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CONCENTRATION COMPACTNESS PRINCIPLES FOR

THE SYSTEMS OF CRITICAL ELLIPTIC EQUATIONS

DONGSHENG KANG

(Communicated by Darko Žubrinić)

Abstract. In this paper, some important variants of the concentration compactness principle are
established. By the variants, some kinds of the elliptic systems can be investigated and the
existence of nontrivial solutions to the systems can be verified by the variational methods.

1. Introduction

In this paper, we are concerned with the variants of the concentration compactness
principle ([17, 18]), which are important in the study of some elliptic systems.

In recent years, the elliptic problems involving the critical Sobolev or Hardy-
Sobolev exponents have been studied extensively (e.g. [1], [4], [5], [7], [9], [10], [11],
[15], [20], [21], [23] and the references therein), where the concentration compactness
principles have played a key role. The systems of elliptic equations involving critical
exponents have been also studied (e.g. [2], [3], [6], [12], [14], [19] and the references
therein). However, the variants of concentration compactness principle related to criti-
cal elliptic systems can not be found and some difficulties have appeared in the investi-
gations of these systems. In this paper, on the basis of the ideas by Lions ([17, 18]), we
verify some kinds of concentration compactness principle for elliptic systems.

To continue, the following assumption is needed:

(H1)

{
N � 3, 1 < p < N, η ,λ ,σ � 0, η + λ + σ > 0,

α,β > 1, α + β = p∗ := Np
N−p .

Let D1, p(RN) be the completion of C∞
0 (RN) with respect to (

∫
RN |∇u|p dx)1/p .

Under the assumption (H1) , by the Young and Sobolev inequalities, the following best
constant is well defined on D := (D1,p(RN)\ {0})2 (e.g. [14], [16]):

S(η ,λ ,σ) := inf
(u,v)∈D

∫
RN

(|∇u|p + |∇v|p)dx(∫
RN

(η |u|p∗ + λ |v|p∗ + σ |u|α |v|β )dx
) p

p∗
. (1.1)
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The main results of this paper are summarized in the following theorem. To the
best of our knowledge, the conclusions are new when η ,λ ,σ > 0.

THEOREM 1. Suppose that (H1) holds. Let {(un,vn)} be a bounded sequence in
(D1, p(RN))2 such that {(un,vn)} ⇀ (u,v) weakly in (D1, p(RN))2 , {|∇un|p + |∇vn|p}
converges weakly to μ and {η |un|p∗ + λ |vn|p∗ + σ |un|α |vn|β} converges tightly to ν,
where μ and ν are nonnegative bounded measures on R

N . Denote by δx the Dirac
mass at x. Then:

(i) there exist an at most countable set J and two families {x j} j∈J ⊂ R
N and

{ν j} j∈J ⊂ [0,+∞) such that

ν = η |u|p∗ + λ |v|p∗ + σ |u|α |v|β + ∑
j∈J

ν jδx j ;

(ii) there exists {μ j} j∈J ⊂ [0,+∞) such that

μ � |∇u|p + |∇v|p + ∑
j∈J

μ jδx j ,

satisfying

(ν j)
p
p∗ � μ j/S(η ,λ ,σ), ∀ j ∈ J.

REMARK 1. Suppose that {un} ⊂ L1(RN). Then {un} is called a tight sequence,
if for any ε > 0, there exists R > 0, such that∫

RN\BR(0)
|un(x)|dx < ε, ∀n ∈ N.

The convergence of {un} ⊂ L1(RN) is called converging tightly, if {un} is a tight
sequence. On the other hand, since μ is a nonnegative bounded measure on R

N , from
Theorem 1 (ii) it follows that

∑
j∈J

(ν j)
p
p∗ � (S(η ,λ ,σ))−1 ∑

j∈J
μ j � (S(η ,λ ,σ))−1

∫
RN

dμ < ∞.

This paper is organized as follows: Theorem 1 is proved in Section 2, some vari-
ants and applications of Theorem 1 are given in Section 3.

2. Proof of Theorem 1

The proof of Theorem 1 follows the idea similar to that of [17] and some prelimi-
nary results are needed.

LEMMA 1. (see [17], Lemma 1.2) Let μ ,ν be two nonnegative bounded mea-
sures on R

N satisfying for some constant C0 � 0,

(∫
RN

|ϕ |p∗dν
) 1

p∗ � C0

(∫
RN

|ϕ |pdμ
) 1

p
, ∀ϕ ∈C∞

0 (RN). (2.1)
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Then there exist an at most countable set J and two families

{x j} j∈J ⊂ R
N and {ν j} j∈J ⊂ [0,+∞)

such that
ν = ∑

j∈J
ν jδx j and μ � C−p

0 ∑
j∈J

(ν j)
p
p∗ δx j . (2.2)

Thus, in particular,

∑
j∈J

(ν j)
p
p∗ < ∞. (2.3)

If in addition: ν(RN)
1
p∗ �C0μ(RN)

1
p , J reduces to a single point and ν = γδx0 =

γ−
p
p∗ Cp

0 μ for some x0 ∈ R
N and γ � 0.

LEMMA 2. Assume that u,v ∈ D1, p(RN), J is an at most countable set, {x j} j∈J

is a set of distinct points in R
N and {ν j} j∈J is a set of nonnegative real numbers such

that ∑ j∈J(ν j)
p
p∗ < ∞. Then the measure ν = η |u|p∗ + λ |v|p∗ + σ |u|α |v|β + ∑ j∈J ν jδx j

is the tight limit of a sequence {η |un|p∗ + λ |vn|p∗ + σ |un|α |vn|β} , where {(un,vn)}
converges weakly in (D1, p(RN))2 to (u,v) .

Proof. Take ϕ(1),ϕ(2) ∈C∞
0 (RN) such that∫

RN

(
η |ϕ(1)|p∗ + λ |ϕ(2)|p∗ + σ |ϕ(1)|α |ϕ(2)|β )

dx = 1.

Otherwise, set∫
RN

(
η |ϕ(1)|p∗ + λ |ϕ(2)|p∗ + σ |ϕ(1)|α |ϕ(2)|β )

dx =: C > 0.

Replacing ϕ(i) by ϕ(i) := ϕ(i)/C 1/p∗ , i = 1,2, we have ϕ(1)
,ϕ(2) ∈C∞

0 (RN), and∫
RN

(
η |ϕ(1)|p∗ + λ |ϕ(2)|p∗ + σ |ϕ(1)|α |ϕ(2)|β )

dx = 1.

Then for all x0 ∈ R
N ,n ∈ N , ϕ(i)

n (x− x0) := n
p−N

p ϕ(i)( x− x0
n ) satisfies∫

RN
|∇ϕ(i)

n |pdx =
∫

RN
|∇ϕ(i)|pdx, i = 1,2,

∫
RN

(
η |ϕ(1)

n |p∗ + λ |ϕ(2)
n |p∗ + σ |ϕ(1)

n |α |ϕ(2)
n |β

)
dx = 1,

ϕ(i)
n −⇀n 0 weakly in D1, p(RN), i = 1,2.

Furthermore, for any x �= x0, i = 1,2, |ϕ(i)
n | → 0 as n → ∞. Then

η |ϕ(1)
n |p∗ + λ |ϕ(2)

n |p∗ + σ |ϕ(1)
n |α |ϕ(2)

n |β −→n δx0 .
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For any finite J′ ⊂ J, define

ψ(i)
n (x− x j) := ∑

j∈J′
(ν j)

1
p∗ ϕ(i)

n (x− x j),

where Suppϕ(i)
n (x− x j) are disjoint for j ∈ J′. Then we have

∫
RN

|∇ψ(i)
n |pdx = ∑

j∈J′
(ν j)

p
p∗

∫
RN

|∇ϕ(i)|pdx � ∑
j∈J

(ν j)
p
p∗

∫
RN

|∇ϕ(i)|pdx,

∫
RN

(
η |ψ(1)

n |p∗ + λ |ψ(2)
n |p∗ + σ |ψ(1)

n |α |ψ(2)
n |β

)
dx = ∑

j∈J′
ν j,

η |ψ(1)
n |p∗ + λ |ψ(2)

n |p∗ + σ |ψ(1)
n |α |ψ(2)

n |β −→n ∑
j∈J′

ν jδx j ,

ψ(i)
n −⇀n 0 weakly in D1, p(RN), i = 1,2.

Increasing J′ to J and by a diagonal procedure we obtain a sequence ψn such that
∫

RN
|∇ψ(i)

n (x)|pdx � ∑
j∈J

(ν j)
p
p∗

∫
RN

|∇ϕ(i)(x)|pdx,

∫
RN

(
η |ψ(1)

n |p∗ + λ |ψ(2)
n |p∗ + σ |ψ(1)

n |α |ψ(2)
n |β )

dx −→n ∑
j∈J

ν j,

η |ψ(1)
n |p∗ + λ |ψ(2)

n |p∗ + σ |ψ(1)
n |α |ψ(2)

n |β −→n ∑
j∈J

ν jδx j tightly,

ψ(i)
n −⇀n 0 weakly in D1, p(RN), i = 1,2.

Finally we set un = u+ ψ(1)
n , vn = v+ ψ(2)

n . Then one can checks that {(un,vn)} has
the required properties. Furthermore,

|∇un|p + |∇vn|p −→ |∇u|p + |∇v|p+
(∫

RN

(|∇ϕ(1)|p + |∇ϕ(2)|p)dx
)

∑
j∈J

(ν j)
p
p∗ δx j .

The proof is thus complete. �

PROOF OF THEOREM 1. For convenience, we denote positive constants as C .

Case (i) : u = v = 0.
For all ϕ ∈C∞

0 (RN) , from (1.1) it follows that

(∫
RN

|ϕ |p∗(η |un|p∗ + λ |vn|p∗ + σ |un|α |vn|β )dx
) 1

p∗

� (S(η ,λ ,σ))−
1
p

(∫
RN

(|∇(ϕun)|p + |∇(ϕvn)|p
)
dx

) 1
p
. (2.4)
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Note that

lim
n→∞

(∫
RN

η |ϕ |p∗(|un|p∗ + λ |vn|p∗ + σ |un|α |vn|β )dx
) 1

p∗ =
(∫

RN
|ϕ |p∗dν

) 1
p∗

and

∣∣∣(∫
RN

(|∇(ϕun)|p + |∇(ϕvn)|p)dx
) 1

p−
(∫

RN
|ϕ |p(|∇un|p + |∇vn|p)dx

) 1
p
∣∣∣

� C
(∫

RN
|∇ϕ |p(|un|p + |vn|p)dx

) 1
p
. (2.5)

Since ϕ ∈ C∞
0 (RN) , by the Rellich theorem ([22]), we deduce that the right hand side

of (2.5) goes to 0 as n → ∞. Then from (2.4) and (2.5) it follows that

(∫
RN

|ϕ |p∗dν
) 1

p∗ � (S(η ,λ ,σ))−
1
p

(∫
RN

|ϕ |pdμ
) 1

p
, ∀ϕ ∈C∞

0 (RN), (2.6)

which together with Lemma 1 implies the conclusions of Theorem 1.

Case (ii) : u �= 0 or v �= 0.
Set un = un−u, vn = vn− v. From the Brezis–Lieb lemma ([7]) it follows that∫

RN
|ϕ |p∗ |un|p∗dx−

∫
RN

|ϕ |p∗ |un|p∗dx −→
∫

RN
|ϕ |p∗|u|p∗dx,

∫
RN

|ϕ |p∗|vn|p∗dx−
∫

RN
|ϕ |p∗ |vn|p∗dx −→

∫
RN

|ϕ |p∗|v|p∗dx.

Arguing as in [12] we have∫
RN

|ϕ |p∗ |un|α |vn|β dx−
∫

RN
|ϕ |p∗ |un|α |vn|β dx −→

∫
RN

|ϕ |p∗ |u|α |v|β dx.

Since {(un, vn)} is bounded in (D1, p(RN))2 , and {|un|p∗} , {|vn|p∗} and {|un|α |vn|β}
are tight, by Lemma 2 we have

ν = η |u|p∗ + λ |v|p∗ + σ |u|α |v|β + ∑
j∈J

ν jδ j.

Passing to the limit as n → ∞ in (2.4) and applying the Rellich theorem, we deduce for
all ϕ ∈C∞

0 (RN) that

(∫
RN

|ϕ |p∗dν
) 1

p∗ (S(η ,λ ,σ))
1
p

�
(∫

RN
|ϕ |pdμ

) 1
p +C

(∫
RN

|∇ϕ |p(|un|p + |vn|p)dx
) 1

p
. (2.7)

Choose ϕ ∈ C∞
0 (RN) such that 0 � ϕ � 1, ϕ(0) = 1 and Suppϕ = B(0,1). For all

ε > 0 and j ∈ J, applying the Hölder inequality and (2.7) with ϕ( x−x j
ε ) , we have

(ν j)
1
p∗ (S(η ,λ ,σ))

1
p − (μ(B(x j,ε)))

1
p
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� C
ε

(∫
B(x j ,ε)

|∇ϕ(
x− x j

ε
)|p(|un|p + |vn|p)dx

) 1
p

� C
ε

(∫
B(x j ,ε)

(|un|p + |vn|p)
p∗
p dx

) 1
p∗

(∫
B(x j ,ε)

|∇ϕ(
x− x j

ε
)|Ndx

) 1
N

� C

((∫
B(x j ,ε)

|un|p∗dx
) p

p∗ +
(∫

B(x j ,ε)
|vn|p∗dx

) p
p∗ dx

) 1
p

,

which implies that μ({x j}) � 0 and

μ � (ν j)
p
p∗ S(η ,λ ,σ)δx j , ∀ j ∈ J,

μ � ∑
j∈J

(ν j)
p
p∗ S(η ,λ ,σ)δx j =: μ1.

By the weak convergence we have μ � |∇u|p + |∇v|p. From the fact that |∇u|p + |∇v|p
and μ1 are orthogonal, we conclude Theorem 1.

3. Some variants and applications

We now study some variants of Theorem 1. The following assumption is needed:

(H2)

{
N � 3, 1 < p < N, η ,λ ,σ � 0, η + λ + σ > 0, 0 � t < p, τ < τ ,

1 < α,β < p∗(t)−1, α + β = p∗(t).

Consider the following Hardy and Hardy-Sobolev inequalities ([8], [13]):
∫

RN

|u|p
|x− ξ |p dx � 1

τ

∫
RN

|∇u|p dx , ∀u ∈C∞
0 (RN), ξ ∈ R

N , (3.1)

(∫
RN

|u|p∗(t)
|x− ξ |t dx

) p
p∗(t)

� C(t)
∫

RN
|∇u|pdx, ∀u ∈C∞

0 (RN), ξ ∈ R
N , (3.2)

where C(t) is a positive constant depending on t , τ = ((N− p)/p)p is the best Hardy
constant and p∗(t) = p(N− t)/N− p) is the critical Hardy-Sobolev exponent.

Under the assumption (H2), by (3.1), (3.2) and the Young inequality, the follow-
ing best constant is well defined on D = (D1,p(RN)\ {0})2 (e.g. [14], [16]):

Sη,λ ,σ (τ, t) := inf
(u,v)∈D

∫
RN

(
|∇u|p + |∇v|p− τ

|u|p + |v|p
|x|p

)
dx

(∫
RN

η |u|p∗(t) + λ |v|p∗(t) + σ |u|α |v|β
|x|t dx

) p
p∗(t)

.

Note that Sη,λ ,σ(0,0) = S(η ,λ ,σ) .
By the argument of [17, 18] and the proof of Theorem 1, we obtain the following

Theorems 2 and 3, the variants of Theorem 1. The proofs are omitted.
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THEOREM 2. Suppose (H2) holds and t = 0 . Let {(un,vn)} be a bounded se-
quence in (D1, p(RN))2 such that:

{(un,vn)} ⇀ (u,v) weakly in (D1, p(RN))2,

{|∇un|p + |∇vn|p} converges weakly to μ ,{ |un|p + |vn|p
|x|p

}
converge tightly to ω ,{

η |un|p∗ + λ |vn|p∗ + σ |un|α |vn|β
}

converge tightly to ν,

where μ ,ω and ν are bounded nonnegative measures on R
N . Then:

(i) there exist ω0,ν0 ∈ [0,∞), an at most countable set J and two families {x j} j∈J ⊂
R

N \ {0} and {ν j} j∈J ⊂ [0,+∞) such that

ω =
|u|p + |v|p

|x|p + ω0, ν = η |u|p∗ + λ |v|p∗ + σ |u|α |v|β + ν0 + ∑
j∈J

ν jδx j ;

(ii) there exist μ0 ∈ [0,∞), {μ j} j∈J ⊂ [0,+∞) such that

μ � |∇u|p + |∇v|p + μ0 + ∑
j∈J

μ jδx j ,

(ν0)
p
p∗ � (μ0 − τω0)/Sη,λ ,σ (τ,0),

(ν j)
p
p∗ � μ j/Sη,λ ,σ(0,0) = μ j/S(η ,λ ,σ), ∀ j ∈ J,

and therefore

∑
j∈J

(ν j)
p
p∗ < ∞.

THEOREM 3. Suppose (H2) holds and t > 0 . Let {(un,vn)} be a bounded se-
quence in (D1, p(RN))2 such that:

{(un,vn)} ⇀ (u,v) weakly in (D1, p(RN))2,

{|∇un|p + |∇vn|p} converges weakly to μ ,{ |un|p + |vn|p
|x|p

}
converge tightly to ω ,

{η |un|p∗(t) + λ |vn|p∗(t) + σ |un|α |vn|β
|x|t

}
converge tightly to ν,

where μ ,ω and ν are bounded nonnegative measures on R
N . Then:

(i) there exist ω0,ν0 ∈ [0,+∞) such that

ω =
|u|p + |v|p

|x|p + ω0, ν =
η |u|p∗(t) + λ |v|p∗(t) + σ |u|α |v|β

|x|t + ν0δ0;



442 DONGSHENG KANG

(ii) there exists μ0 ∈ [0,+∞) such that

μ � |∇u|p + |∇v|p + μ0, (ν0)
p

p∗(t) � (μ0− τω0)/Sη,λ ,σ (τ, t).

Theorems 1-3 are crucial for studying elliptic systems. For example, consider the
following problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lu = |u|2∗−2u+
σα

α + β
|u|α−2|v|β u+a1u+a2v,

Lv = |v|2∗−2v+
σβ

α + β
|u|α |v|β−2v+a2u+a3v,

u,v ∈ H1
0 (Ω),

(3.3)

where Ω ⊂ R
N is a smooth bounded domain such that:

0 ∈ Ω, L := −
(

Δ ·+τ
·

|x|2
)
, σ � 0, α,β > 1, τ <

(N−2
2

)2
,

α + β = 2∗, 2∗ :=
2N

N−2
is the critical Sobolev exponent,

the space H1
0 (Ω) denotes the completion of C∞

0 (Ω) with respect to (
∫

Ω |∇ · |2 dx)1/2 ,

ai > 0, i = 1,2,3, a1a3−a2
2 > 0, 0 < λ1 � λ2 < Λ1(τ),

where λ1 and λ2 are the eigenvalues of the matrix

A :=
(

a1 a2

a2 a3

)
,

and Λ1(τ) is the first eigenvalue of the operator L on H1
0 (Ω). The energy functional

of (3.3) is defined on H1
0 (Ω)×H1

0 (Ω) by

J(u,v) :=
1
2

∫
Ω

(
|∇u|2 + |∇v|2− τ

u2 + v2

|x|2
)
dx− σ

2∗

∫
Ω
|u|α |v|β dx

− 1
2∗

∫
Ω

(|u|2∗ + |v|2∗)dx− 1
2

∫
Ω

(
a1u

2 +2a2uv+a3v
2)dx.

Applying Theorem 2 with p = 2, we can verify the following local (PS)c condition.

LEMMA 3. J(u,v) satisfies the (PS)c condition for all c < 1
N (S1,1,σ (τ,0))

N
2 .

Furthermore, by the variational arguments we can investigate the nontrivial solu-
tions to (3.3) (e.g. [14]).
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Theorem 3 is also useful in studying the elliptic systems related to (3.1) and (3.2).
For example, consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Lu =
σα

2∗(r)
|u|α−2|v|β u

|x|r + η
|u|2∗(s)−2u
|x− ξ1|s +a1u+a2v,

Lv =
σβ

2∗(r)
|u|α |v|β−2v

|x|r + λ
|v|2∗(t)−2v
|x− ξ2|t +a2u+a3v,

(u,v) ∈ H1
0 (Ω)×H1

0 (Ω),

(3.4)

where Ω ⊂ R
N (N � 3) is a bounded domain with the smooth boundary ∂Ω such that

the points 0,ξ1,ξ2 ∈ Ω, L = −(Δ ·+τ ·
|x|2 ), η , λ ,σ � 0, a1,a2,a3 ∈ R, 0 < r,s,t < 2,

1 < α,β < 2∗(r)− 1, α + β = 2∗(r), τ < τ , 2∗(r),2∗(s) and 2∗(t) are the critical
Hardy–Sobolev exponents. Applying Theorem 3 with p = 2, we can verify that the
energy functional corresponding to (3.4) satisfies some kinds of local (PS)c conditions
and therefore the existence of nontrivial solutions to (3.4) can be investigated.
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