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EXISTENCE OF POSITIVE SOLUTIONS FOR A
FOURTH ORDER DIFFERENTIAL INCLUSION

DANIEL C. BILES AND JOHN S. SPRAKER

(Communicated by Sotiris K. Ntouyas)

Abstract. We prove an existence result for positive solutions of a fourth order differential inclu-
sion. The proof is accomplished through the use of Green’s functions and a fixed point theorem.
One of the technical assumptions is explored in detail.

1. Introduction and statement of the main results

In this article, we prove the following:

THEOREM 1. Let F : [0,1] x R — 27 ([0,0)) be compact- and convex-valued,
Lebesgue measurable in t for each x, upper semicontinuous in x for almost all t and
for each r > 0 there exists a function h, € L'([0,1],R) such that |y| < h,(t) for almost
all t, every x € R with |x| <r and every y € F(t,x). Also, assume assumption H holds
(specified later in the paper). Then, there exists a positive solution to the problem

u"'(t) € F(t,u(r)), r €10,1] 0
u(0)=0,4'(0)=0, u"(1) =0, «"(1) =0.

In this theorem, we use the following definition of a positive solution.

DEFINITION 1. A function u : [0,1] — R is a positive solution to (1) if

i) u € AC3(]0,1],R) (by this we mean u', «” and " are each absolutely continuous
on [0,1]),
ii) u"(¢) € F(t,u(r)) for almostall 7 € [0,1],
iii) 1(0) =0, «'(0) =0, «”(1) =0, u"'(1) =0,
iv) u(r) > 0 forall 7 € (0,1].
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Theorem 1 generalizes a result due to Yang [13], which proved existence of posi-
tive solutions to the problem

" (1) = g(t) f(u(r), 1 €[0,1]
u(0)=0,4'(0)=0,u"(1)=0, «"'(1) =0,

if f:R—[0,00) and g:[0,1] — [0,°0) are continuous, among other assumptions. We
note that Theorem 1 greatly increases the class of problems to which Yang’s theorem
applies. We shall show that the basic argument of Yang still applies, with a number of
modifications to account for the more general setting.

The boundary conditions are motivated in [1]. A theorem similar to Yang’s result
is proven in [6]. In [2], three different theorems are proven using fixed point theory
for boundary value problems with a fourth-order differential inclusion with different
boundary conditions than ours. Similarly in [3], two existence theorems for such prob-
lems are proven, which generalizes [11].

We shall make use of the following fixed point theorem for set-valued operators,
which is a special case of Theorem 5.5 in [4].

THEOREM 2. Let (X,]|-||) be a Banach space over the reals, and let P C X be
aconein X. Let Hy and H, be real numbers such that Hy > Hy > 0 and let Q; =
{ue X ||lul| < H} for i=1,2. Ifthe operator T : PN (Q,\ Q1) — P (P) is compact
and convex valued and is completely continuous such that either

D) |w|l < ||ul| for ue PNoQy,w e T(u) and ||w|| = ||u|| for ue PNIQy,w € T(u),
or

2) |wll = ||u|| for ue PNoQy,w e T(u) and ||w|| < ||u|| for u € PNIQy,w € T(u),
then T has a fixed point.

2. Some lemmas

We begin with the necessary lemmas. Lemma 1 is easy to prove.

LEMMA 1. If a function u € AC3([0,1],R) satisfies the boundary conditions in
(1) and u"" (1) > 0 for almost all t € [0,1], then

(1) <0, u"(t) > 0,4 (t) >0 and u(t) >0 forallt € 0,1].

Next, we define @ : [0,1] — R by

a(t) = %tz - %t3. 2)

LEMMA 2. If u € AC3([0,1],R) satisfies the hypotheses of Lemma 1, then

a(®)u(l) <u(r) <tu(l)forallr €[0,1].
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Proof. This is the same as Lemma 2.2 in [13], except there he assumed u €
C*([0,1]) and «”"(¢) =0 forall 0 <z < 1. Our change basically requires no modifi-
cations in Yang’s proof. O

LEMMA 3. Let F : [0,1] xR — £ ([0,00)). Assume u is a nonnegative solution
of (1). Then, forall t € [0,1], u satisfies

’”(t)go,u(t) Ou()QOandu()>07
a(t)u(l) <u(t) <tu(l).

Proof. Note that u""(r) € F(t,u(t)) € 2 ([0,)) a.e on [0,1], so we can apply
Lemmas 1 and 2. O

Denote by X the Banach space C([0, 1],R) with the max norm. Define a cone P
on X by

P={veX|v(1)=0,a(r)v(l) <v(t) <tv(1) forallz € [0,1]}.
From Lemma 3, we have:

LEMMA 4. Let F:[0,1] xR — 22 ([0,0)). Assume u is a nonnegative solution
of (1). Then, u € P.

LEMMA 5. Ifu € P, then u(1) = |jul|.

Proof. Follows quickly from the definition of P. O

Now let G denote the Green’s function for problem (1) (see [13]). For each
u€ X, let S(u) = {veL'([0,T],R)|v(r) € F(t,u(t)) a.e.on [0,1]}. We note that
S(u) is well- known to be nonempty for each u € X under the conditions of Theorem 1
- see for example p. 227-228 of [9]. We define an operator T : P — Z(X) b

T(u)= {WEX|W /Gts s)ds where v € S(u )} (3)

We need only verify that 7' has a fixed point as in [3], [5], [12] and others. From
Theorem 3.2 in [8] we have that T is convex and compact valued and completely con-
tinuous.

LEMMA 6. T(P) C P.

Proof. Let ue P and w € Tu. From (3) it follows that w satisfies the boundary
conditions in (1). Also, from (3) we have w"”(t) = v(¢) € F(t,u(t)) a.e. on [0,1] and
hence w"” > 0 a.e. on [0,1]. Lemma 6 then follows from Lemma 2. O

We define the following constants:

A=/01G(17s)a(s)ds and B:/OlG(l,s)ds.
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In [13] (see also [5]), the following constants were defined:

lim sup @ =Fy and liminf@ = f
x—0T X X—00 X
and it was assumed that
BFy <1< Afs.

From this, we deduce that he intended for Fj to be finite, and from his proof it is clear
that f.. is also assumed to be finite. In [7], this is extended to continuous f’s which
are time-dependent as follows:

f(1,x) f(r,x)

limsup max =Fy and liminf min = foo.
x—0t 1€[0] X Yo g0 1] X

We note that [7] allows f.. = eo. For our purposes, the important thing about the first
of these is that it implies the condition:

{for all € > 0 there exists H > 0 such that for all 7 € [0, 1] and all x € (0,H), @

ft,x) < (Fp+¢€)x.

(A similar comment holds for f...) How should this be extended to f’s which are only
Lebesgue measurable in #? It first appears that the natural choice would be
f(t,x) f(t.x)
X

limsupess sup;cio,1)——— = Fo and liminfessinf,c[g
X_>O+ x X—00

= fu.

However, if we rewrite this choice of Fj in the form of (4), we get:

for all € > 0 there exists H > 0 such that for all x € (0,H),
esssup;c(o, 1] f(t,x) < (Fo+€)x.

The problem with this is in defining ess SUP;[o,1] f(z,x): the choice of the set of
full measure on which the supremum is taken is dependent on x. Hence this is not quite
the same idea as (4). What we really need is the following:

for all € > 0 there exists H > 0 such that there is a set of full measure S
such that forall7 € S and all x € (0,H), f(¢,x) < (Fo + €)x.

‘We denote this condition as

limsup M

= Fy uniformly for almost all 7 € [0, 1]. (3)
x—0F X

The paper [12] also considers the case in which f is measurable in #. In [10], a
variation of Li’s assumption was made for the continuous f case. In place of the Fj
condition, it was assumed that there exists a function ¢ € C([0,1],(0,0)) such that

i L0

Jim = =c(t) forallr € [0,1].
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In this spirit, and noting that the proof really only requires an inequality, we gen-
eralize (5) as:

there exists ¢ € L! ([0, 1],[0, <)) such that
LX)

limsup,_,o+ < ¢(t) uniformly for almost all 7 € [0, 1].

Finally, extending to set-valued functions, we obtain the following assumption H:

there exists ¢ € L' ([0,1],[0,°)) such that ©
limsup, o+ sup{?¥:y € F(t,x)} < c(t) uniformly for almost all 7 € [0, 1],
there exists a measurable d : [0,1] — [0, o] such that
(N

liminfinf {2 : y € F(,x)} > d(t) uniformly for almost all 7 € [0, 1]

and

/Gls ds<l</Gls a(s)d(s)ds.

For clarity, we emphasize that (6) should be interpreted as there exists a function
c€L'([0,1],[0,0)) such that for all &€ > 0 there exists H > 0 such that there is a set of
full measure S such that forall 7 € S, all x€ (0,H) and all y € F(t,x), y < [c(t) + €] x,
and analogously for (7). Note that it can be shown that the corresponding assumption
in [13] is a special case of this.

3. The proof of Theorem 1

Now we have the necessary pieces to prove Theorem 1.

PROOF OF THEOREM 1. We shall show that Theorem 2 applies. Choose € > 0.
From assumption H, we know that there exists a H; > 0 such that

y
L +e )

foralmostall # € [0,1], all x€ (0,H,] andall y € F(¢,x). Choose u € P with ||u|| = H;
and let w € T'(u). Then, there exists a v € S(u) (see (3)) such that

w(t) = /01 G(t,s)v(s)ds

Note that v(s) € F(s,u(s)) a.e. on [0,1], and hence v(s) < [¢(¢) + €]u(s) a.e. on
[0,1] by (8). We then have

/Gls /Gls + €lu(s)ds
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||u[/G1s ds+8/G1sd]
< || [1+£/0 G(l,s)ds].

Since € is arbitrary, we have w(1) < ||u|| and, applying Lemma 5, we conclude
W] < |ju||. We have thus verified the first half of requirement 1 in Theorem 2.
To verify the second half, we proceed as follows.

Case I: fol G(1,s)a(s)d(s)ds < eo.

Since fol G(1,s)a(s)d(s)ds > 1, it is possible to choose & > 0 and ¢ € (0,1) such
that

/Gls ds—5/G1s a(s)ds > 1. 9)
We know from Assumption H that there exists a H > 0 such that
Yy
=>d(t)-96 (10)
X

for almost all 7 € [0, 1], all x € [H,) and all y € F(¢,x). Choose K € L'([0,1]) defined
by

Case 2: fol G(1,s)a(s)d(s)ds = oo.

Choose k € L' ([0,1]), 8 >0 and ¢ € (0,1) such that k() < d(t) a.e. on [0,1]
and

1 1
/ G(1,9)k(s)a(s)ds — & / G(1,s5)a(s)ds > 1. (1
From the definition of f.., we know that there exists a H > 0 such that
Y
2>k(t)-6 (12)
x
for almost all 7 € [0,1], all x € [H,e) and all y € F(z,x). Let
K(t) =k(r) 6.

Now, in the following we take K and ¢ as in Case 1 or Case 2, let
H, = max {Hcfz,ZHl} .
We then have H, > Hj, and for u € P with |ju|| = H, and 7 € [c, 1], we have
u(t) 2 a()u(l) =a(t)H, (13)

and hence
u(t) = Hyt> > Hye> > H forall 1 € [, 1],
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using the fact that a, defined in (2), satisfies a(t) > ¢* forall t € [0,1]. Let w € T(u).
Then, there exists a v € S(u) such that

w(t) = /0 ' Glt,5)v(s)ds.

Note that v(s) € F(s,u(s)) a.e. on [0,1], and hence v(s) > K(s)u(s) a.e. on [0,1] by
(10) or (12). Then,

w(l) :/OIG(I,s)v(s)ds > /CIG(I,s)v(s)ds
1
> / G(1,5)K (s)u(s)ds
> /Cl G(1,5)K(s)Hya(s)ds (by (13))

1
= lull [ 615K (s)as)ds
> [|ul| (by (9) or (11)).

Applying Lemma 5, we conclude ||w|| > ||u||, verifying the second half of 1 in Theorem
2. Applying Theorem 2, we reach our desired conclusion. O
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