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THE ADMB-KDV EQUATION IN ANISOTROPIC SOBOLEYV SPACES

AMIN ESFAHANI

(Communicated by Pavel I. Naumkin)

Abstract. Considered herein is the anisotropic dissipation-modified Boussinesq-KdV equation
which is a two-dimensional version of the KdV equation. It is established that the Cauchy prob-
lem associated to this equation is locally well-posed in anisotropic Sobolev spaces H*!*2(R?),
forall s; > —1/2 and s, > 0. A global existence result for this equation will be obtained under
suitable conditions.

1. Introduction

In this work, we consider the anisotropic dissipation-modified Boussinesq-KdV
(ADMB-KdV) equation

ut+uxm—|—2uux—|—[.1(um+uwcx—i—y&f(uz)—uyy) =0, (1.1)

where u > 0 and y are real constants, and u = u(x,y,t) is real-valued function. The
ADMB-KdV equation (1.1) arises in modeling anisotropic systems such as the nonlin-
ear waves generated by a long-wave instability in a viscous film flowing down an in-
clined rigid surface [1, 5]. In the case of an isotropic system (e.g., Béenard-Marangoni
waves), the problem is governed by the dissipation-modified Kadomtsev-Petviashvili
equation which was treated by the author in [15]. Equation (1.1) can be considered as
a two-dimensional dissipated generalization of the KdV equation,

Uz + Uy + 1ty = 0. (1.2)

The KdV equation arises in modeling for one-dimensional long wavelength surface
waves propagating in weakly nonlinear dispersive media [6, 16, 30], as well as the
evolution of weakly nonlinear ion acoustic waves in plasmas [29]. Equation (1.1) is
also a natural two-dimensional version of the KdV-Kuramoto-Sivashinsky (KdV-KS)
equation

ut+uxxx+uux+u(uxx+uxxxx) = 0, (13)
which arises in interesting physical situations, for example as a model for long waves

on a viscous fluid flowing down an inclined plane [28] and to derive drift waves in a
plasma [12].
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The aim of this paper is to establish local and global well-posedness to the initial
value problem for (1.1). The notion of well-posedness will be the usual one in the con-
text of nonlinear equations, that is, it includes existence, uniqueness, persistence prop-
erty, and continuous dependence upon the data. In the last decade, Bourgain developed
a new method to study the Cauchy problem for nonlinear dispersive equations which
was successfully applied to several dispersive equations such as Schrodinger, KdV and
KP-II equations [8, 9, 7]. See also [19, 20]. One of the particularity of this method
is to use special Fourier transform restriction spaces strongly related to the symbol of
the associated linear equation. Concerning the Cauchy problem for the KdV equation,
Bourgain [8] showed the well-posedness in H*(R) for s > 0. Then Kenig, Ponce and
Vega [19] proved the local well-posedness of equation (1.2) in H*(R) for s > —3/4.
The L?-conservation of the solutions of (1.2) leads to the global well-posedness in
H*(R) for s > 0. Note that some global existence results have been obtained by Col-
liander, Staffilani and Takaoka [13] for special initial data in Sobolev spaces of negative
order.

In [22, 23, 24], Molinet and Ribaud introduced some Bourgain-type spaces in
proving the well-posedness for the KdV-Burgers (KdVB) equation

Up + Uy + ULy = Uy (1.4)
and for the Kadomtsev-Petviashvili-Burgers (KPB) equation
(tt - thex + Uty — Uyy)x + Eltyy = 0, e==+1. (1.5)

The their main ideas are to use a fixed point argument in suitable Bourgain-type spaces
adapted to both linear parts, dispersion and dissipation, of the equation.

In this work, we will apply the ideas of [22, 23, 24] and prove the local existence
for the initial value problem associated to (1.1) with initial value ¢ € H*12(R?) when
s1 > —1/2 and s, > 0. More precisely, similar to [22, 23, 24], following, we introduce
a Bourgain-type space associated to the linear part of (1.1). This space is in fact the
intersection of the space introduced in [8] and of a Sobolev space. The advantage
of this space is that it contains both the dissipative and dispersive parts of the linear
symbol of (1.1). See [1, 2, 3, 4, 10, 14, 18, 21, 26, 27, 31] and references therein for
discussions and examples of the dispersive and dissipative equations. We also show
that the associated Cauchy problem is globally well-posed in H*1*2(R?) for y =0
51 > —3/2 and s, > 0. We should also note that the method used here may be applied
for more general types of equations (which contain both the dissipation and dispersion,
seee.g. [11, 17, 25]).

This paper is organized as follows. In Section 2, we introduce some notations
and our main results. In Section 3, we derive linear estimates and some smoothing
properties for the operator arising from (1.1) in the Bourgain spaces (Lemma 2). Section
4 is devoted to establish bilinear estimates. In Section 5, using bilinear estimates, a
standard fixed point argument and some smoothing properties, we prove the existence
of a unique solution of (1.1) in the anisotropic Sobolev space H*1*2 with s; > —1/2
and so > 0; and also the local solution of (1.1), when y = 0, extends globally in time
in H*1°2 with sy > —3/2 and s, > 0.
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2. Notations and main results

For the simplicity, throughout the paper we assume that y =1 (if y# 0) and
1 = 1. Before stating our main result, we introduce our notations that are used in this

paper.
We denote (-) =1+ |-|. The notation A S B means that there exists a constant
C > 0 such that A < CB. Similarly, we will write A ~ B to mean A < B and A 2 B.

For n € N, we denote by ¢ the Fourier transform of ¢, defined as
P(0)= | o()e ™ dr
Rn

For b,s;,s € R, we denote H® = H*(R), H? = H’(R) and H*'*2 = H*1*2(R?) as
the nonhomogeneous Sobolev, the homogeneous Sobolev and the anisotropic Sobolev
spaces, respectively, defined by:

H = {9 € ' (R): 9l = (DB (D)]],2 <=},
H = {9 € Z®): 9l = TP (2)] 12 < oo},

2 = {p € 7 (®): ollann = &) M=BEM g, <.

Let U(¢) be the unitary group in H*1*2(R?), 51,5, € R, defined by the free evo-
lution of the KdV equation, i.e. U(r) = e'% . We also denote by

4 2 2
V(t) _ eft(Qx +0y 78},)’ t>0,

the semigroup associated to the linear part of equation (1.1) that we extend to a group
on R by

V(o) f = (ei53t*\t\(54*52+n2)f(5’n)>v’ Vi € R.

We note that solving equation (1.1) with the initial data u(x,y,0) = @(x,y) is equivalent
to solve the following integral equation

u(t) :V(t)(p—/(:V(t—t’)f(u)(t’)dt’, 1)
where £(u) = (1) + ()

Actually, to prove the local existence result, we shall apply a fixed point argument
to the following truncated version of (2.1)

u(t) =00 (Voo — [ V=) 6rf))ar). 22
where 6 is a cutoff function satisfying

0eCy(R), 0<6<1, supp(f)C[-2,2], and O6=1 on [-1,1] (2.3)
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and
t
or(1)=0(+),
r (1) T
forany T > 0. We note that if u is a solution of (2.2), then & = u| jo,r) Will be a solution
of (2.1)in [0,T].

Following [8], we introduce a Bourgain-type space which is in relation with both
the dissipative and dispersive parts of (1.1) at the same time. We define this space by

Zbsvs — {ue S(R3) - llutl| pobsysy < oo}
equipped with the norm

il 2 = || (2 = &%)+ (64 = €2+ 02)" (€)1 (m)2ia(& . ) .4

L2(R3)
For all T > 0, we define the localized space associated 3&”7{’ #152 as the set of all func-
tions u : R? x [0,7] — R such that [l 515y < o2, Where
T
ll] 052 = Jnf {IV]l vy = v(t) = u(r) on [0,T]}.

Now we state our main existence results.

THEOREM 1. Let 51 > —1/2, 50 >0 and s} € (—1/2,min{0,s,}], then for all
¢ € HV%2(R?), there exists T = T(||(pHHS/1>0(R2)) such that T(p) — +eo as p — 0,

and a unique solution u € EKTI /25152 of the initial value problem associated to equation
(1.1) with initial data u(x,y,0) = @(x,y). Moreover, we have

u e C([0,T;H 2 (R*)NC((0,T); H(R?)) (2.5)
and the map
S HV2(RY) — 237 AC(0,TEH M (RY), @—u,  (2.6)

is smooth. Furthermore, if ¢ € H152 (Rz) with s’1 > 51 and s’2 > 55, the result holds
with s and s} instead of 51 and sy, respectively, in the same time interval [0,T] with

T =T([loll g1 m2))-
The following theorem give us a global existence under suitable conditions.
THEOREM 2. Let Y =0 and ¢ € H*"*2(R?) for s; > —3/2 and s, > 0. Then

the local solution u of the initial vale problem associated to equation (1.1) with initial
data u(0) = @ extends globally in time.
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3. Linear estimates
In this section we study the linear operator 6V .
LEMMA 1. Let s € R, then
10V @)@l 512510 S @12 3.1
for every @ € H*1)%2,
Proof. Let @ € H*1*2 and { = (£,m). Then we have

H e(t)v(t)(PH %l/Zﬁsl#sz

= [ - g+ € =g +ny) @ (e E S Ip(0) |,
:H<€>\1 \2 H T é (é é2)+n2>1/2(e(t)e*|t|(54*§2+712))/\’ s
Lz iz
<IN+,
(3.2)
where 12
1= [ @rrm= (& -0 8 O)llec 0z |,
¢
2= @ )2@)lisc)l e,
and
g¢(r) = B(n)e 1E =&, (3.3)

First we estimate I'. We consider two cases:

={§>Vv2} and L ={|§<V2}.
Contribution of I} to I'. In this case, we have * — £2+n? > 2, then we can obtain
N 1 < 1
N e e S il
Contribution of I} to I'. In this case we divide I3 into two regions

Ly ={IEI<V2, In|>V2}

) < He—m(é“—52+n2>

gl

and
I, = {[&],|n] < V2}.
Contribution of I}, to I'. Since n? > 2, similar to the previous case, we get

1
<
”gC”L2 ~ <§4_€2+n2>1/2'
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Contribution of I, to I'. When &,1 € I, we have |£* — &2 + n?| < K, for some
K > 0 (independent of & and 7). Thus we obtain

1
A

8¢l < He""'llequ,z]) SIS

Then, we deduce that
' <@l (3.4)

Now we are going to estimate /2. We consider two cases:
B={§|>Vv2} and L={|§<V2}.
Contribution of I} to I*. By using the Young inequality, we see that
gl = [1(2)!/28 (e HEE M) (1)) 5
~ -~ 4 g2, 2 ~ -~ 4 g2, 2
S I8y eI 81y ]y e )
1
< <1.
RGEEET T

Contribution of I3 to I*. In this case we divide 3 into two regions I}, and I, as
defined above. The contribution of 71, to I? is similar to the contribution of 1, to I'.
Contribution of I, to I*. Since |&|,|n| < V2, then | — &2+ n?| <4. Thus we have

47 .
lecllpre < goﬁll\tlfe(t)llf,;/z ISR
e

since ' '
IHtVO(t)IIH;/z < e o)y < s

for j > 1. Therefore we obtain that
P <@l (3.5)
Thus, the proof is completed. [

The following lemmas will be useful in proving some smoothing properties in the
Bourgain spaces for the operator t +— [V (t —1') f(¢)dt’.

LEMMA 2. Let w € ./ (R3). Define kg on R by

eim’ — e_‘t‘(§4_§2+n2) R

ke (1) = 6(1) /R g AT (3.6)

Then it holds for all { € R? that
[T+t =2+ R (0| | S ||iT+ &t &2t 2(g,7)

w(,7)|
+, e

17
(3.7)
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Proof. We decompose k¢ into

k() = e@)(/ _ Tl S ode

f<1iT+E4—E2+1n?

1 — e ll(&*=&*+n?) R ;
/\TI<1 iT+E4—-E24n2 w(g,7)dt

ehr
_— W , T dt
+/T|>l IT+§4—§2+T]2W(C )

S
_/\rl>1 mw(c,r) r)
=L +h+5L+1, (3.8)

then we examine the different contributions of (3.8) on the left hand side of (3.7).

Contribution of 1. Since |t| > 1, we have

e A1)

L
< (/R<ir+§4—§2+nz>§t§(7)2d1> (/R <ir+;(f7g2)|+nz>)2’

where g¢ is defined in (3.3). Exactly the same computations as in Lemma 1 lead us to
. 4 g2 2 2
/(114—5 -&°+n9) ‘?C(T)’ dr < 1.
R

We conclude then that

[w(&,7)|
< /]R < . (3.9)

[ir+et =o)L 2 [ e m

Contribution of I;. Since

L=0() (%%{rm}) (1),
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we use the Young inequality to obtain that

|(iT+&4 = 2+ m2) 2R (x)

Lz

(iT+ & =& 40 26(1) o (ir/vjr(géfixélgilnz) o

Wfﬁmwvw(”ﬁifzﬁf¢>ﬁ>

~ w(C,T) X 21
+H|9|(T)*T/ <i7’+54—52+n2>(r)
w(C,T)x=1
iT/+€4_€2+n2 L

w(¢, = (S, 1) 172
< Laree gt (Lmres grm®)

Contribution of I, . First, note that
<( weal
2 \Jr (it +&4—E24+1?)

(iT+&* =&+ (G(t)(l - e—\t\(€4—§2+n2))> " (o)

Lz

12
(3.10)

2
w(C,T) e =1
i +84=82+n? |2

S 18112 1611
T

[T+ &4 = &2+ n%) B (r)

(3.11)

L3
Since

/‘ fit+&* =&+

d<i[it+84 = &2+ n?)

_/ dt +/ dt
i<t \ir+é4 E24n22 Jig< [it+E4—E2+ 2|

1
+
”/ 72+ &2+n> &t =&+
1 T 1
STETEre T ) tE e
~ g —5 +n%Jo 1+ (m—grmyy) 84 =&2+n?" |81 =&+ n?
S
84 =&+ 7
We deduce from (3.11) and the Cauchy-Schwarz inequality that

SCP 1/2
a5<éaﬂiéeg+n%“>

(it + &4 — g2 )12 (O(t)(l - e—ltl<€4—é‘2+n2))>A’

T+ &4 = &2+ n%) B (r)
1

X—

E—E+

L3
(3.12)
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Next, we consider two different cases. If (§,1) € {|§| >2}U{|n| > 2}, then we have
£4-82+m* 21,50

(it+&* =& +n)'/? (O(t)(l - e*ltl(ékéhnz)))“ (1)

Lz
S8l +(E* = &2+ 1) 21101l + llge e
+(&* = &2+ ") gl

SRVAISE S P

which implies together with (3.12) that

W(E,7)2 2
L%§</R<ir/+§4—§2+n2>df) . (313)

If |E| <2 and |n| < 2, then |E* — £2 + 12| < 4 and we have

[iT+&4 = &2+ n%) 2B (v)

(iT+)!/2 (9(z)(1 - eflt|<54752+n2>)> M (7)

Lz
< Hg(;)(l _e*\t\(é“f.ﬁunz))HHl/z. (3.14)

Then by an argument similar to Lemma 1, we get

IZN

_ e HE-gn)
He(:)u e Mo

4 g2
<3 B o)

j=1
2 2
— &4+ 7
§|€4_§2+n2‘2|é é n‘
j=0 ]
<lEt =& +n,

which together with (3.12) and (3.14) also implies (3.13) in this case.
Contribution of I;. Since I; can be rewritten as

(itt)/

= e(t)~/|T<j>21 (i1+54_§2+n2)j!w\(cvr)7

we deduce from the Cauchy-Schwarz inequality that

H<ir+§4—é2+n2>1/2ﬁl<r>

Lz

<yl (ntfe Vet <54—é2+n2>||rfe<z>||Lz)

J>1

[T/ |W(&, )|
X - dt
/\rl<1 lit+&4—E2+n?|
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" 2 1/2
S/ (€ =82+1?) (/R <i7.'+|§§€’?2|+ n2>d1>

it & -2+nd) "7

- </|f<1 it+ et -2+ ‘“)
w(C,7)

Vit+E =2+ n?)

<

(3.15)

’
2
Lz

where we used the inequality

dr < .
f<t it+84=E82+m22 Y (E4-&2+1?)

Then, combining (3.8), (3.9), (3.10), (3.13) and (3.15), we get (3.7) which concludes
the proof of Lemma 2. [

/ it +E4—E2+n?) 1
\

LEMMA 3. Let s;,50 € R. Then

He(z) /0 V(=)

/2515
1/2
L {25 U= ol )
< o 2s1 2s9 / ‘( )
NHVH%I/Z“)I“)Z_'_ (/Rz<€> <n> < R<i7+§4—§2+n2>d1 dC 9
(3.16)
forall ve . (R?). Moreover forany 0 < 8 < /1/2,
t
He@) [va—iwirar <l g v2r01m (3.17)
0 3{1/2‘,.?15.?2
forall ve 7 (R3).
Proof. Tt suffices to prove (3.16). Define
w(-,1) =U(=t)v(-,1) € Z(R?). (3.18)
‘We obtain from Fubini’s theorem and the Fourier inverse formula, that
t
0 / V(e —w(e)de = U (1) (ke (1)), (3.19)
0

where k¢ is defined in (3.6). Then by using (3.18) and (3.19) and Lemma 2, we deduce
that

loe) /O V(- )(e)dr

/2515
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= @ m|l e+ &4 - &2+ n2) 2R ()

P -

W, 28 1/2
+</R <ir+§4(fg2)|+n2>dr) ) 2

s 52 (|U(_I)V)/\(C,T)| 2 1/2
Sl + ([ @02 e (L Oar) a)

2
I

A

This completes the proof of (3.16). [J

PROPOSITION 1. Let 51,550 €ER and 0 < & < 1/2. Then, forall f € 1248182
we have

t
£ / V(e — ) f(e)di' € C(R*; HHH401m+28) (3.20)
0

where 8§ = 61 + 6. Moreover,

H/(:V(t—t/)f(t/)dt’

< N S92 3.21
C([0,T);H12) ~ ||fH3LV' 1/2+8,51.5 ( )

Proof. Define g(x,y,t) = U(—1)f(-,#)(x,y). Since U is a strongly continuous
unitary group in H*12(R?), it is enough to show that

t , —
F(§,) it € RY s ()10 2120 [ om0 oy g ar

is continuous in Lé (R?), when

(©)1 )y it+&* - &2+ n)"*0g(¢, 1) € L(RY).

Similar to (3.19), we can compute, using the Fourier inverse transform in time and
Fubini’s theorem, that

ol T _ o—1(E4-E24n?)

F(G0) =@ my= | 005 g dr

Fix t) € R" and define forall r € R,
H(E,t):=F({,t)—F(Ct0)
_ 51+40; 52+25/ g\(c—?’r)
<§> <n> Ri7+54—§2+n2
% {eim _ el _ o180 4 o —n0(E4 677 ] g7,
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We will use the Lebesgue dominated convergence theorem to show that

lim HH(’I)HLZ(RZ) =0. (3.22)
11—t
First we note that
limh(C,1,0)=0,  ae. (¢,7) e R, (3.23)
—ly
where
__ &E1) T it _ o—t(E4-E24m?) | o—1o(E4-E24n?)
METN = e 77— e —e te . (3.24)

Moreover, since t — ty, we can suppose that 0 <7 < T, and then

h ,T7t < 2 t/4 t0/4 |§(C7T)| < ‘g\(C7T)| . 325
h(E,7,1)| < (2+€""+e )\ir+§4—(§2+n2|N\i1+(§4—€2+n2\ ( )
We deduce from the Cauchy-Schwarz inequality that
8(¢,7)l
- dr
rliT+E* = &2+
(it +&*—&>+n?)'20 8(¢,7)
ST E T || e e ey
By our hypotheses on g, we know that
5 2
251 2S2 ‘g(C7T)| de <+oo
/Rz<§> <n> /l‘@ <iT+§4_52+n2>1726 c ‘
Hence,
18(¢,7)| 8(¢&,7)
dt < 3.26
A S e TME] v enr s I

for almost every § € R2. We use (3.23)-(3.26) and the Lebesgue dominated conver-
gence theorem to conclude that

limH(¢,1) =0, ae. (eR% (3.27)

t—ty
Next we show that there exists G € L?(R?) such that

[H(E,0)| <[G(E)], (3.28)

forall { € R? and r € RY.
When |[£| >2 and || > 2, we get from the Cauchy-Schwarz inequality and (3.25)
that
|H(C.1)]
< <€>s1+451 <n>s2+262 <iT+ 54 - 52 + 772>1/273
& [EREEEEY

8(8,7)
<iT+§4_ §2+n2>1/2—5

L

L
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Since £*—E2+n% > 2,

<ir+§4_§2+n2>1/276
it &%= &2+

Lt

1 1/2 - -
: </]R ir+(§4—(§2+n2|1+26d7) (&) ).

Now by using the hypotheses our g, we have for all 7 € R that

8. 1)
<iT+€4— €2+n2>1/2—5

[H(E,0)] S (8)"(m)™

L7
which proves (3.28) in this case. When || < 2 and |n| < 2, then we have
‘54_§2+n2| 527

SO

Hn) < / 205, 7)] ) HE-E24m) _ g—to(§*~E2+n?)
R [T+ = &2+ n?
8(8,7)]
R [iT+84— &2+ 17
—[+11.

irT irgT

et —e dt

We first estimate /1. It follows from the Cauchy-Schwarz inequality that

11 < |t —1o

e (R,

|7[|g(&,7)] 28, 7)]
i<t [iT+ &4 — €2+n2\d7+2/|

S <<ir+§4§_(%2r_)|_2nz>1—25 dr)m
) [</Tl<l |T|1_25dr) : " </|T>1<T>_l_26dr) 1/2]

8¢, 7)P KR
<(< dr) € LX(R?).

~ iT+§4—§2+n2>1_25

To estimate I, we use again use the Cauchy-Schwarz inequality to see that

~, 2 1/2
r<—nl( [ n e dt) -

: 4 2 2\1-26 1/2
" /<n'+é &) )
R [iT+E4—E24+n?2?

=1 it + 84— &2+ 12|

471
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Hence
1/2
: 4 g2 2\1-28
/<lr'+€ & +n’) = -
kit & &2 2P

| 1/2 | 1/2
=~ . d / dt
</R lit+&*—&2+n?? T) +< R [iT+&*— 2402|1420 )
1 1

+ .
|§4_§2+n2| ‘§4_§2+n2|6

~
~

Then, since |E* — £% + 12| < 2, we conclude that

~ 2 12
< </R <i1+(§lg_(c§7214)_|n2>125 dT) € L*(R?).

Thus (3.28) holds in this case. The proof of (3.28) for the cases {|§] < 2,|n| > 2} and
{I€] = 2,|n| < 2} is similar as above. We use (3.27), (3.28) and the dominated con-
vergence theorem to prove (3.22) which concludes the proof of Proposition 1. Estimate
(3.21) follows exactly by the same computations. [

Then, we will derive a linear estimate to obtain a contraction factor T# in the
proof of Theorem 1.

LEMMA 4. For all sy,s, € R, forall T >0 and for all 0 < 0 < 1/2, we have
that

160wl 1/216515 STOIW] 1242801y, VW€ 22T, (3.29)

Proof. By duality, it suffices to prove
167v]| 122550 STOV] pijpssysys  WwE ZV28780702 0 (330)

Let J = 1—97 and J, = 1 — 9. First, by using the definitions of 27712 and the
unitary group U, the fact that U is a unitary group, the Holder inequality and the
Sobolev embedding theorem, we observe that

107 ros s = 0507wl 2 gy = 10770520 (—)l 2

ST 20 OV s

S T -

which implies
1607v]| gro—s STV 22U prijpss,  WvE 227075, (3.31)

~
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On the other hand, we have

107 VI| 41220 S 7= EX20E) O (£, T) | 2qes)

+ (& = E2 4+ (L, 1)l ey
=I1+1I.

By applying the Plancherel identity, we see that
1= (€ = &2+ ) 22 ) 0r (Dl iz ey
<& = E24mA 23 T8, Dl gy
To estimate 1, it is enough to show that

/\é;*rﬁ(r)|2|1—a\l’25dr,§/ ()Pt —al'"?®dr,  VaeR.
R R

By using again the Plancherel identity and the Leibniz rule for fractional derivatives,
we obtain

o ~, _ 1/2-6, —i
187 2 5(1) T — al 27| o = |D}* " (T by v) 12

i 1/2—6 1/2-6, —j
S e vy 2000 |3 + (|07 e 1Dy 0 (7 ) |2,

S lle~vp 22 6r |2, + |[5(x) [T — a2 2.

To estimate Hei“’thl 2=%g, |2 » we use the Holder inequality and the Hardy-Littlewood-

Sobolev theorem and obtain
i 1/2-6 i 1/2—-6
letvDy "~ 0r |z < [l vl v |01 6r | 2020
1/2—-6, —i 1/2—-6
S o Tt I

Now by using the Hausdorff- Young theorem, we derive

1/2-5 o 2/(1428)  \ 1/2+8
e O N e T R

~12/(1428 1/2+8
< ([ [ereme] ) s
R

Finally an interpolation gives (3.30). [

4. Bilinear estimates

In this section, we derive the crucial bilinear estimate to prove the local existence
result.
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THEOREM 3. Let 51 > —3/2 and s, > 0, then there exists 6 > 0 such that
||(uv)x||gg*1/2+5>51~ﬁz 5 HMH&VI/ZJIJZ Hv”ggl/lxwz' (4-1)

Proof. By duality, it suffices to prove that for all s; > —3/2 and s, > 0, there
exists 0 > 0 such that
LS 2y gl sy 1l 2r3y. (4.2)
where

E1E) ()2 {io + &% — &2+ n*)° 2 F (& mi, )8 (&, M2, w)A(E, T) d

e G (niy(ion + & — B2+ ) G (ma) (o + & — B2+ m3) 1/ (4v;5)

and
dVZdCdeCIdfly Cz(gan)7 T=17T—1, C2:C_Cla
c=1-8, oy=1-&, o=1-&.
Moreover, we can assume that s» = 0 since in the case s» > 0 we have

(M < (M) (m—m)*™, vn,m eR.

Case —3/2 <51 <0. Let s =57 = —3/2+¢, where 0 < £ < 3/2; and choose 0 <
0 < . A symmetry argument shows that it is enough to estimate the contribution to /
of the following subset of R:

Q={(1,71,5,51) €R® : [o1] > |oa[}.
Now we divide Q into QUQ;, where
Qi =Qn{(r.7.6,0) R’ 1 ] >4},
Q=Qn{(r,71,8,5) €R® : || < 4}.
Case 1. Contribution of Q; to /. We divide €, into two regions:
Q=in{(r,n,6, &) €R® 1 &) <2/&},
Ot =Qin{(r,n1,6, &) €R® : [§] > 26}

Case 1.1. Contribution of Q! to 7. Denote by I] the contribution of this region to 1.
We show that

12
H< sup (16Lm) A2 Il 2 1] 2.
(61,m1)€R? 4.4)

S OISl 2w 8l 23y 1]l 12m3y

where

JH(&m) =

T T . B S A

(ioy+ & — &2 +n? (E2)32¢(ioy + &F — &7 +n3)
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We divide Q! into two regions:
Q' =Qln{(7,7,{,{) eR® : |&| > 2},

QP2 =0{n{(1,71,{,&) €RC ¢ |&] <2}

Case 1.11. Contribution of Q!! to 1. Since |&;| > 2, then we have that

(io1+&f — &7 1) 2 (&0)* 2 (o) 7o/4 (g, “5)
2 (&) (o) 17O g )3, '
<i6+§4—§2+n2>1725 Z <G>1/275/8723<n>1+£/4 (4.6)
and
(i024+& — &5 +n3) Z (02) /412 (&) 2 (4.7)
so that
g < dédr
b~ Jan (o)) (-0)/4(E)I+e (gy) /4+e/2 () 1/2-¢/8-25 (1) 1+e/4

- dzd{ <1
~ Jr3 <6>1+£/8—25<§>l+e<n>l+e/4 ~

where |G| = min{|c|,|02]}.
Case 1.12. Contribution of Q!? to . Similar to (4.5)-(4.7), we have

Sl < 1 / dédr
b (io) + & + n2)1/4+e2 Jor (E)1-2¢(0y) (i0 4 E4 — £2 —n2)1-28

- 1 / dfdr

~ <€1>1/4+s/2—s’<01>e’ Q{z <§>1_28<02><§4+772>1_25
- dfdr <1

~ Jr3 <5>1+8/<5>1748/<€4+712>1725 ~

where & =¢/(2(n+1)),for n>> 1.
Case 1.2. Contribution of Q7 to 1. We divide Q? into the following two regions:

Q2! :Q%ﬁ{(LTI,QCl) ERS : loi| > |o]},

QP =01n{(1,71,4,5) €R® : |o1| < |o]}-

Case 1.21. Contribution of Q2! to 7. In Q3!, we have |£| ~ |&]| and |&| > 2. Thus
we divide Q3! into two subdomains:

QM =0 n{(1,71,4,5) € RO ¢ & ] =2},

Q2 =0t n{(1,71.¢,51) € R ¢ & <2}
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Case 1.211. Contribution of Q?!'! to I. In this case, we have
G-&+mzé+ni 2t

Therefore, we obtain

. 4 g2 212861
s - 41214 2/ 1<210~+§ 45 +2n>214 zdCdr
(ioy+ &+ ni)/arel2 Joan (E)128 (i0y + & — EF 4 m3) 1 /4+e/
dgdr

A

/Qzu (o1) 1/4+£/2<§>1728<62>(178)/4<§4>38/4<G>1/272578/8<n>l+£/4

A

dgdr <1
/]R3 l 26+¢/8 ?g’>l+e<n>l+e/4 ~
Case 1.212. Contribution of Q22 to 1. Since || < 1, then we obtain

< 1 / dgdr

~ <Gl> 9%12 <€>1728<02>(1_8)/4<€4>3£/4<G>1/2_25_8/8<n>1+£/4
- dfdr <1
~ Jr3 <6>7/4_25_38/8<§>1+£<T]>1+8/4 ~

Case 1.22. Contribution of Q%z to 1. We show that for I 122 , the contribution of the Q%z
to 1,

12
< sup (SPE0) Az gl e 1Al 2 e
(¢,7)eR? (4.8)

Y&l 23y 17l 22 (m3y

where

2 _ £
b (g2 (o + E4—E24-n2)1-28
(&) (8)

x /sz (io1 + &} —EE+ni)(ion + &F — &3 +13)

dcldTl.

We divide Q32 into the following two regions:
QP' =0 N{(¢,6,7.m) €R : | <2},
Q7 = 0P n{(§, 61, 1,m) €R : my| > 2}

Case 1.221. Contribution of Q%?! to . If |§;| < 2, It is readily seen that

21« (io+&*—&>+n?)*!

/ ~ <§>1 2e

/ / / (ioy + & — &7+ n3)~V/4¢2d1dy
ml<2 /i 1<2 Jr (ioy +&F—E2+n)
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If |&;| > 2, then

1
IS ()2 (ic + £ _E2 1 n2)1-2

/ / / (ioy+& — &7 +n3)~/*#/%dgidy
Im|<2 /)& <2 /R 101+§f_§12+n12>1/4+8/2
</ drid§,

~ 2 <02>5/4+e/2—26<51>2

<1.

Case 1.222. Contribution of Q3?2 to I. In this case we have
G-g+nizéi+ni=1
Therefore if |£;| < 2, then

4717

1 ~ <€>1_28<G>1/2_25 L%zz <i01 _’_514 _ 512+n12><10-2 _’_524 _ 522+n22>1/4+8/2

dndty <1
~ Jr2 <n12><02>5/4728+s/2 ~

while for |&;| > 2 we have

/222 < 1
Lo~ g) 28 (i 4+ E4 — 24 n2)1/2-28
< io++& — & +n3) Ve ddn
o2 (io) ++&F — EF 4+ nf)l/Are2
</ d{idr
~ Jr3 <€1>1725<G>3/4—26<€f1+nl2>1/4+s/2<62>1/4+e/2<§1>s

Case 2. Contribution of €, to /. We show that (4.4) holds by proving that

(Er)* 2 / (&) 2oy + &1~ E2 4 )20

T o +Ei - Jo, (€ E(om+Ei-E2+nd)

is bounded. First we note that if |&;| < 6 and || < 2, then J, < 1. Now if [&]| <

and |n| > 2, then |&| < 1 and we see that

WS dudn <L
®? (01)(02)(0)1/2720-¢(n)1+2¢

If || > 6 and |n| <2, then |&] > 2 and

J2 f,/ dr <.
R <01>1/4+8/2<62>1/4+5/2<G>1/2*25

(4.9)

6
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Finally, || > 6 and |n| > 2, then |&;| > 2 and consequently we have

5h< dtdn <1
~ Jr2 (01)V/4+e/2(,) 1 /4212 () 1/2-28-¢/8 () 1+2¢/4 ~

Case s > 0. By using again the fact (£)* < (&;)%(&,)*, for all s > 0, it suffices to
prove (4.2) for s = 0. By symmetry one can assume that |01| > |02|. We prove that
J <1, where J is defined in (4.9). First we consider the case |&| > 4. We also assume
2|&1| > |&|. Hence |&;| > 2 and

J< 1 (&%)

" {io & =& D) /R ot 8B rmilior e e

< 1 / dgdr

~ o+ & - EF )2 Jrs (o) (io + £ — 2+ m2) 1720
</ dfdr <L

~ R (09)3/2(E4 — E2 4 2)1-28

If 2|&;| < |&| holds, then €] ~ |&| > 2 and

< 1 / d¢dr
~ (o) Jrs (iop + & — £ +m3) V2 (ic + &4 — 2 4+ n2)1-20
</ dfdr <1
~ Jrs (0)32(E4 — E2 4 2)1-26 ~

Next we consider the case || < 4. If || > 4, then

dCdr d¢dr
N <L 4.10
(o1) /g|<4/RZ (02)(n2)1-26 ~ Jr2 (5,)2(n2)1-26 ~ (4.10)
while for |n| <4 we get
dCdT d¢dr
<1 4.11
(o1) /.f;\<4/n|<4/ (07)(o)1-28 S R (0)2(G)1-20 ~ (4.1D)

This completes the proof of Theorem 3. [

THEOREM 4. Let 51 > —1/2 and s, > 0, then there exists 6 > 0 such that

||(uv)xx||%7l/2+8 S8 ~S HMH%I/ZH 82 || H%I/Z_sl 8 (412)

Proof. We follow the same strategy as in the proof of Theorem 3. By duality,
estimate (4.12) is equivalent to prove that for all s; > —1/2 and s, > 0, there exists
6 > 0 such that

IS ||fHL2(R3)||g”L2(R3)HhHLZ(R3)v (4.13)
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where

EP(E) (m)2 (i +&* — &2+ n*)° 2 f (& mi, 7)g (&2, M2, 2)A(E, T) dv

~ Jes (&)1 () (o1 + EF — EZ+ ) (&) ()2 (ion + & — &2+ n%>l/§4 1;1)

and
dv=dfdtdidn, (=(E,n), n=t-1u, HL=0-(,

c=1-&, o =71-&, o=1-&.
Moreover, we can assume that s, = O since in the case s, > 0 we have
()2 < (n1)*2(n—m)", vn,m e R.

Case 0 > s; > —1/2. We can write s =51 = —1/2+ ¢, where 0 < € < 1/2. Choose
0 < 8 < €. By a symmetry argument, it is enough to estimate the contribution to I of
the following subset of R:

Q={((,7,5,1) €R® : |01 > |}
Now we divide Q into the following regions:
Q ={({n.0,m) €R® : [§] >4, [§]<20&]},
Q={((,7,81,m) €R® : [§] >4, €] > 2/, |o1] > |o]},
Q= {({7.01,m) €R® : [§] >4, [§]>2(&1], o] > o]},

Q4:{(CaT7CIaTI) €R6 : ‘€| <4}

Case 1. Contribution of Q; to 1. Denote by I; the contribution of this region to 7. We
show that

I < sup (11(51771))1/2||fHL2(R3)HgHLz(m)HhHLz(w),
(1,m)eR3 (4.15)

< Cl Sl @s)llgl 2@ 171l 2 @)
where

@
(io1 + &/ =& +np)

(EH)(Ea)' 2
g /91 (E)12(i0y + & — E3 +n3)(iop + &4 — E2+ n2)1-20 dfdr.

We note thatin Q; we have |&| > |£|/2 > 2 and so that * — &2 ~ & and &' — E2 ~
&}'. First we consider the case |&| < 2. Then we have

NS5 4 i 2\3/d+e/2
<IGI+€1_€1+TI1>/+£/
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<€4>3/4+£/2
S e v T L
- d¢dr
S Je o o) (@ g ) 2e

</ _ d¢dr <1
~ Jgs (G)1TE (E4— E2 4 g2)1-26-¢ ~

where 0 < € < 1 is small enough and |G| = min{|o], \02\}
If the case |&| > 2 holds, then &} — & +n3 ~ &} +n3 > 1. Thus we get

7 < 1 / <€>3+28<i6+€4_€2+n2>25_1d§d1
N0+ & ) oy (o0 + 8 = & ng) e
< d¢dr
~ RS iy + & — E2 +m3)3/41e/2(io + E4 — E2 4 q2)1-28
< dfdt -

~ Jr3 54_,_” 3/4+¢€/4— 28< >1+£/4N ’

where |G| = min{|c|,|02]}.

Case 2. Contribution of Q; to I. Consider €, in the integral of J; (instead of Q)
and denote it by J,. In this case, we have |&| ~ |&| = |&| and |&] = 2. If || > 2,
then it is straightforward to see that

< 1 / <§4>3/4+£/2<i6+€4_€2+n2>26_1dgd1-
TG+ & G R Joy o+ & - &)
d¢dr d¢dr

< <
R3 <G>3/4+5/2<i6+§4+n2>1*2‘5 ~ Jp3 <G>1+s/4<€4+n2>3/4726+e/4 SL

Next suppose that || < 2. Then we get

1 <§4>3/4+£/2
BS / . T . d¢dr
(01) Ja, (i0y + EF — E2 4 n2)3/4+e/2(ic + EX — E2 4 n2)1-28
< dédr < dgdr

<1,
~ Jr3 (0)(io + E4 — E2 4 n2)1-28 7 Jp3 (g)1HE (E4 4 n2)1-20-¢

where 0 < £ < 1 is small enough.

Case 3. Contribution of Q3 to /. For this case, we prove that for /3, the contribution
of the Q3 to I,

B< sup (7(5,0) Al 8l @) 1Al @)
(C.1)eR? (4.16)

< Clfllz@s)llgl s 17l 2@,
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where
(&
(EVI-2¢ (i + E4 — E2 4 2)1-28
x/ (1)1 28 (5y)! 2
Q, (io1+ &} =& +ni)(iox + &' — &7 +n3)

If |&;| <2, we have

H3 =

didr;.

342¢e
f3 5 <i6+€4<§>€2+n2>126

></ dcldfl
o (o1 + & = EE+ni)(i0a + & — &F +n3)3/4+e/

TRV
& <2/ m <2 /R 61 1 26 101"‘61 5124-7712) ~

while for [&| > 2 we get &} — 2+ n? 2 1 and consequently

dgidr

PP Ly U SR B
3N
Q3

(ic+E+—E24n2)1-20 Ja, (o) + &} — EF +ni)3/4+e?
</ d&dr <1
~ Jgr3 <Gl>1—25<0-1>3/4<§14+n12>3/4+g/4 ~

Contribution of Qq to [ is followed by the same lines of the proof of Theorem 3.
The proof of case s > 0 is similar to Theorem 3 and we omitit. []
5. Proof of the local well-posedness
Now we are ready to prove our local well-posedness result.

Proof of Theorem 1. For ¢ € H1*2(R?), with 51 > —1/2, s} € (0,min{0,s;}],
sp >0 and T <1, we define

Lr(u)(t) = 6(7) <V(t)<P - /OIV(I —t')(GTf(u))(t')dt') ; (5.1)

where f(u) = (%), + (%), Our goal is to use the Picard fixed point theorem to find
a solution I'r (u) = u.
We introduce the Bourgain spaces defined by

zv={we 22 ulz = Jull sy +llul] 120 }

and
= {I/L € ‘%[1/27”’0; ”uHZz = HMH%I/Z‘SII‘O +€2HMH551/2>51>0}7
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where
ol 190
ollgss’ ||(pHHA,1‘O
The goal to introduce two Bourgain spaces is to show in a first time that there exists

Ty = T(||@]ys,.0) and a solution u of (5.1) in a ball of Z;, and then to solve (5.1) in Z,
in order to check that the time of existence T = T(||(pHHA,/1‘0) with s € (0,min{0,s}].

4

We note that by Theorems 3 and 4, it is readily seen that

”(”V)x+ (MV)xxH&r—l/2+6,.rlA,s2 5 H”H5&,1/2‘3”1‘0”VH%UZ»H»Q + H”H%I/Zﬂwz HVH%I/ZJII‘O

Fllull g2 oIVl a2y 18l /2. VI gr1/2.510-
(5.2)

A classical argument, similar to [22, 23, 24] and using Lemmas 1, 3 and 4 and inequality
(5.2), we deduce the existence and the uniqueness of the solution for (5.1).

The continuity of map @ — u from H*'*2 to 2'/25152 follows from classical
argument, while the continuity and regularity from H*1*2 to C(]0,T],H*1-*2) follows
again from Proposition | and the bilinear estimates. The analyticity of the flow-map is
a direct consequence of the implicit function theorem. [

We also prove the global well-posedness for the initial value problem associated
to equation (1.1), under suitable conditions.

Proof of Theorem 2. First one can observe that when ¥ = 0, Theorem 1 holds for
the initial data ¢ € H*1*2 with s; > —3/2 and s, > 0, by Theorem 3. Now we define

T* =T([[¢llgsr2)) by

= sup{T >0 : 3!solution of (1.1)

belongs to C([0, T]; H*1*2(R2)) N 2/ *1*2 with initial data (p}.

Since u is smooth, we deduce that u solves the Cauchy problem (1.1) with u(0) = @,
in a classical sense. This allows us to take the L? scalar product of (1.1) with u and
integrate by parts to obtain

1d 1
Ea“”(t)”iz(ngz) = _HMXXHi2(R2) - <MJOC7M>L2(]R2) - H”y”iZ(RZ) < ZHHH%Z(RZV (5.3)

where we used the Cauchy-Schwarz inequality. Thus by the Gronwall inequality, we
deduce the following a priori estimate

@) ll22) < I@ll2ore”™ * =M, Vi e (0,17). (5.4)

When s = 0, since the time existence 7 is a decreasing function of the norm of the
initial data ||y|;2g2) such that T — +eo when [y/|[;2z2) — 0, we know that there

exists a time 7j > 0 such that for all y € L*(R?), with [|y]|;2(g2) < M, there exists a
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unique solution v of (1.1) satisfying v(0) = y and v € C([0,T1];L*(R?)) N 2" 1/200,
Now, choose 0 < T < T, apply this result with y = u(T* — €) and define

~n_ Jou(r), t€0,T* —¢g],
u(t)_{v(t—T*+£)7 te[T*—eT*—e+T. -5

Then, by the uniqueness result, # is a solution of (1.1) in the time interval [0,7* — & +
T1]; so that T* cannot be finite.

When —3/2 < s; <0, we can argue the same: the smoothness property implies
that the solution u belongs to C((0,7*);L*(R?)) and v € 2°1/200 ¢ 27'1/251%2 con-
sequently we can apply the uniqueness result also in this case. When s; > 0, the result
is a direct consequence of the case s; = 0 and the fact that the time existence only
depends of [|@[2g2). O
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