti+1];

(d) yi(t) = yi(ti)+
t∫

ti

(
f (s,Γi(xi(θi(s))),yi(θi(s)))+ vi(s)

)
ds on [ti,ti+1];

(e) For all t ∈ [ti, ti+1], 0 � t − θi(t) � 1
4 η( ε

4 ), 0 � θ i(t)− t � 1
4 η( ε

4 ) and vi(t) ∈
F(Γi(xi(θi(t))),yi(θi(t)));
( f ) For all x ∈ H

Γi(x)(s) =

⎧⎪⎨
⎪⎩

x(ti + 1
4 η( ε

4 )+ s), −a � s � − 1
4η( ε

4 ),

− 4s
η( ε

4 )x(ti)+
(
1+ 4s

η( ε
4 )

)
x, − 1

4η( ε
4 ) � s � 0.

The assertions (a)-( f ) are fulfilled for i = 0. Let now i � 1. Assume that (a)-
( f ) are satisfied for any i = 1, ...,q. If T � tq+1, then we stop this process of iterations
and we get (a)-( f ) satisfied with tq < T � tq+1. In the other case: tq+1 < T, consider
the function Γq+1 : H → Ca defined as follows: for all x ∈ H,

Γq+1(x)(s) =

⎧⎪⎨
⎪⎩

x(tq+1 + 1
4 η( ε

4 )+ s), −a � s � − 1
4η( ε

4 ),

− 4s
η( ε

4 )x(tq+1)+
(
1+ 4s

η( ε
4 )

)
x, − 1

4η( ε
4 ) � s � 0.
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The set-valued map Gq+1 : K ×Ω → 2H and the map gq+1 : R×H ×H → H,
defined by

Gq+1(x,y) = F(Γq+1(x),y) and gq+1(t,x,y) = f (t,Γq+1(x),y),

satisfy all assumptions (A1)-(A3). In view of Proposition 3.3, there exist bq+1 ∈
[α(ε), inf{η(ε/4)/4,1}], continuous functions xq+1(.),yq+1(.), a function vq+1(.) and
step functions θq+1(.) and θ q+1(.), defined on [tq+1,+∞[, satisfying (a)-( f ) for
i = q+1. Set

tq+2 = tq+1 +bq+1, x(t) = xq+1(t) and y(t) = yq+1(t),

for all t ∈ [tq+1, tq+2]. Thus the conditions (a)-( f ) are satisfied for i = q + 1. Since
ti+1 − ti = bi � α(ε), there exists an integer s such that ts < T � ts+1. Further on,
we define the functions θ (.),θ (.), θ̃ (.) : [0,+∞[→ [0,+∞[, Γ : [0,+∞[→ Ca and v(.) :
[0,+∞[→ H as follows: for all t ∈ [tq,tq+1[, θ (t) = θq(t), θ (t) = θ q(t), θ̃(t) = tq,
v(t) = vq(t) and Γ(t) = Γq(xq(θq(t))). Hence the proof of Proposition 4.1 is complete.
�

Now we are prepared to prove our Theorem 2.4. Let k ∈ N
∗ such that

1
k

< inf

{
a,

r
1+‖y0‖+ r+ λ +a+M

}
.

By Proposition 4.1, we can define sequences sk ∈N
∗, (tkq)0�q�sk+1, xk(.) : [−a,+∞[→

H, yk(.),vk(.) : [0,+∞[→H, θk(.),θ k(.), θ̃k(.) : [0,+∞[→ [0,+∞[ and Γk(.) : [0,+∞[→
Ca such that:

(1) xk(θk(t)) ∈ B(ϕ(0),r) and xk(θ k(t)) ∈ P(xk(θk(t))), for all t ∈ [0,T ] and xk ≡ ϕ
on [−a,0];
(2) ẍk(t)− f (t,Γk(t),yk(θk(t))) ∈ F(Γk(t),yk(θk(t)))+ 1

k B for almost all t in [0,T ];

(3) 0 � t −θk(t) � 1
4 η( 1

4k ), 0 � t − θ̃k(t) � 1
4 η( 1

4k ) and 0 � θ k(t)− t � 1
4 η( 1

4k ) for
all t ∈ [0,T ];
(4) for almost all t ∈ [0,T ], ‖ẋk(t)−yk(t)‖� 1/k, ‖ẍk(t)− ẏk(t)‖� 1/k and ‖ẋ(t)‖�
‖y0‖+ r+ λ +a+M and for all t ∈ [0,T ], yk(θk(t)) ∈ B(y0,r);

(5) for all t ∈ [0,T ], yk(t) = yk(0)+
t∫
0

(
f (s,Γk(s),yk(θk(s)))+ vk(s)

)
ds and vk(t) ∈

F(Γk(t),yk(θk(t)));
(6) for all t ∈ [0,T ] ,

Γk(t)(s) =

⎧⎪⎪⎨
⎪⎪⎩

xk(θ̃ (t)+ 1
4η( 1

4k )+ s), −a � s � − 1
4η( 1

4k ),

− 4s
η( 1

4k )
xk(θ̃k(t))+

(
1+ 4s

η( 1
4k )

)
xk(θk(t)), − 1

4η( 1
4k ) � s � 0.
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CLAIM 4.2. Γk(t) ∈ K0∩Ba(ϕ ,r) and ‖T (t)xk −Γk(t)‖+∞ � 1
2k (1+‖y0‖+ r+

a+M+ λ ) for all t ∈ [0,T ].

Proof. First, remark that for all t, t ∈ [−a,T ] such that |t − t | � η(ρ) we have
‖xk(t)− xk( t )‖ � ρ(1 + ‖y0‖+ r + λ + a + M). Indeed, let t, t ∈ [−a,T ] such that
|t− t | � η(ρ). If t, t ∈ [0,T ] and t � t, by (4) and (5) we have

‖xk(t)− xk( t )‖ �
∫ t

t
‖ẋk(s)‖ds

� (t− t )(‖y0‖+ r+ λ +a+M)
� ρ(‖y0‖+ r+ λ +a+M).

If t, t ∈ [−a,0], by construction, ‖xk(t)− xk( t )‖ = ‖ϕ(t)−ϕ( t )‖ � ρ . If t ∈
[0,T ] and t ∈ [−a,0], one has |t| � η(ρ) and | t | � η(ρ). Then

‖xk(t)− xk( t )‖ � ‖xk(t)− xk(0)‖+‖ϕ( t )−ϕ(0)‖
� ρ(‖y0‖+ r+ λ +a+M)+ ρ
= ρ(1+‖y0‖+ r+ λ +a+M).

Hence we conclude that for all t, t ∈ [−a,T ] such that |t− t | � η(ρ), we have

‖xk(t)− xk( t )‖ � ρ(1+‖y0‖+ r+ λ +a+M).

Now, let t ∈ [0,T ], if −a � s � − 1
4η( 1

4k ) we have

∣∣∣θ̃k(t)+
1
4

η
( 1

4k

)
+ s− s

∣∣∣
� θ̃k(t)− t + t +

1
4

η
(

r
4(1+‖y0‖+ r+ λ +a+M)

)

� 1
4

η
( 1

4k

)
+

1
4

η
(

r
4(1+‖y0‖+ r+ λ +a+M)

)

+
1
4

η
(

r
4(1+‖y0‖+ r+ λ +a+M)

)

� η
(

r
4(1+‖y0‖+ r+ λ +a+M)

)
.

Then

‖Γk(t)(s)−ϕ(s)‖ =
∥∥∥∥xk

(
θ̃k(t)+

1
4k

η
( 1

4k

)
+ s

)
− xk(s)

∥∥∥∥
� r

4(1+‖y0‖+ r+ λ +a+M)
(1+‖y0‖+ r+ λ +a+M)

� r.
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If − 1
4η( 1

4k ) � s � 0 we get

|θk(t)− θ̃k(t)|
� |θk(t)− t|+ |θ̃k(t)− t|

� 1
4

η
(

r
4(1+‖y0‖+ r+ λ +a+M)

)
+

1
4

η
(

r
4(1+‖y0‖+ r+ λ +a+M)

)

� η
(

r
4(1+‖y0‖+ r+ λ +a+M)

)

and

|θk(t)− s|� 1
4

η
(

r
4(1+‖y0‖+ r+ λ +a+M)

)
+

1
4

η
( 1

4k

)

� η
(

r
4(1+‖y0‖+ r+ λ +a+M)

)
.

So

‖Γk(t)(s)−ϕ(s)‖ =
∥∥∥∥xk(s)+

4s

η( 1
4k )

xk(θ̃k(t))−
(

1+
4s

η( 1
4k )

)
xk(θk(t))

∥∥∥∥
� ‖xk(s)− xk(θk(t))‖+‖xk(θ̃k(t))− xk(θk(t))‖
� 2r

4(1+‖y0‖+ r+ λ +a+M)
(1+‖y0‖+ r+ λ +a+M)

� r.

Thus we conclude that Γk(t) ∈ Ba(ϕ ,r). Since Γk(t)(0) = xk(θk(t)) ∈ K, we have
Γk(t) ∈ K0∩Ba(ϕ ,r).

For the second assertion, let t ∈ [0,T ], if −a � s � − 1
4η( 1

4k ) we have

∣∣∣θ̃k(t)+
1
4

η
( 1

4k

)
+ s− t− s

∣∣∣ � |θ̃k(t)− t|+ 1
4

η
( 1

4k

)

� 1
4

η
( 1

4k

)
+

1
4

η
( 1

4k

)

� η
( 1

4k

)
.

Then

‖T (t)xk(s)−Γk(t)(s)‖ =
∥∥∥∥xk(t + s)− xk

(
θ̃k(t)+

1
4

η
( 1

4k

)
+ s

)∥∥∥∥
� 1

4k
(1+‖y0‖+ r+ λ +a+M).

If − 1
4η( 1

4k ) � s � 0 we get

|θk(t)− t− s| � |θk(t)− t|+ |s|� 1
4

η
( 1

4k

)
+

1
4

η
( 1

4k

)
� η

( 1
4k

)
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and

|θk(t)− θ̃k(t)| � |θk(t)− t|+ |θ̃k(t)− t|� 1
4

η
( 1

4k

)
+

1
4

η
( 1

4k

)
� η

( 1
4k

)
.

So

‖T (t)xk(s)−Γk(t)(s)‖

=
∥∥∥∥xk(t + s)+

4s

η( 1
4k )

xk(θ̃k(t))−
(

1+
4s

η( 1
4k )

)
xk(θk(t))

∥∥∥∥
� ‖xk(t + s)− xk(θk(t))‖+‖xk(θ̃k(t))− xk(θk(t))‖
� 1

4k
(1+‖y0‖+ r+ λ +a+M)+

1
4k

(1+‖y0‖+ r+ λ +a+M)

� 1
2k

(1+‖y0‖+ r+ λ +a+M).

Thus

‖T (t)xk −Γk(t)‖+∞ � 1
2k

(1+‖y0‖+ r+ λ +a+M) for all t ∈ [0,T ]. �

Now, from (5), we deduce that ‖ẏk(t)‖ � M + λ for almost every t ∈ [0,T ] and
for all t ∈ [0,T ], yk(t) ∈ y0 +[0,T ](C+W ), which is compact. Therefore, by Arzelà-
Ascoli’s theorem (see [3]), we can select a subsequence, again denoted by (yk(.))k,
which converges uniformly to an absolutely continuous function y(.) on [0,T ], more-
over ẏk(.) converges weakly to ẏ(.) in L2([0,T ],H). In addition, since yk(θk(t)) ∈
B(y0,r) ⊂ Ω0 for all t ∈ [0,T ], one has y(t) ∈ Ω0 for all t ∈ [0,T ]. Now, consider
the function x(.) : [−a,T ] → H defined by x(t) = ϕ(t) for all t ∈ [−a,0] and ẋ(t) =
y(t), ∀t ∈ [0,T ]. Remark that, for almost all t ∈ [0,T ], by (4), we have

‖ẋk(t)− ẋ(t)‖ � ‖ẋk(t)− yk(t)‖+‖yk(t)− ẋ(t)‖
� 1

k
+‖yk(t)− ẋ(t)‖.

The last term of the above inequality converges to 0, then ẋk(.) converges uniformly
to ẋ(.) almost everywhere on [0,T ]. Since

‖xk(t)− x(t)‖ �
∫ t

0
‖ẋk(s)− ẋ(s)‖ds,

we conclude that xk(.) converges uniformly to x(.) on [−a,T ]. Now, by (1), (2) and
(3), for all t ∈ [0,T ], we have

lim
k→+∞

‖x(t)− xk(θ k(t))‖ = 0

and xk(θ k(t)) ∈ P(xk(θk(t)))∩B(ϕ(0),r) ⊂ K0, then x(t) ∈ K for all t ∈ [0,T ]. By
(H1), we conclude that x(t) ∈ P(x(t)) for all t ∈ [0,T ]. It remains to prove that if t ′ < t
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then x(t) ∈ P(x(t ′)). Let t ′,t ∈ [0,T ] be such that t ′ < t. Then for k large enough we
can find p,q ∈ {0, ...,sk} such that q = p + i where 0 � i � sk, t ′ ∈ [tkp,t

k
p+1], t ∈

[tkq ,t
k
q+1], lim

k→+∞
tkq = t and lim

k→+∞
tkp = t ′. Note that, by construction, one has xk(tkq−1) ∈

P(xk(tkq−2)), which together with (H1) gives

P(xk(tkq−1)) ⊆ P(xk(tkq−2)).

Similarly, P(xk(tkq−2)) ⊆ P(xk(tkq−3)). If we continue for i− 1 steps, we obtain

P(xk(tkq−1))⊆P(xk(tkp))). By the fact that xk(tkq)∈P(xk(tkq−1)), we conclude that xk(tkq)∈
P(xk(tkp)). By letting k → +∞, we get x(t) ∈ P(x(t ′)). Remark that, from Claim 4.2,
we deduce that

Γk(t) converges to T (t)x (4.1)

in Ca and T (t)x ∈ K0∩Ba(ϕ ,r).

PROPOSITION 4.3. ẏ(t)− f (t,T (t)x,y(t)) ∈ ∂cV (y(t)) for almost all t ∈ [0,T ].

Proof. The weak convergence of ẏk(.) to ẏ(.) in L2([0,T ],H) and the Mazur’s
Lemma entail

ẏ(t) ∈
⋂
k

co{ẏm(t) : m � k}, for a.e. on [0,T ].

Fix any t ∈ [0,T ] such that t �= tkq for all k > 1 and 0 � q � s+1. Then for all z ∈ H,

〈z, ẏ(t)〉 � inf
m

sup
k�m

〈z, ẏk(t)〉.

By (5) and (H2) one has ẏk(t) ∈ ∂cV (yk(θk(t)))+ f (t,Γk(t),yk(θk(t))). Thus for all m ,

〈z, ẏ(t)〉 � sup
k�m

σ
(
z,∂cV (yk(θk(t)))+ f (t,Γk(t),yk(θk(t)))

)
,

from which we deduce that

〈z, ẏ(t)〉 � limsup
k→+∞

σ
(
z,∂cV (yk(θk(t)))+ f (t,Γk(t),yk(θk(t)))

)
.

By Proposition 2.3, the function x → σ
(
z,∂cV (x)

)
is u.s.c and hence we get

〈z, ẏ(t)〉 � σ
(
z,∂cV (y(t))+ f (t,T (t)x,y(t))

)
.

So, the convexity and the closedness of the set ∂cV (y(t)) (see [7, 8]) ensure

ẏ(t)− f (t,T (t)x,y(t)) ∈ ∂cV (y(t)).�

PROPOSITION 4.4. The set
{〈p, ẏ(t)〉, p ∈ ∂cV (y(t))

}
is reduced to the singleton{

d
dtV (y(t))

}
for almost every t ∈ [0,T ].
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Proof. Since y(.) is absolutely continuous function and V is locally Lipschitz
continuous. The function V ◦ y(.) is absolutely continuous and then for almost all t
there exists d

dtV (y(t)). Let t ∈ [0,T ] be such that there exist both ẏ(t) and d
dtV (y(t)).

There is δ > 0 such that for every |h| < δ ,

y(t +h) ∈ B(y0,2r), (y(t)+hẏ(t)) ∈ B(y0,2r), (y(t)−hẏ(t)) ∈ B(y0,2r)
y(t +h)− y(t)−hẏ(t) = r(h), where lim

h→0
‖r(h)‖/h = 0.

Since V is Lipschitz continuous on B(y0,2r) with Lipschitz constant λ > 0, we have

|V (y(t +h))−V(y(t)+hẏ(t))| � λ‖r(h)‖,
whenever |h| < δ . Consequently, the function h →V (y(t)+hẏ(t)) is differentiable at
h = 0, and its derivative is the same as the derivative of h → V (y(t + h)) at h = 0.
Hence

d
dt

V (y(t)) = lim
h→0

V (y(t)+hẏ(t))−V(y(t))
h

. (4.2)

Since V is uniformly regular over Ω, there exists β � 0 such that for all x ∈ Ω
and for all ξ ∈ ∂pV (x) one has

〈ξ ,x′ − x〉 � V (x′)−V(x)+ β‖x′ − x‖2 for all x′ ∈ Ω. (4.3)

Let 0 < h < δ . Applying the inequality (4.3) with x = y(t) and x′ = y(t)+hẏ(t),
we have

〈ξ ,hẏ(t)〉 � V (y(t)+hẏ(t))−V(y(t))+ β‖hẏ(t)‖2.

Then

〈ξ , ẏ(t)〉 � V (y(t)+hẏ(t))−V(y(t))
h

+ βh‖ẏ(t)‖2.

By passing to the limit, we get

〈ξ , ẏ(t)〉 � lim
h→0+

V (y(t)+hẏ(t))−V(y(t))
h

.

By (4.2), it follows that

max
{〈ξ , ẏ(t)〉,ξ ∈ ∂pV (y(t))

}
� d

dt
V (y(t)).

In view of Proposition 2.3 and Proposition 2.1, one has

Vo(y(t), ẏ(t)) � d
dt

V (y(t)). (4.4)

If we Apply the inequality (4.3) with x′ = y(t)+h(−ẏ(t)) and x = y(t), we obtain
by the same argument

〈ξ ,−ẏ(t)〉 � lim
h→0+

V (y(t)+ (−h)ẏ(t))−V(y(t))
h

.
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Thus

〈ξ ,−ẏ(t)〉 � − lim
h→0−

V (y(t)+hẏ(t))−V(y(t))
h

.

Consequently

Vo(y(t),−ẏ(t)) � − d
dt

V (y(t)).

Since Vo(y(t),−ẏ(t)) = −Vo(y(t), ẏ(t)), we have

−Vo(y(t), ẏ(t)) � − d
dt

V (y(t)).

In other words
d
dt

V (y(t)) � Vo(y(t), ẏ(t)). (4.5)

By (4.4) and (4.5), we deduce that

Vo(y(t), ẏ(t)) � d
dt

V (y(t)) � Vo(y(t), ẏ(t)),

which implies that

Vo(y(t), ẏ(t)) =
d
dt

V (y(t)) = Vo(y(t), ẏ(t)).

This means that for almost all t the set
{〈p, ẏ(t)〉, p ∈ ∂cV (y(t))

}
reduces to the sin-

gleton
{

d
dtV (y(t))

}
. �

PROPOSITION 4.5. ẍ(t)∈ f (t,T (t)x, ẋ(t))+F(T (t)x, ẋ(t)) for almost all t ∈ [0,T ].

Proof. By Proposition 4.3 and Proposition 4.4, we obtain

d
dt

V (y(t)) = 〈ẏ(t), ẏ(t)− f (t,T (t)x,y(t))〉 a.e. on [0,T ],

therefore,

V (y(T ))−V(y0) =
∫ T

0
‖ẏ(s)‖2ds−

∫ T

0
〈ẏ(s), f (s,T (s)x,y(s))〉ds. (4.6)

For simplicity, in the rest of the paper, we take tksk+1 = T. On the other hand, by con-
struction, for all q = 1, ...,sk +1, one has

ẏk(t)− f (t,Γk(t),yk(tkq−1)) ∈ ∂cV (yk(tkq−1)).

Since V is uniformly regular over Ω, there exists β � 0 and

V (yk(tkq))−V(yk(tkq−1))

�
〈
yk(tkq)− yk(tkq−1), ẏk(t)− f (t,Γk(t),yk(tkq−1))

〉
−β‖yk(tkq)− yk(tkq−1)‖2
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=
〈∫ tkq

tkq−1

ẏk(s)ds, ẏk(t)− f (t,Γk(t),yk(tkq−1))
〉
−β‖yk(tkq)− yk(tkq−1)‖2

=
∫ tkq

tkq−1

〈ẏk(s), ẏk(s)〉ds−
∫ tkq

tkq−1

〈ẏk(s), f (s,Γk(s),yk(tkq−1))〉ds

−β‖yk(tkq)− yk(tkq−1)‖2.

By adding, we obtain

V (yk(T )))−V (y0) �
∫ T

0
‖ẏk(s)‖2ds−

sk+1

∑
q=1

∫ tkq

tkq−1

〈ẏk(s), f (s,Γk(s),yk(tkq−1))〉ds

−
sk+1

∑
q=1

β‖yk(tkq)− yk(tkq−1)‖2. (4.7)

CLAIM 4.6.

lim
k→+∞

sk+1

∑
q=1

∫ tkq

tkq−1

〈ẏk(s), f (s,Γk(s),yk(tkq−1))〉ds =
∫ T

0
〈ẏ(s), f (s,T (s)x,y(s))〉ds.

Proof. We have

∣∣∣∣
sk+1

∑
q=1

∫ tkq

tkq−1

〈ẏk(s), f (s,Γk(s),yk(tkq−1))〉ds−
∫ T

0
〈ẏ(s), f (s,T (s)x,y(s))〉ds

∣∣∣∣

=
∣∣∣∣
sk+1

∑
q=1

∫ tkq

tkq−1

(
〈ẏk(s), f (s,Γk(s),yk(tkq−1))〉− 〈ẏ(s), f (s,T (s)x,y(s))〉

)
ds

∣∣∣∣

�
∣∣∣∣
sk+1

∑
q=1

∫ tkq

tkq−1

(
〈ẏk(s), f (s,Γk(s),yk(tkq−1))〉− 〈ẏk(s), f (s,T (s)x,y(s))〉

)
ds

∣∣∣∣

+
∣∣∣∣
sk+1

∑
q=1

∫ tkq

tkq−1

(
〈ẏk(s), f (s,T (s)x,y(s))〉− 〈ẏ(s), f (s,T (s)x,y(s))〉

)
ds

∣∣∣∣

�
sk+1

∑
q=1

∫ tkq

tkq−1

∣∣∣〈ẏk(s), f (s,Γk(s),yk(tkq−1))〉− 〈ẏk(s), f (s,T (s)x,y(s))〉
∣∣∣ds

+
∣∣∣∣
∫ T

0

(
〈ẏk(s), f (s,T (s)x,y(s))〉− 〈ẏ(s), f (s,T (s)x,y(s))〉

)
ds

∣∣∣∣.
Since

‖ẏk(t)‖ � λ +M, lim
k→+∞

f (s,Γk(s),yk(tkq−1)) = f (s,T (s)x,y(s))

and ẏk(.) converges weakly to ẏ(.), the last term converges to 0. This completes the
proof of the Claim. �
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CLAIM 4.7.

lim
k→+∞

sk+1

∑
q=1

β‖yk(tkq)− yk(tkq−1)‖2 = 0.

Proof. By construction we have

‖yk(tkq)− yk(tkq−1)‖ =
∥∥∥∥

∫ tkq

tkq−1

(
f (s,Γk(s),yk(tkq−1))+ vk(s)

)
ds

∥∥∥∥
� (tkq − tkq−1)

(
M + λ

)
.

Hence

‖yk(tkq)− yk(tkq−1)‖2 � (tkq − tkq−1)
2(M + λ )2

� (tkq − tkq−1)
1
k
(M + λ )2.

Then
sk+1

∑
q=1

β‖yk(tkq)− yk(tkq−1)‖2 � βT (λ +M)2

k
,

so

lim
k→+∞

sk+1

∑
q=1

β‖yk(tkq)− yk(tkq−1)‖2 = 0. �

By passing to the limit for k → ∞ in (4.7) and using the continuity of the function V
on the ball B(y0,2r) , we obtain

V (y(T ))−V(y0) � limsup
k→+∞

∫ T

0
‖ẏk(s)‖2ds−

∫ T

0
〈ẏ(s), f (s,T (s)x,y(s))〉ds.

Moreover, by (4.6),
‖ẏ(.)‖2

2 � limsup
k→+∞

‖ẏk(.)‖2
2

and by the weak l.s.c of the norm ensures

‖ẏ(.)‖2
2 � liminf

k→+∞
‖ẏk(.)‖2

2.

Hence we get
‖ẏ(.)‖2

2 = lim
k→+∞

‖ẏk(.)‖2
2.

Finally, there exists a subsequence of (ẏk(.))k (still denoted (ẏk(.))k ) converges
point-wisely to ẏ(.). In addition, by (4), for almost all t ∈ [0,T ]

‖ẍk(t)− ẍ(t)‖ � ‖ẍk(t)− ẏk(t)‖+‖ẏk(t)− ẏ(t)‖
� 1

k
+‖ẏk(t)− ẏ(t)‖.
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The last term of the above inequality converges to 0, then ẍk(.) converges point-wisely
to ẍ(.) almost everywhere on [0,T ]. Now, by (2), for almost all t ∈ [0,T ] ,

ẍk(t)− f (t,Γk(t),yk(θk(t))) ∈ F(Γk(t),yk(θk(t)))+
1
k
B,

then

dGraph(F)

((
(Γk(t), ẋk(t)), ẍk(t)− f (t,Γk(t),yk(θk(t)))

))

� ‖ẋk(t)− yk(θk(t))‖+
1
k

� ‖ẋk(t)− yk(t)‖+‖yk(t)− y(t)‖+‖y(t)− yk(θk(t))‖+
1
k

� 1
k

+‖yk(t)− y(t)‖+‖y(t)− yk(θk(t))‖+
1
k

hence

lim
k→+∞

dGraph(F)

((
(Γk(t), ẋk(t)), ẍk(t)− f (t,Γk(t),yk(θk(t)))

))
= 0,

from which we conclude that

dGraph(F)

((
(T (t)x, ẋ(t)), ẍ(t)− f (t,T (t)x, ẋ(t))

))
= 0

and as F has a closed graph, we obtain

ẍ(t) ∈ f (t,T (t)x, ẋ(t))+F(T (t)x, ẋ(t)) a.e. on [0,T ].

The proof is complete. �
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