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Abstract. We prove an existence result for positive solutions of a fourth order differential inclu-
sion. The proof is accomplished through the use of Green’s functions and a fixed point theorem.
One of the technical assumptions is explored in detail.

1. Introduction and statement of the main results

In this article, we prove the following:

THEOREM 1. Let F : [0,1]×R → P ([0,∞)) be compact- and convex-valued,
Lebesgue measurable in t for each x , upper semicontinuous in x for almost all t and
for each r > 0 there exists a function hr ∈ L1([0,1],R) such that |y|� hr(t) for almost
all t , every x∈R with |x|< r and every y∈ F(t,x) . Also, assume assumption H holds
(specified later in the paper). Then, there exists a positive solution to the problem⎧⎨

⎩
u′′′′(t) ∈ F(t,u(t)), t ∈ [0,1]

u(0) = 0, u′(0) = 0, u′′(1) = 0, u′′′(1) = 0.
(1)

In this theorem, we use the following definition of a positive solution.

DEFINITION 1. A function u : [0,1]→ R is a positive solution to (1) if

i) u ∈ AC3([0,1],R) (by this we mean u′ , u′′ and u′′′ are each absolutely continuous
on [0,1]),
ii) u′′′′(t) ∈ F(t,u(t)) for almost all t ∈ [0,1] ,
iii) u(0) = 0, u′(0) = 0, u′′(1) = 0, u′′′(1) = 0,
iv) u(t) > 0 for all t ∈ (0,1] .
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Theorem 1 generalizes a result due to Yang [13], which proved existence of posi-
tive solutions to the problem

u′′′′(t) = g(t) f (u(t)), t ∈ [0,1]

u(0) = 0, u′(0) = 0, u′′(1) = 0, u′′′(1) = 0,

if f : R → [0,∞) and g : [0,1]→ [0,∞) are continuous, among other assumptions. We
note that Theorem 1 greatly increases the class of problems to which Yang’s theorem
applies. We shall show that the basic argument of Yang still applies, with a number of
modifications to account for the more general setting.

The boundary conditions are motivated in [1]. A theorem similar to Yang’s result
is proven in [6]. In [2], three different theorems are proven using fixed point theory
for boundary value problems with a fourth-order differential inclusion with different
boundary conditions than ours. Similarly in [3], two existence theorems for such prob-
lems are proven, which generalizes [11].

We shall make use of the following fixed point theorem for set-valued operators,
which is a special case of Theorem 5.5 in [4].

THEOREM 2. Let (X ,‖·‖) be a Banach space over the reals, and let P ⊆ X be
a cone in X . Let H1 and H2 be real numbers such that H2 > H1 > 0 and let Ωi =
{u ∈ X | ‖u‖ < Hi} for i = 1,2 . If the operator T : P∩(

Ω2 \Ω1
)→P(P) is compact

and convex valued and is completely continuous such that either

1) ‖w‖ � ‖u‖ for u ∈ P∩∂Ω1,w ∈ T (u) and ‖w‖ � ‖u‖ for u ∈ P∩∂Ω2,w ∈ T (u) ,
or

2) ‖w‖ � ‖u‖ for u ∈ P∩∂Ω1,w ∈ T (u) and ‖w‖ � ‖u‖ for u ∈ P∩∂Ω2,w ∈ T (u) ,

then T has a fixed point.

2. Some lemmas

We begin with the necessary lemmas. Lemma 1 is easy to prove.

LEMMA 1. If a function u ∈ AC3([0,1],R) satisfies the boundary conditions in
(1) and u′′′′(t) � 0 for almost all t ∈ [0,1] , then

u′′′(t) � 0, u′′(t) � 0, u′(t) � 0 and u(t) � 0 for all t ∈ [0,1].

Next, we define a : [0,1] → R by

a(t) =
3
2
t2− 1

2
t3. (2)

LEMMA 2. If u ∈ AC3([0,1],R) satisfies the hypotheses of Lemma 1, then

a(t)u(1) � u(t) � tu(1) for all t ∈ [0,1].
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Proof. This is the same as Lemma 2.2 in [13], except there he assumed u ∈
C4([0,1]) and u′′′′(t) � 0 for all 0 � t � 1. Our change basically requires no modifi-
cations in Yang’s proof. �

LEMMA 3. Let F : [0,1]×R → P ([0,∞)) . Assume u is a nonnegative solution
of (1) . Then, for all t ∈ [0,1] , u satisfies

u′′′(t) � 0, u′′(t) � 0, u′(t) � 0 and u(t) � 0,

a(t)u(1) � u(t) � tu(1).

Proof. Note that u′′′′(t) ∈ F(t,u(t)) ∈ P ([0,∞)) a.e on [0,1] , so we can apply
Lemmas 1 and 2. �

Denote by X the Banach space C([0,1],R) with the max norm. Define a cone P
on X by

P =
{
v ∈ X | v(1) � 0, a(t)v(1) � v(t) � tv(1) for all t ∈ [0,1]

}
.

From Lemma 3, we have:

LEMMA 4. Let F : [0,1]×R → P ([0,∞)) . Assume u is a nonnegative solution
of (1) . Then, u ∈ P.

LEMMA 5. If u ∈ P, then u(1) = ‖u‖ .

Proof. Follows quickly from the definition of P . �

Now let G denote the Green’s function for problem (1) (see [13]). For each
u ∈ X , let S(u) =

{
v ∈ L1([0,T ],R) | v(t) ∈ F(t,u(t)) a.e. on [0,1]

}
. We note that

S(u) is well-known to be nonempty for each u ∈ X under the conditions of Theorem 1
- see for example p. 227-228 of [9]. We define an operator T : P → P(X) by

T (u) =
{

w ∈ X | w(t) =
∫ 1

0
G(t,s)v(s)ds where v ∈ S(u)

}
. (3)

We need only verify that T has a fixed point as in [3], [5], [12] and others. From
Theorem 3.2 in [8] we have that T is convex and compact valued and completely con-
tinuous.

LEMMA 6. T (P) ⊆ P.

Proof. Let u ∈ P and w ∈ Tu . From (3) it follows that w satisfies the boundary
conditions in (1). Also, from (3) we have w′′′′(t) = v(t) ∈ F(t,u(t)) a.e. on [0,1] and
hence w′′′′ � 0 a.e. on [0,1] . Lemma 6 then follows from Lemma 2. �

We define the following constants:

A =
∫ 1

0
G(1,s)a(s)ds and B =

∫ 1

0
G(1,s)ds.
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In [13] (see also [5]), the following constants were defined:

limsup
x→0+

f (x)
x

= F0 and liminf
x→∞

f (x)
x

= f∞

and it was assumed that
BF0 < 1 < A f∞.

From this, we deduce that he intended for F0 to be finite, and from his proof it is clear
that f∞ is also assumed to be finite. In [7], this is extended to continuous f ’s which
are time-dependent as follows:

limsup
x→0+

max
t∈[0,1]

f (t,x)
x

= F0 and liminf
x→∞

min
t∈[0,1]

f (t,x)
x

= f∞.

We note that [7] allows f∞ = ∞ . For our purposes, the important thing about the first
of these is that it implies the condition:{

for all ε > 0 there exists H > 0 such that for all t ∈ [0,1] and all x ∈ (0,H),

f (t,x) � (F0 + ε)x.
(4)

(A similar comment holds for f∞ .) How should this be extended to f ’s which are only
Lebesgue measurable in t ? It first appears that the natural choice would be

limsup
x→0+

esssupt∈[0,1]
f (t,x)

x
= F0 and liminf

x→∞
ess inft∈[0,1]

f (t,x)
x

= f∞.

However, if we rewrite this choice of F0 in the form of (4), we get:{
for all ε > 0 there exists H > 0 such that for all x ∈ (0,H),

esssupt∈[0,1] f (t,x) � (F0 + ε)x.

The problem with this is in defining esssupt∈[0,1] f (t,x) : the choice of the set of
full measure on which the supremum is taken is dependent on x . Hence this is not quite
the same idea as (4). What we really need is the following:{

for all ε > 0 there exists H > 0 such that there is a set of full measure S

such that for all t ∈ S and all x ∈ (0,H), f (t,x) � (F0 + ε)x.

We denote this condition as

limsup
x→0+

f (t,x)
x

= F0 uniformly for almost all t ∈ [0,1]. (5)

The paper [12] also considers the case in which f is measurable in t . In [10], a
variation of Li’s assumption was made for the continuous f case. In place of the F0

condition, it was assumed that there exists a function c ∈C ([0,1] ,(0,∞)) such that

lim
|x|→0

f (t,x)
x

= c(t) for all t ∈ [0,1].
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In this spirit, and noting that the proof really only requires an inequality, we gen-
eralize (5) as:⎧⎨

⎩
there exists c ∈ L1 ([0,1], [0,∞)) such that

limsupx→0+
f (t,x)

x � c(t) uniformly for almost all t ∈ [0,1].

Finally, extending to set-valued functions, we obtain the following assumption H:{
there exists c ∈ L1

(
[0,1], [0,∞)

)
such that

limsupx→0+ sup
{ y

x : y ∈ F(t,x)
}

� c(t) uniformly for almost all t ∈ [0,1],
(6)

⎧⎨
⎩

there exists a measurable d : [0,1] → [0,∞] such that

liminf
x→∞

inf
{ y

x : y ∈ F(t,x)
}

� d(t) uniformly for almost all t ∈ [0,1]
(7)

and ∫ 1

0
G(1,s)c(s)ds < 1 <

∫ 1

0
G(1,s)a(s)d(s)ds.

For clarity, we emphasize that (6) should be interpreted as there exists a function
c∈ L1 ([0,1], [0,∞)) such that for all ε > 0 there exists H > 0 such that there is a set of
full measure S such that for all t ∈ S , all x∈ (0,H) and all y∈ F(t,x) , y � [c(t)+ ε]x ,
and analogously for (7). Note that it can be shown that the corresponding assumption
in [13] is a special case of this.

3. The proof of Theorem 1

Now we have the necessary pieces to prove Theorem 1.

PROOF OF THEOREM 1. We shall show that Theorem 2 applies. Choose ε > 0.
From assumption H, we know that there exists a H1 > 0 such that

y
x

� c(t)+ ε (8)

for almost all t ∈ [0,1] , all x∈ (0,H1] and all y∈ F(t,x) . Choose u∈P with ‖u‖= H1

and let w ∈ T (u) . Then, there exists a v ∈ S(u) (see (3)) such that

w(t) =
∫ 1

0
G(t,s)v(s)ds.

Note that v(s) ∈ F(s,u(s)) a.e. on [0,1] , and hence v(s) � [c(t)+ ε]u(s) a.e. on
[0,1] by (8). We then have

w(1) =
∫ 1

0
G(1,s)v(s)ds �

∫ 1

0
G(1,s) [c(s)+ ε]u(s)ds
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� ‖u‖
[∫ 1

0
G(1,s)c(s)ds+ ε

∫ 1

0
G(1,s)ds

]

< ‖u‖
[
1+ ε

∫ 1

0
G(1,s)ds

]
.

Since ε is arbitrary, we have w(1) � ‖u‖ and, applying Lemma 5, we conclude
‖w‖ � ‖u‖ . We have thus verified the first half of requirement 1 in Theorem 2.

To verify the second half, we proceed as follows.

Case 1:
∫ 1
0 G(1,s)a(s)d(s)ds < ∞ .

Since
∫ 1
0 G(1,s)a(s)d(s)ds > 1, it is possible to choose δ > 0 and c ∈ (0,1) such

that ∫ 1

c
G(1,s)d(s)a(s)ds− δ

∫ 1

c
G(1,s)a(s)ds > 1. (9)

We know from Assumption H that there exists a H > 0 such that

y
x

� d(t)− δ (10)

for almost all t ∈ [0,1] , all x∈ [H,∞) and all y∈F(t,x) . Choose K ∈ L1([0,1]) defined
by

K(t) = d(t)− δ .

Case 2:
∫ 1
0 G(1,s)a(s)d(s)ds = ∞ .

Choose k ∈ L1 ([0,1]) , δ > 0 and c ∈ (0,1) such that k(t) � d(t) a.e. on [0,1]
and ∫ 1

c
G(1,s)k(s)a(s)ds− δ

∫ 1

c
G(1,s)a(s)ds > 1. (11)

From the definition of f∞ , we know that there exists a H > 0 such that

y
x

� k(t)− δ (12)

for almost all t ∈ [0,1] , all x ∈ [H,∞) and all y ∈ F(t,x) . Let

K(t) = k(t)− δ .

Now, in the following we take K and c as in Case 1 or Case 2, let

H2 = max
{
Hc−2,2H1

}
.

We then have H2 > H1 , and for u ∈ P with ‖u‖ = H2 and t ∈ [c,1] , we have

u(t) � a(t)u(1) = a(t)H2 (13)

and hence
u(t) � H2t

2 � H2c
2 � H for all t ∈ [c,1] ,
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using the fact that a , defined in (2), satisfies a(t) � t2 for all t ∈ [0,1] . Let w ∈ T (u) .
Then, there exists a v ∈ S(u) such that

w(t) =
∫ 1

0
G(t,s)v(s)ds.

Note that v(s) ∈ F(s,u(s)) a.e. on [0,1] , and hence v(s) � K(s)u(s) a.e. on [0,1] by
(10) or (12). Then,

w(1) =
∫ 1

0
G(1,s)v(s)ds �

∫ 1

c
G(1,s)v(s)ds

�
∫ 1

c
G(1,s)K(s)u(s)ds

�
∫ 1

c
G(1,s)K(s)H2a(s)ds (by (13))

= ‖u‖
∫ 1

c
G(1,s)K(s)a(s)ds

> ‖u‖ (by (9) or (11)).

Applying Lemma 5, we conclude ‖w‖� ‖u‖ , verifying the second half of 1 in Theorem
2. Applying Theorem 2, we reach our desired conclusion. �
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