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Abstract. Using a recent fixed point theorem in ordered Banach spaces by S. Carl and S. Heikkilä,
we study the existence of weak solutions to nonlinear elliptic problems −diva(x,∇u) = f (x,u)
in a bounded domain Ω ⊂ R

n with Dirichlet boundary condition. In particular, we prove that
for some suitable function g , which may be discontinuous, and δ small enough, the p -Laplace
equation

−div(|∇u|p−2∇u) = |u|p∗−2u+δg(x,u)

has a positive solution which goes to 0 as δ → 0+ , where p∗ is the critical exponent.

1. Introduction

Let N � 2 be an integer and Ω ⊂ R
N be a bounded domain with Lipschitz bound-

ary ∂Ω . We study the following nonlinear elliptic problem{
−diva(x,∇u) = f (x,u) in Ω,

u = 0 on ∂Ω,
(1.1)

where f is not necessarily continuous with respect to its second variable and may have
critical exponent.

This problem has been studied extensively in literature by many authors. A gen-
eral method for proving the existence of solutions of (1.1), when f is a Carathéodory
function and has subcritical growth, is critical point theory. When f is discontinuous
and has critical exponent, the situation becomes difficult because the energy functional
associated with (1.1) does not belong to C1 class and because of the lack of compact-
ness of embedding W 1,p

0 (Ω) ⊂ Lp∗(Ω) . Nevertheless, many authors dealt with this
case using several methods in nonsmooth analysis. To name a few, when a(x,ξ ) = ξ ,
problem (1.1) was studied in [3, 5, 10] and references therein. When a(x,ξ ) = |ξ |p−2ξ
( p -Laplace equation), it was studied in [13] for f (x,u) = λ |u|p∗−2u+ g(x,u) . Later,
when a(x,ξ ) = |ξ |p(x)−2ξ ( p(x)-Laplace equation), it was studied in [14] for f (x,u) =
λ |u|p∗(x)−2u+ g(u) . When ai(x,ξ ) = |ξi|pi−2ξi (anisotropic quasilinear elliptic equa-
tion), it was studied in [9].
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In the present paper, we exploit the fixed point theorem introduced in [6] to prove
the existence of a nontrivial weak solution u ∈ W 1,p

0 (Ω) of (1.1). Note that in [6], S.
Carl and S. Heikkilä applied their theorem to the problem −Δu = f (x,u) and proved
the existence of one solution. However, the solution they obtained may be the trivial
one if f (x,0) = 0. By using a suitable set having the fixed point property, the trivial
solution in our result is excluded.

As an application, in section 4 we will consider the following critical problem{
−div(|∇u|p−2∇u) = |u|p∗−2u+ δg(x,u) in Ω,

u = 0 on ∂Ω,
(1.2)

where g is not required to be Carathéodory but sup-measurable.
It is well known that if g ≡ 0 and Ω is a star-shaped domain then (1.2) has no

nontrivial solution (see [11, 12]). The perturbation δg(x,u) ensures the existence of
a nontrivial solution to problem (1.2). The existence of a positive solution of (1.2)
was studied in [2] when p = 2, g is the Heaviside function in u and δ is sufficiently
large. This problem is also studied in [1] using a variational approach when p = 2 and
g(x,u) = h(x)H(u−a)uq , where h(x) is both nonnegative and integrable on R

N , H is
the Heaviside function, 0 � q < 2∗ − 1 and δ > 0. In section 4 of this paper, we will
prove that when δ is sufficiently small, problem (1.2) has a positive solution which
converges to 0 as δ → 0+ .

Throughout this paper, we assume that p ∈ [2,∞) . As usual, we denote:

p∗ = pN/(N− p) if p < N and p∗ = ∞ if p � N (hence p∗ = ∞ if N = 2),

p′ = p/(p−1),

|u|p = (
∫

Ω |u|p) 1
p , the norm of u in Lp(Ω),

|u|∞ = esssup{|u(x)| | x ∈ Ω}, the norm of u in L∞(Ω),

‖u‖ = (
∫

Ω |∇u|p) 1
p , the norm of u in W 1,p

0 (Ω),

Lp
+(Ω) = {u ∈ Lp(Ω) | u(x) � 0 for a.e x ∈ Ω}.

It is well-known that p∗ is the maximum number such that the continuous embed-
ding W 1,p

0 (Ω) ⊂ Lq(Ω) holds true for all q ∈ [1, p∗] . Moreover, if q ∈ [1, p∗) then this
embedding is compact.

For p1, p2 ∈ (1, p∗] if p∗ < ∞ or p1, p2 ∈ (1,∞) if p∗ = ∞ , denote by K1 and K2

the inverses of Sobolev coefficients of continuous embedding W 1,p
0 (Ω) ⊂ Lp1(Ω) and

W 1,p
0 (Ω) ⊂ Lp2(Ω) , respectively, that means

K1 = sup
u∈W1,p

0 (Ω)\{0}

|u|p1

‖u‖ , K2 = sup
u∈W1,p

0 (Ω)\{0}

|u|p2

‖u‖ .

Suppose that Ci, i ∈ {0,1,2,3} are positive constants. We impose the following
hypotheses on a and f :
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(A1) a : Ω×R
N → R

N is a Carathéodory function;

(A2) |a(x,ξ )|� k0(x)+C0|ξ |p−1 , for a.e x∈Ω and for all ξ ∈R
N , where k0 ∈ Lp′(Ω) ;

(A3) (a(x,ξ )−a(x,ξ ′)) · (ξ − ξ ′) � C3|ξ − ξ ′|p for a.e x ∈ Ω and for all ξ ,ξ ′ ∈ R
N ;

(F1) f : Ω×R→R is sup-measurable, i.e x 	→ f (x,u(x)) is measurable in Ω whenever
u : Ω → R is measurable;

(F2) | f (x,s)| � k1(x)+C1|s|p1−1 , for a.e x ∈ Ω and for all s ∈ R , where k1 ∈ Lp′1(Ω) ;
(Q1) q : Ω×R → R is a Carathéodory function;

(Q2) |q(x,s)| � k2(x)+C2|s|p2−1 , for a.e x ∈ Ω and for all s ∈ R , where k2 ∈ Lp′2(Ω) ;
(Q3) (q(x,s)−q(x,s′))(s− s′) � 0 for a.e x ∈ Ω and for all s,s′ ∈ R ;

(FQ) s 	→ f (x,s)+q(x,s) is increasing for a.e x ∈ Ω .

Our main result is the following theorem:

THEOREM 1.1. Assume that the conditions (A1)-(A3) , (F1) -(F2) , (Q1)-(Q3)
and (FQ) are satisfied, then problem (1.1) possesses a weak solution u in the following
cases:

(i) 1 < p1, p2 < p,

(ii) p1 = p2 = p and C3−C1K
p1
1 −C2K

p2
2 > 0 ,

(iii) p1 = p, 1 < p2 < p and C3−C1K
p1
1 > 0 ,

(iv) p2 = p, 1 < p1 < p and C3−C2K
p2
2 > 0 ,

(v) p < p1, p2 � p∗ and |k0|p′ + |k1|p′1 + |k2|p′2 < ε , where ε is sufficiently small. More-
over, ‖u‖→ 0 as ε → 0 , keeping other constants Ci fixed.

Furthermore, if u is a subsolution of (1.1) then the above solution u can be chosen
in {w∈W 1,p

0 (Ω) | u � w} in cases (i) -(iv) . If (1.1) has a subsolution u such that ‖u+‖
is sufficiently small then the above solution u can also be chosen in {w ∈ W 1,p

0 (Ω) |
u � w} in case (v) .

As an example of functions satisfying all assumptions of Theorem 1.1, we may
take a(x,ξ ) = |ξ |p−2ξ , f (x,s) = |s|p∗−2s+ δg(x,s) and q(x,s) = 0, where

g(x,s) =

⎧⎪⎨
⎪⎩

0 if s < 0,

1/2 if s = 0,

1 if s > 0,

and δ is sufficiently small. In section 4, we will prove that the problem associated with
this example actually has a positive weak solution.

The next theorem is well-known in sub-super solution theory. For example, see
[7, 8] and references therein. In this paper, we will introduce a new and simple proof
using the fixed point theorem mentioned in [6].

THEOREM 1.2. Assume that conditions (A1) -(A3) , (F1)-(F2) , (Q1)-(Q3) and
(FQ) are satisfied and problem (1.1) has a subsolution u and a supersolution u satis-
fying u � u. Then (1.1) has a weak solution in [u,u] .
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2. Preliminaries

In this section, we recall some basic concepts and tools on ordered Banach spaces
which will be used in the sequel. See [6] for more details on these definitions and
notations.

The subset X+ of a normed space X is called an order cone iff the following are
true:
- X+ is closed, convex, nonempty and X+ 
= {0} ;
- If u ∈ X+ and α � 0, then αu ∈ X+ ;
- If u ∈ X+ and −u ∈ X+ , then u = 0.

A Banach space (normed space) (X ,‖ · ‖) endowed with a partial ordering � in-
duced by an order cone X+ by x � y iff y− x ∈ X+ is called an ordered Banach space
(ordered normed space).

Let X be an ordered normed space with the ordering � and the order cone X+ , P
be a subset of X , a be an element of P and {an} be a sequence in P . We say that:

- a is a sup-center (respectively, inf-center) of P if sup{a,y} (respectively, inf{a,y} )
exists and belongs to P for all y ∈ P ;
- P is (weakly) sequentially order compact if increasing and decreasing sequences of
P have (weak) limits in P ;
- P has the fixed point property if each increasing mapping G : P→ P has a fixed point;
- X is a Banach semilattice if X is an ordered Banach space satisfying ‖x+‖� ‖x‖ and
‖x−‖ � ‖x‖ for all x ∈ X where x+ = sup{0,x} and x− = inf{0,x} ;
- {an} is increasing (resp., decreasing) if an � am (resp., an � am ) whenever n � m ;
- {an} is bounded if there exists a constant C > 0 such that ‖an‖ � C for all n ∈ N ;
- X+ is a (weakly) fully regular order cone if each bounded and increasing sequence of
X+ is (weakly) convergent.

We also denote

B′
X(b,R) = {x ∈ X | ‖x−b‖� R} and [b1,b2]X = {x ∈ X | b1 � x � b2},

where b,b1,b2 ∈ X .
The following fixed point theorem is proved in [6]:

LEMMA 2.1. Let P be a weakly sequentially order compact subset of an ordered
normed space X having a sup-center or an inf-center. Then P has the fixed point
property.

We now introduce some concrete types of sets having the fixed point property
beside closed balls as in [6]. Lemma 2.2 bellow slightly generalizes [6, Corollary 2].

LEMMA 2.2. Let X be a Banach semilattice which is reflexive or has a weakly
fully regular order cone X+ and Y be a closed subspace of X . Moreover, assume that
for every x ∈ Y , we have x+ ∈ Y . Then any nonempty set P of the following types
possesses the fixed point property:
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(i) P = B′
Y (a,R), where a ∈ Y and R > 0 ,

(ii) P = B′
Y (a,R)∩{x ∈ X | b � x}, where a ∈ Y,b ∈ X and R > 0 ,

(iii) P = B′
Y (a,R)∩ [b1,b2]X , where a ∈ Y,b1,b2 ∈ X ,a � b2 and R > 0 .

Proof. Note that if X is reflexive then its order cone X+ is weakly fully regular.
Moreover, every set P of types (i) , (ii) or (iii) is a weakly closed subset of X because
it is convex and closed. Also, it is clear that P is bounded.

We show that P is weakly sequentially order compact. In order to do this, let
{xn} ⊂ P be an increasing sequence. Put yn = xn− x0, n = 1,2, . . . , then {yn} ⊂ X+ is
an bounded and increasing sequence, which weakly converges to some y because X+
is weakly fully regular.

Therefore, {xn} is also weakly convergent and its weak limit is y + x0 , which
belongs to P since P is a weakly closed subset of X . The case that {xn} is decreasing
can be done similarly.

We prove that a is a sup-center of P . Let y ∈ P then sup{a,y} = (y−a)+ +a .
In case (i) , from the Banach semilattice property, we get

‖sup{a,y}−a‖= ‖(y−a)+‖ � ‖y−a‖� R.

Moreover, sup{a,y} ∈Y since a,y ∈Y . Therefore, sup{a,y} ∈ B′
Y (a,R) = P .

In case (ii) , y ∈ P ⊂ B′
Y (a,R) , hence sup{a,y} ∈ B′

Y (a,R) from the above proof.
Moreover, b � y implies b � sup{a,y} . Therefore,

sup{a,y} ∈ B′
Y (a,R)∩{x ∈ X | b � x} = P.

In case (iii) , y ∈ P ⊂ B′
Y (a,R) , hence sup{a,y} ∈ B′

Y (a,R) from the above proof.
Moreover, b1 � y � b2 , and a � b2 , so b1 � sup{a,y} � b2 . Therefore,

sup{a,y} ∈ B′
Y (a,R)∩ [b1,b2]X = P. �

The following remark is useful in applications:

REMARK 2.1. For p > 1, Sobolev spaces W 1,p(Ω) are Banach semilattices with
the usual ordering and reflexive. Hence for X =W 1,p(Ω) and Y =W 1,p

0 (Ω) , all sets of
types (i) , (ii) or (iii) mentioned in Lemma 2.2 have the fixed point property.

3. Proof of Theorem 1.1 and Theorem 1.2

For u ∈W 1,p(Ω) and ϕ ∈W 1,p
0 (Ω) , we define

〈Au,ϕ〉 =
∫

Ω a(x,∇u) ·∇ϕ ,
〈Fu,ϕ〉 =

∫
Ω f (x,u)ϕ ,

〈Qu,ϕ〉 =
∫

Ω q(x,u)ϕ .

We call

- u ∈W 1,p
0 (Ω) a weak solution of (1.1) if 〈Au,ϕ〉 = 〈Fu,ϕ〉 for all ϕ ∈W 1,p

0 (Ω) ,
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- u ∈ W 1,p(Ω) a subsolution of (1.1) if u|∂Ω � 0 and 〈Au,ϕ〉 � 〈Fu,ϕ〉 for all
ϕ ∈W 1,p

0 (Ω)∩Lp
+(Ω) ,

- u ∈W 1,p(Ω) a supersolution of (1.1) if u|∂Ω � 0 and 〈Au,ϕ〉 � 〈Fu,ϕ〉 for all
ϕ ∈W 1,p

0 (Ω)∩Lp
+(Ω) .

Due to (A1)-(A3) and (Q1)-(Q3) , the operator A+Q : W 1,p
0 (Ω) →W−1,p′(Ω)

is bijective and if (A+Q)u � (A+Q)v then u � v . The reader may find detailed proofs
for these facts in the appendix.

Now, consider the operator G : W 1,p
0 (Ω) →W 1,p

0 (Ω) defined by

G = (A+Q)−1 ◦ (F +Q).

Then u ∈W 1,p
0 (Ω) is a weak solution of (1.1) if and only if u is a fixed point of G .

Moreover, from (FQ) , the operator F +Q is increasing. Therefore G is increas-
ing, too.

From now on, B′(u,R) denotes the closed ball in W 1,p
0 (Ω) of center u ∈W 1,p(Ω)

and radius R > 0.

Proof of Theorem 1.1. From the above arguments, all we have to do is to construct
P which has the fixed point property such that if v ∈ P then G(v) ∈ P .

We look for P of type P = B′(0,R) . This type of set has the fixed point property
by Lemma 2.2 and Remark 2.1.

Set u = G(v) , then (A+Q)u = (F +Q)v .
Choose ξ ′ = 0 in (A3) , s′ = 0 in (Q3) and using (A2) , (Q2) , we have

〈(A+Q)u,u〉=
∫

Ω
a(x,∇u) ·∇u+

∫
Ω

q(x,u)u

�
∫

Ω
(C3|∇u|p−|k0(x)|.|∇u|)−

∫
Ω
|k2(x)|.|u|

� C3‖u‖p− (|k0|p′ +K2|k2|p′2)‖u‖. (3.1)

From (3.1) and growth conditions (F2) , (Q2) on f and g , we have

C3‖u‖p−(|k0|p′ +K2|k2|p′2)‖u‖
� 〈(A+Q)u,u〉= 〈(F +Q)v,u〉
� |k1|p′1 |u|p1 +C1|v|p1−1

p1
|u|p1 + |k2|p′2 |u|p2 +C2|v|p2−1

p2
|u|p2

� (K1|k1|p′1 +K2|k2|p′2 +C1K1|v|p1−1
p1

+C2K2|v|p2−1
p2

)‖u‖ (3.2)

� (K1|k1|p′1 +K2|k2|p′2 +C1K
p1
1 ‖v‖p1−1 +C2K

p2
2 ‖v‖p2−1)‖u‖.

Therefore,

C3‖u‖p−1 � |k0|p′ +K1|k1|p′1 +2K2|k2|p′2 +C1K
p1
1 ‖v‖p1−1 +C2K

p2
2 ‖v‖p2−1

= M +C1K
p1
1 ‖v‖p1−1 +C2K

p2
2 ‖v‖p2−1,
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where M = |k0|p′ +K1|k1|p′1 +2K2|k2|p′2 .
We must find R > 0 such that if ‖v‖ � R then ‖u‖ � R . This property will be

satisfied if M +C1K
p1
1 Rp1−1 +C2K

p2
2 Rp2−1 � C3Rp−1 or p(R) � 0, where

p(t) = C3t
p−1− (C1K

p1
1 t p1−1 +C2K

p2
2 t p2−1 +M).

(i) If 1 < p1, p2 < p then p(R) � 0 for R large enough.

(ii) If p1 = p2 = p and C3 −C1K
p1
1 −C2K

p2
2 > 0 then limt→+∞ p(t) = +∞ . Thus,

p(R) � 0 for R large enough.

(iii) If p1 = p,1 < p2 < p and C3 −C1K
p1
1 > 0 then limt→+∞ p(t) = +∞ . Thus,

p(R) � 0 for R large enough.

(iv) This case is similar to (iii) .

(v) If p1, p2 > p then

p(t) = C3t
p−1− (C1K

p1
1 t p1−1 +C2K

p2
2 t p2−1) > 0

for all t ∈ (0, t0] where t0 > 0 is sufficiently small. Note that limt→0+ p(t) = 0.
If we fix t ∈ (0, t0] and choose k0,k1,k2 such that

|k0|p′ + |k1|p′1 + |k2|p′2 < (max{1,K1,2K2})−1p(t),

then M < p(t) and p(t) = p(t)−M > 0. It implies that for all ε small enough, we
can choose Rε > 0 such that if |k0|p′ + |k1|p′1 + |k2|p′2 < ε , then p(Rε) > 0. Moreover,
limε→0 Rε = 0.

The above arguments imply the existence of R > 0 such that if v ∈ B′(0,R) then
G(v) = u ∈ B′(0,R) .

Next, suppose that u is a subsolution of (1.1). We consider

P = B′(0,R)∩{w ∈W 1,p(Ω) | u � w}

with R obtained above. Note that

u+ ∈W 1,p
0 (Ω)∩{w ∈W 1,p(Ω) | u � w}.

In the cases of (i) -(iv) , we may choose R large enough if necessary. In case (v) , we
may choose u such that ‖u+‖ is small enough. Therefore, P is nonempty and P has
the fixed point property by Lemma 2.2.

Assume that v ∈ P , we prove that G(v) ∈ P .
Since v ∈ P ⊂ B′(0,R) , we have G(v) ∈ B′(0,R) from the above proof.
On the other hand, because u is a subsolution of (1.1) and u � v , we have

(A+Q)(u) � (F +Q)(u) � (F +Q)(v).

Thus, u � (A+Q)−1 ◦ (F +Q)v = G(v) . Therefore, G(v) ∈ P .
Theorem 1.1 has been proved completely. �
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Proof of Theorem 1.2. As before, we look for P of type P = B′(u0,R)∩ [u,u] such
that if v ∈ P then G(v) ∈ P . This type of set has the fixed point property by Lemma
2.2 and Remark 2.1.

Set u = G(v) , then (A+Q)u = (F +Q)v . From (3.2) and v ∈ [u,u] we have

C3‖u‖p−1 � M +C1K1|v|p1−1
p1

+C2K2|v|p2−1
p2

� M +C1K1(|u|p1 + |u|p1)
p1−1 +C2K2(|u|p2 + |u|p2)

p2−1,

which means that ‖u‖ is bounded by a positive number R0 independent of v ∈ [u,u] .
Choose u0 ∈W 1,p

0 (Ω)∩ [u,u] , R = R0 +‖u0‖ and set P = B′(u0,R)∩ [u,u] .
If v ∈ P then v ∈ [u,u] . Thus, ‖u‖ � R0 by the above proof. Therefore,

‖u−u0‖ � ‖u‖+‖u0‖ � R0 +‖u0‖ = R , i.e u ∈ B′(u0,R) .

On the other hand, from definition of u and monotonicity of F +Q , we have

(A+Q)u � (F +Q)u � (F +Q)v = (A+Q)u.

Thus, u � u .
Similarly, (A+Q)u = (F +Q)v � (F +Q)u � (A+Q)u . Thus, u � u .
Consequently, G(v) = u ∈ P , as desired. �

4. Quasilinear elliptic problems with critical exponents and discontinuous
nonlinearities

In this section, we study problem (1.2). Suppose that N � 3 and 2 � p < N , hence
p∗ < +∞ . Let C > 0 be a positive constant, we impose the following conditions on g :

(G1) g : Ω×R → R is sup-measurable;

(G2) liminfs→0+(g(x,s)/sp−1) = +∞ , uniformly in x ;

(G3) |g(x,s)| � Csp∗−1 , for a.e x ∈ Ω and for all s > 1;

(G4) g ∈ Lp∗/(p∗−1)(Ω) , where g(x) = sup0�s�1 |g(x,s)| for a.e x ∈ Ω ;

(H1) h : Ω×R+ → R+ is a Carathéodory function;

(H2) |h(x,s)| � Csp∗−1 , for a.e x ∈ Ω and for all s ∈ R+ ;

(H3) (h(x,s)−h(x,s′))(s− s′) � 0 for a.e x ∈ Ω and for all s,s′ ∈ R+ ;

(GH) s 	→ g(x,s)+h(x,s) is increasing for a.e x ∈ Ω and s ∈ R+ .

THEOREM 4.1. Assume that the condition (G1)-(G4) , (H1)-(H3) and (GH)
are satisfied. Then there exists a positive number δ0 such that (1.2) has a positive
solution uδ for all δ ∈ (0,δ0) . Moreover, ‖uδ‖→ 0 as δ → 0+ .
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Proof. We will apply Theorem 1.1 with a(x,ξ ) = |ξ |p−2ξ ,

f (x,s) =

{
|s|p∗−2s+ δg(x,s) if s � 0,

δg(x,0) if s < 0,

and

q(x,s) =

{
δh(x,s) if s � 0,

δh(x,0) if s < 0.

For δ > 0 small, by (G3) and (G4) we have | f (x,s)| � C′|s|p∗−1 + δg(x) for
some positive constant C′ . Therefore, (A1)-(A3) , (F1)-(F2) , (Q1)-(Q3) and (FQ)
are satisfied with k0 = k2 = 0, k1 = δg .

From (v) in Theorem 1.1, there exists δ0 > 0 such that problem (1.1) with a, f ,q
as above has a weak solution for all δ ∈ (0,δ0) and this solution converges to 0 as
δ → 0. In order to ensure that this solution is positive, and therefore, also a solution of
(1.2), we have to show that (1.2) has a sequence of positive subsolutions converging to
0 in W 1,p

0 (Ω) .
Let λ1 be the first eigenvalue and ϕ1 > 0 be a corresponding eigenfunction of the

eigenvalue problem −Δpu = λ |u|p−2u in Ω with zero Dirichlet boundary condition.

Setting uε = εϕ1 . We look for ε > 0 such that −Δpuε � up∗−1
ε + δg(x,uε) , or

equivalently, λ1(εϕ1)p−1 � up∗−1
ε + δg(x,εϕ1) .

By (G2) , there exists s0 > 0 such that g(x,s) � (λ1/δ )sp−1 for all s ∈ (0,s0) and
a.e x ∈ Ω . Thus, uε is a subsolution of problem (1.2) if ε ∈ (0,s0/|ϕ1|∞) .

Now the existence of a positive solution uδ to problem (1.2) and the convergence
of {uδ} follow immediately from Theorem 1.1. �

REMARK 4.1. Two trivial examples of g satisfying Theorem 4.1 are g(x,s) =
|s|q−2s with 1 < q < p and

g(x,s) =

⎧⎪⎨
⎪⎩

0 if s < a,

1/2 if s = a,

1 if s > a,

where a � 0.
We choose h ≡ 0 in both examples above.

5. Appendix

For the reader’s convenience, in this appendix we prove the fundamental facts in
theory of monotone operators saying that the operator A+Q is bijective and (A+Q)−1

is increasing. These facts are used in the proof of Theorem 1.1.

LEMMA 5.1. Assume that conditions (A1) -(A3) and (Q1) -(Q3) are satisfied,
then operator A+Q : W 1,p

0 (Ω) →W−1,p′(Ω) is bijective and if (A+Q)u � (A+Q)v
then u � v.
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Proof. Our proof has 4 steps.
Step 1. (A+Q is monotone) Let u,v ∈W 1,p

0 (Ω) , we have

〈(A+Q)u− (A+Q)v,u− v〉
=

∫
Ω
[a(x,∇u)−a(x,∇v)](∇u−∇v)dx+

∫
Ω
[q(x,u)−q(x,v)](u− v)dx

�
∫

Ω
C3|∇u−∇v|pdx

= C3‖u− v‖p,

by (A3) and (Q3) . Therefore, A+Q is monotone.

Step 2. (A+Q is hemicontinuous) Let u,v,w ∈W 1,p
0 (Ω) .

• We prove that: limt→0〈A(u+ tv),w〉= 〈Au,w〉 .
Setting ht(x) = a(x,∇u(x)+ t∇v(x))∇w(x), t ∈ [−1,1] .
By Young’s inequality, we have

|ht(x)| � 1
p′
|a(x,∇u(x)+ t∇v(x))|p′ + 1

p
|∇w(x)|p.

On the other hand, by (A2)

|a(x,∇u(x)+ t∇v(x))|p′ � (|k0(x)|+C0|∇u(x)+ t∇v(x)|p−1)p′

� 2p′ |k0(x)|p′ +2p′Cp′
0 |∇u(x)+ t∇v(x)|p

� 2p′ |k0(x)|p′ +2p+p′Cp′
0 |∇u(x)|p +2p+p′Cp′

0 |∇v(x)|p.
Therefore,

|ht(x)| � h(x),

with

h(x) =
2p′

p′
|k0(x)|p′ + 2p+p′Cp′

0

p′
|∇u(x)|p +

2p+p′Cp′
0

p′
|∇v(x)|p +

1
p
|∇w(x)|p.

From the hypothesis, we have h ∈ L1(Ω) .
We have |ht(x)|� h(x), ∀t ∈ [−1,1] and limt→0 ht(x) = a(x,∇u(x))∇w(x) for a.e

x ∈ Ω . By Lebesgue’s dominated convergence theorem, we conclude that

lim
t→0

〈A(u+ tv),w〉 = 〈Au,w〉.

• Similarly, we have: limt→0〈Q(u+ tv),w〉 = 〈Qu,w〉 .
• From the above proof,
limt→0〈(A+Q)(u+ tv),w〉= 〈(A+Q)u,w〉 , i.e A+Q is hemicontinuous.

Step 3. (A+Q is coercive) From (3.1), for u ∈W 1,p
0 (Ω)\ {0} we have

〈(A+Q)u,u〉
‖u‖ � C3‖u‖p−1− (|k0|p′ +K2|k2|p′2

)
,
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i.e A+Q is coercive.
Applying Browder’s theorem in [4], from steps 1, 2 and 3 we conclude that A+Q

is surjective.

Step 4. (Assuming that (A + Q)u � (A + Q)v , we prove that u � v) By the hy-
pothesis, we have

〈(A+Q)v− (A+Q)u,ϕ〉� 0, ∀ϕ ∈W 1,p
0 (Ω)∩Lp

+(Ω).

Choose ϕ = (u− v)+ as a test function and put Ω+ = {x ∈ Ω | v(x) � u(x)} , we
have

0 �
∫

Ω
[a(x,∇v)−a(x,∇u)]∇(u− v)+dx+

∫
Ω
[q(x,v)−q(x,u)](u− v)+dx

=
∫

Ω+
[a(x,∇v)−a(x,∇u)]∇(u− v)dx+

∫
Ω+

[q(x,v)−q(x,u)](u− v)dx.

Thus,∫
Ω+

[a(x,∇v)−a(x,∇u)](∇v−∇u)dx+
∫

Ω+
[q(x,v)−q(x,u)](v−u)dx � 0.

On the other hand, by (Q3) we have:∫
Ω+

[q(x,v)−q(x,u)](v−u)dx � 0,

and by (A3)∫
Ω+

[a(x,∇v)−a(x,∇u)](∇v−∇u)dx � C3

∫
Ω+

|∇v−∇u|pdx

= C3

∫
Ω
|∇(u− v)+|pdx

= C3‖(u− v)+‖p.

Thus, (u− v)+ = 0, i.e u � v .
Next, suppose that (A+Q)u = (A+Q)v , the above proof implies that u � v and

v � u . So A+Q is injective. �
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