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EXISTENCE RESULTS FOR SECOND ORDER

THREE–POINT BOUNDARY VALUE PROBLEMS

OCTAVIA NICA

(Communicated by J. Davis)

Abstract. The paper is devoted to the study of second order differential equations and systems
with nonlinear three point boundary conditions. The existence of solutions is proved using fixed
point theorems: Banach’s and Boyd-Wong’s contraction principles, Perov’s and Schauder’s fixed
point theorems.

1. Introduction

Multi-point boundary value problems that arise from different areas of applied
mathematics and physics have received a lot of attention in the literature in the last
decades (see for example [11], [13], [20], [31], [33], [36], [37] and references therein).
For example, a number of problems in the theory of elastic stability can be treated as
a multi-point problem [44] and also the vibrations of a guy wire of a uniform cross-
section and composed of N parts of different densities can be handled as a multi-point
boundary value problem [39]. The study of multi-point boundary value problems for
linear second-order ordinary differential equations was initiated by Il’in and Moiseev
[28], [29]. Then, Gupta [22] has studied three point boudary-value problems for non-
linear ordinary differential equations. Since then, applying various methods of nonlin-
ear analysis, many authors studied more general nonlinear multi-point boundary value
problems (we refer the reader to [15], [16], [23], [24], [25], [35], [36], [38]). For ad-
ditional backgrounds and results, we refer the reader to the monograph by Agarwal,
O’Regan and Wong [1], as well as to the contributions from [3], [14], [18], [19] and
[34].

In paper [21], Guo discussed the existence and uniqueness of solutions of a two-
point boundary value problem for second order nonlinear impulsive integro-differential
equations of mixed type on an infinite interval in a Banach space E . In paper [32],
Liu also studied the existence of at least one solution of a two-point boundary value
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problem for second-order nonlinear ordinary differential equations in a Banach space.
Being directly inspired by [21], [32], in paper [12], by using the Sadovskii fixed point
theorem, the authors study the existence of at least one solution for the second-order
three-point boundary value problem{

u′′(t)+ f (t,u(t),u′(t)) = θ , 0 < t < 1,
u(0) = θ , u(1) = αu(η),

in a Banach space E , where θ is the zero element of E , I = [0,1],0 < α < 1,0 <
η < 1

α , f ∈ C[I ×E ×E,E] and they also obtain the existence of at least one posi-
tive solution. Next, by using Krasnoselskii’s fixed point theorem of cone expansion–
compression type and under suitable conditions, in paper [43], Sun presents the exis-
tence of single and multiple positive solutions to the nonlinear second-order m-point
boundary value problem⎧⎨⎩

u′′(t)+ λa(t) f (u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
m−2
∑
i=1

aiu(ξi),

where λ is a positive parameter, ai � 0 for i = 1,2, ...,m−3 and am−2 > 0, ξi satisfy

0 < ξ1 < ξ2 < ... < ξm−2 < 1 and
m−2

∑
i=1

aiu(ξi) < 1.

Here, the author manages to derive an explicit interval of λ such that for any λ in this
interval, the existence of at least one positive solution to the boundary value problem is
guaranteed, and the existence of at least two solutions for λ in an appropriate interval
is also discussed.

On the other hand, motivated by the works in [27], [45], [46], the purpose of paper
[17] is to show the existence of multiple positive solutions to the multipoint boundary-
value problem for the one-dimensional p -Laplacian⎧⎨⎩

(φp(u′))′ +q(t) f (t,u) = 0, 0 < t < 1,

u(0) =
m−2
∑
i=1

aiu(ξi), u(1) =
m−2
∑
i=1

biu(ξi),

where φp(s) = |s|p−2 s. By using a fixed point theorem in a cone, the authors present
sufficient conditions for the existence of positive solutions.

As we have mentioned, three-point boundary-value problems for differential equa-
tions were presented and studied by many authors (see [16], [22], [26], [36] and the ref-
erences cited there). However, to the author’s knowledge, three-point boundary value
problems for differential systems have not received as much attention as necessary in
the literature.

Motivated by paper [10], in Section 2, we study the three-point boundary value
problem for second order differential equations:{

u′′ = f (t,u,u′) , 0 < t < t0,
u(0) = 0, u(t0) = g(u(η)), (1.1)
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where 0 < η < t0 < 1, f , g are continuous functions and u is sought in C1[0,t0] . Our
tools here are Banach’s and Schauder’s fixed point theorems. Even in the particular
case g(s) = s, our results compared to those already published in [12], [17], [25], [35]
or [43], bring to the reader some novelty elements by treating differential systems of
this type using the technique based on convergent to zero matrices and vector-valued
norms. Therefore, in Section 3, we discuss differential systems of the type⎧⎪⎪⎨⎪⎪⎩

u′′(t) = f (t,u(t),v(t)) ,
v′′(t) = g(t,u(t),v(t)) ,
u(0) = 0, u(t0) = φ(u(η),v(η)),
v(0) = 0, v(t0) = ψ(u(η),v(η)),

(0 < t < t0)

by using Perov’s and Schauder’s fixed point theorems (see for example [2], [41]) and
the technique based on convergent to zero matrices and vector-valued norms. Section 4
is devoted to the problem {

u′′ = f (t,u,u′) , 0 < t < 1,
u(0) = 0, u(t0) = g(u(η)). (1.2)

Compared to problem (1.1), even if the three-boundary condition is the same, equation
(1.2) is considered on the larger interval [0,1] . Finally, in Section 5, a similar strategy
is applied to a system of two second order differential equations.

To conclude this introduction,we recall some notions that are used in what follows.
A square matrix M with nonnegative elements is said to be convergent to zero if

Mk → 0 as k → ∞.

It is known that the property of being convergent to zero is equivalent to each of the
following three conditions (for details see [41], [42]):

(a) I −M is nonsingular and (I −M)−1 = I + M + M2 + ... (where I stands for
the unit matrix of the same order as M );

(b) the eigenvalues of M are located inside the unit disc of the complex plane;
(c) I−M is nonsingular and (I−M)−1 has nonnegative elements.

Let X be a nonempty set. By a vector-valued metric on X we mean a mapping
d : X ×X → R

n such that
(i) d(u,v) � 0 for all u,v ∈ X and if d(u,v) = 0 then u = v;
(ii) d(u,v) = d(v,u) for all u,v ∈ X ;
(iii) d(u,v) � d(u,w)+d(w,v) for all u,v,w ∈ X .

Here, if x,y ∈ R
n, x = (x1,x2, ...,xn), y = (y1,y2, ...,yn), by x � y we mean xi � yi

for i = 1,2, ...,n. We call the pair (X ,d) a generalized metric space. For such a space
convergence and completeness are similar to those in usual metric spaces.

An operator T : X → X is said to be contractive (with respect to the vector-valued
metric d on X ) if there exists a convergent to zero matrix M such that

d(T (u),T (v)) � Md(u,v) for all u,v ∈ X .

Also recall Banach’s, Perov’s and Schauder’s fixed point theorems:
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THEOREM 1.1. (Banach Contraction Principle) If T : X → X is contractive on a
complete metric space X then T has a unique fixed point in X .

The analogue of Banach’s Contraction Principle for generalized metric spaces is
the following theorem of Perov (see [2], [41]):

THEOREM 1.2. (Perov) Let (X ,d) be a complete generalized metric space and
T : X → X a contractive operator with Lipschitz matrix M. Then T has a unique fixed
point u∗ and for each u0 ∈ X we have

d(Tk(u0),u∗) � Mk(I−M)−1d(u0,T (u0)) for all k ∈ N.

THEOREM 1.3. (Schauder) Let X be a Banach space, D ⊂ X a nonempty closed
bounded convex set and T : D → D a completely continuous operator (i.e., T is con-
tinuous and T (D) is relatively compact). Then T has at least one fixed point.

2. Existence results for equations

Consider problem (1.1). Here are some hypotheses:
(H1) there exist a,b,c > 0 such that{ | f (t,u,v)− f (t,u,v)| � a |u−u|+b |v− v| ,

|g(u)−g(u)| � c |u−u| , (2.1)

for t ∈ [0, t0] and u,v,u,v ∈ R.
(H2) there exist α1,α2,α3,β1,β2 > 0 such that

| f (t,u,v)| � α1 |u|+ α2 |v|+ α3 and |g(u)| � β1 |u|+ β2, (2.2)

for t ∈ [0, t0] and u,v ∈ R.

EXAMPLE 2.1. (a) For instance, function

f1(t,u,v) = α sin3u+ βv

satisfies (2.1) for a = 3α and b = β .

(b) An example of function f satisfying (2.2) is

f2(t,u,v) = γucosv+
1

1+u2 v+1

with α1 = γ,α2 = α3 = 1.

Notice that any function f satisfying (2.1) also satisfies (2.2), but not conversely.
Similar remarks hold for function g . Thus, condition (H1) implies condition (H2) and
so, the existence results based on (H2) are more general than those obtained using (H1).
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2.1. Application of Banach’s Contraction Principle

We begin this section by pointing out that problem (1.1) can be written equiva-
lently as

u(t) =
∫ t0

0
G(t,s) f

(
s,u(s),u′(s)

)
ds+

t
t0

g(u(η)), (2.3)

where G(t,s) is the Green function defined by

G(t,s) =

{
− t(t0−s)

t0
, 0 � t � s � t0,

− s(t0−t)
t0

, 0 � s � t � t0.
(2.4)

We observe that u is a solution of (1.1) if and only if u is a fixed point of the operator
T : C1 [0, t0] →C1 [0, t0] , defined by

(Tu)(t) =
∫ t0

0
G(t,s) f

(
s,u(s),u′(s)

)
ds+

t
t0

g(u(η)), (2.5)

where C1 [0, t0] denotes the space of all continuously differentiable functions defined
on [0, t0] , equipped with the norm

‖u‖C1[0,t0] = max
{‖u‖∞ ,

∥∥u′∥∥∞
}

.

Here, ‖w‖∞ = max
0�t�t0

|w(t)| . The space C1 [0,t0] is a Banach space with respect to the

norm ‖u‖C1[0,t0] (see, e.g., [40], pp. 148-149).

THEOREM 2.1. If f ,g satisfy (H1) with

a+b
2

t0 +
c
t0

< 1, (2.6)

then problem (1.1) has a unique solution. Moreover, this solution can be obtained as
limit of the sequence of succesive approximations .

Proof. Using (H1) we have:

|T (u)(t)−T(u)(t)| = |
∫ t0

0
G(t,s) f (s,u(s),u′(s))ds+

t
t0

g(u(η))

−
∫ t0

0
G(t,s) f (s,u(s),u′(s))ds− t

t0
g(u(η))|

�
∫ t0

0
|G(t,s)| · | f (s,u(s),u′(s))− f (s,u(s),u′(s))|ds

+
t
t0
|g(u(η)−g(u(η))|

�
∫ t0

0
|G(t,s)| · (a |u(s)−u(s)|+b

∣∣u′(s)−u′(s)
∣∣)ds
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+
t
t0
· c |u(η)−u(η)| .

Moreover,

max
t∈[0,t0]

∫ t0

0
|G(t,s)|ds = max

t∈[0,t0]

t(t0 − t)
2

=
t20
8

. (2.7)

Taking the maximum, since t � t0, it follows that

‖T (u)−T(u)‖∞ � a
t20
8
‖u−u‖∞ +b

t20
8

∥∥u′ −u′
∥∥

∞ + c‖u−u‖∞

�
(

a+b
8

t20 + c

)
‖u−u‖C1[0,t0] .

Furthermore,

(Tu)
′
(t) =

∫ t0

0
Gt(t,s) f

(
s,u(s),u′(s)

)
ds+

1
t0

g(u(η)),

where

Gt(t,s) =
∂G
∂ t

(t,s) =

{
s
t0
−1, 0 � t � s � t0,

s
t0

, 0 � s � t � t0.

Then∣∣∣(Tu)
′
(t)− (Tu)

′
(t)
∣∣∣ =

∣∣∣∣∫ t0

0
Gt(t,s) f

(
s,u(s),u′(s)

)
ds+

1
t0

g(u(η))

−
∫ t0

0
Gt(t,s) f

(
s,u(s),u′(s)

)
ds− 1

t0
g(u(η))

∣∣∣∣
�
∫ t0

0
|Gt(t,s)| ·

∣∣ f (s,u(s),u′(s)
)− f

(
s,u(s),u′(s)

)∣∣ds

+
1
t0
|g(u(η)−g(u(η))|

�
∫ t0

0
|Gt(t,s)| · (a |u(s)−u(s)|+b

∣∣u′(s)−u′(s)
∣∣)ds

+
1
t0
· c |u(η)−u(η)| .

Since ∫ t0

0
|Gt(t,s)|ds =

∫ t

0

s
t0

ds+
∫ t0

0

( s
t0
−1
)
ds � t0

2
for t ∈ [0, t0],

it follows that∣∣∣(Tu)
′
(t)− (Tu)

′
(t)
∣∣∣� a

t0
2
‖u−u‖∞ +b

t0
2

∥∥u′ −u′
∥∥

∞ +
c
t0
‖u−u‖∞ .

Hence ∥∥∥(Tu)
′ − (Tu)

′∥∥∥
∞

� a
t0
2
‖u−u‖∞ +b

t0
2

∥∥u′ −u′
∥∥

∞ +
c
t0
‖u−u‖∞
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�
(

a+b
2

t0 +
c
t0

)
‖u−u‖C1[0,t0] .

Therefore

‖Tu−Tu‖C1[0,t0] � max

{
a+b

8
t20 + c,

a+b
2

t0 +
c
t0

}
‖u−u‖C1[0,t0] .

Since t0 � 1, we have

a+b
8

t20 + c � a+b
8

t20 +
c
t0

� a+b
2

t0 +
c
t0

,

and hence

max

{
a+b

8
t20 + c,

a+b
2

t0 +
c
t0

}
=

a+b
2

t0 +
c
t0

.

Thus we obtain that

‖Tu−Tu‖C1[0,t0] �
(

a+b
2

t0 +
c
t0

)
‖u−u‖C1[0,t0] .

Since
a+b

2
t0 +

c
t0

< 1,

then T is a contraction and Banach’s Contraction Principle can be applied.

2.2. Application of Schauder’s fixed point theorem

Under the weaker hypothesis (H2), we have the following existence result as a
consequence of Schauder’s fixed point theorem.

THEOREM 2.2. Assume that (H2) holds with

α1 + α2

2
t0 +

β1

t0
< 1. (2.8)

Then problem (1.1) has at least one solution.

Proof. We show that T has a fixed point in a set of the form

B =
{

u ∈C1 [0,t0] : u(0) = 0 and ‖u‖C1[0,t0] � R
}

with a suitable R > 0. First note that, for u ∈ B , u(0) = 0 and so

u(t) =
∫ t0

0
u′(s)ds, 0 � t � t0.

Then,
‖u‖∞ � t0

∥∥u′∥∥∞ �
∥∥u′∥∥∞
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and hence
‖u‖C1[0,t0] = max

{‖u‖∞ ,
∥∥u′∥∥∞

}
=
∥∥u′∥∥∞ .

In addition, B is a closed convex subset of C1 [0,t0] . Now, since∫ t0

0
|Gt(t,s)|ds � t0

2

we see that ∣∣∣(Tu)
′
(t)
∣∣∣ =

∣∣∣∣∫ t0

0
Gt(t,s) f

(
s,u(s),u′(s)

)
ds+

1
t0

g(u(η))
∣∣∣∣

� t0
2

max
0�t�t0

∣∣ f (s,u(s),u′(s)
)∣∣+ 1

t0
|g(u(η))|

� t0
2

(α1 ‖u‖∞ + α2
∥∥u′∥∥∞ + α3)+

1
t0

(β1‖u‖∞ + β2) .

Then, we have for u ∈ B,

‖Tu‖C1[0,t0] = max
0�t�t0

∣∣(Tu)′(t)
∣∣� (α1 + α2

2
t0 +

β1

t0

)
‖u‖C1[0,t0] +

α3

2
t0 +

β2

t0
.

If ‖u‖C1[0,t0] � R, then

‖Tu‖C1[0,t0] �
(

α1 + α2

2
t0 +

β1

t0

)
R+

α3

2
t0 +

β2

t0

and if (
α1 + α2

2
t0 +

β1

t0

)
R+

α3

2
t0 +

β2

t0
� R, (2.9)

then T maps B into itself. A number R > 0 satisfying (2.9) exists in view of (2.8).
Furthermore, from the Arzèla-Ascoli Theorem, we have that T is a completely con-
tinuous operator in B . This fact can be justified as follows: under the assumption of
continuity of f and g, the operator T is continuous from C1[0,t0] to C2[0,t0] and maps
any bounded set M of C1[0,t0] into a bounded set T (M) of C2[0,t0]. Furthermore, the
embedding of C2[0, t0] into C1[0,t0] is compact according to the Arzèla-Ascoli theo-
rem (see, e.g., [41], pp. 15-18). Consequently, T (M) is relatively compact in C1[0,t0].
Then, T is a completely continuous operator as we claimed. Hence, T has a fixed point
by Schauder’s fixed point theorem.

2.3. Application of Boyd-Wong’s fixed point theorem

First, we recall the Boyd-Wong Contraction Principle (see, e.g., [7]):

THEOREM 2.3. (Boyd-Wong Contraction Principle) Let X be a complete metric
space and suppose T : X → X satisfies:

d(Tx,Ty) � Ψ(d(x,y)) for each x,y ∈ X ,
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where Ψ : [0,∞)→ [0,∞) ,0 � Ψ(t) < t for t > 0 and Ψ is upper semicontinuous from
the right, that is, r j ↘ r � 0 implies limsup j→∞ Ψ(r j) � Ψ(r). Then T has a unique
fixed point x∗ and {Tn(x)} converges to x∗ for each x ∈ X .

In this section, instead of the Lipschitz condition on f from (H1), we shall con-
sider more generally conditions of Boyd-Wong type, namely:

(H3) there exist ψ1,ψ2 : [0,∞) → [0,∞) upper semicontinuous from the right and non-
decreasing, and c > 0 such that{ | f (t,u,v)− f (t,u,v)| � ψ1(|u−u|)+ ψ2(|v− v|),

|g(u)−g(u)| � c |u−u| , (2.10)

for t ∈ [0, t0] and u,u,v,v ∈ R.

THEOREM 2.4. If f ,g satisfy satisfy (H3) and

Ψ(t) := max

{
t20
8

(ψ1 + ψ2)(t)+ ct,
t0
2

(ψ1 + ψ2)(t)+
c
t0

t

}
< t, (2.11)

then problem (1.1) has a unique solution. Moreover, this solution can be obtained as
limit of the sequence of succesive approximations .

Proof. Using (H3) we have:

|T (u)(t)−T(u)(t)| =
∣∣∣∣∫ t0

0
G(t,s) f

(
s,u(s) ,u′(s)

)
ds+

t
t0

g(u(η))

−
∫ t0

0
G(t,s) f

(
s,u(s),u′(s)

)
ds− t

t0
g(u(η))

∣∣∣∣
�
∫ t0

0
|G(t,s)| · ∣∣ f (s,u(s),u′(s)

)− f
(
s,u(s),u′(s)

)∣∣ds

+
t
t0
|g(u(η)−g(u(η))|

�
∫ t0

0
|G(t,s)| · (ψ1 (|u(s)−u(s)|)+ ψ2(

∣∣u′(s)−u′(s)
∣∣))ds

+
t
t0
· c |u(η)−u(η)| .

Taking the supremum and using (2.7), we obtain

‖T (u)−T(u)‖∞

�
[
ψ1 (‖u−u‖∞)+ ψ2

(∥∥u′ −u′
∥∥

∞
)]∫ t0

0
|G(t,s)|ds+ c‖u−u‖∞

� t20
8

(ψ1 + ψ2)
(
‖u−u‖C1[0,t0]

)
+ c‖u−u‖C1[0,t0] .
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Similarly, we obtain that∥∥∥(Tu)
′ − (Tu)

′∥∥∥
∞

� t0
2

(ψ1 + ψ2)
(
‖u−u‖C1[0,t0]

)
+

c
t0
‖u−u‖C1[0,t0] .

Therefore

‖Tu−Tu‖C1[0,t0] � max

{
t20
8

(ψ1 + ψ2)
(
‖u−u‖C1[0,t0]

)
+ c‖u−u‖C1[0,t0] ,

t0
2

(ψ1 + ψ2)
(
‖u−u‖C1[0,t0]

)
+

c
t0
‖u−u‖C1[0,t0]

}
.

Since

Ψ(t) := max

{
t20
8

(ψ1 + ψ2)(t)+ ct,
t0
2

(ψ1 + ψ2)(t)+
c
t0

t

}
< t, for all t > 0,

then Boyd-Wong’s Contraction Principle can be applied and T has a unique fixed point.

REMARK 2.1. Theorem 2.4 is a generalization of Theorem 2.1. Indeed, for

ψ1(t) = at and ψ2(t) = bt,

condition (H3) becomes (H1) and (2.11) is satisfied if and only if (2.6) holds.

REMARK 2.2. This type of results could be obtained using conditions of the type

| f (t,u,v)| � ψ1(|u|)+ ψ2(|v|)+ α3 and |g(u)| � β1 |u|+ β2,

for ψi : [0,∞)→ [0,∞) , (i = 1,2) upper semicontinuous from the right and nondecreas-
ing and α3,β1,β2 > 0. Moreover, similar arguments to those from Section 2.3 could be
used for the treatment of the systems from Section 3.

3. Existence results for systems

We next deal with the three-point boundary value problem for second order differ-
ential systems of the type:⎧⎪⎪⎨⎪⎪⎩

u′′(t) = f (t,u(t),v(t)) ,
v′′(t) = g(t,u(t),v(t)) , 0 < t < t0,
u(0) = 0, u(t0) = φ(u(η),v(η)),
v(0) = 0, v(t0) = ψ(u(η),v(η)).

(3.1)

Problem (3.1) is equivalent to the following integral system in C [0,t0]
2 := C [0,t0]×

C [0,t0] {
u(t) =

∫ t0
0 G(t,s) f (s,u(s),v(s))ds+ t

t0
φ(u(η),v(η)),

v(t) =
∫ t0
0 G(t,s)g(s,u(s),v(s))ds+ t

t0
ψ(u(η),v(η)).
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This can be viewed as a fixed point problem in C [0,t0]
2{

u(t) = T1(u(t),v(t)),
v(t) = T2(u(t),v(t)),

for a completely continuous operator T = (T1,T2) , T : C [0,t0]
2 → C [0,t0]

2 , where
T1,T2 are given by{

T1(u,v)(t) =
∫ t0
0 G(t,s) f (s,u(s) ,v(s))ds+ t

t0
φ(u(η),v(η)),

T2(u,v)(t) =
∫ t0
0 G(t,s)g(s,u(s) ,v(s))ds+ t

t0
ψ(u(η),v(η)).

3.1. Nonlinearities with the Lipschitz property. Application of Perov’s fixed point
theorem

Here the existence of solutions to problem (3.1) is established by means of Perov’s
fixed point theorem. For this, we assume global Lipschitz conditions, that is⎧⎪⎪⎨⎪⎪⎩

| f (t,u,v)− f (t,u,v)| � a1 |u−u|+b1 |v− v| ,
|g(t,u,v)−g(t,u,v)| � a2 |u−u|+b2 |v− v| ,
|φ(u,v)−φ(u,v)| � c1 |u−u|+d1 |v− v| ,
|ψ(u,v)−ψ(u,v)| � c2 |u−u|+d2 |v− v| ,

(3.2)

for t ∈ [0, t0] , u,v,u,v ∈ R and some a1,b1,a2,b2,c1,d1,c2,d2 > 0.

THEOREM 3.1. Assume that condition (3.2) holds. If matrix

M :=
[ a1

8 t20 + c1
b1
8 t20 +d1,

a2
8 t20 + c2

b2
8 t20 +d2,

]
(3.3)

converges to zero, then problem (3.1) has a unique solution in C [0,t0]
2 .

Proof. We shall apply Perov’s fixed point theorem in C [0,t0]
2 endowed with the

vector-valued norm ‖·‖C[0,t0] defined by

‖x‖C[0,t0] =
[‖u‖∞ ,
‖v‖∞ ,

]
for x = (u,v), u,v ∈C [0,t0] and

‖u‖∞ = max
0�t�t0

|u(t)| .

We have to prove that T is a generalized contraction, more exactly that

‖T (x)−T (x)‖C[0,t0] � M ‖x− x‖C[0,t0]

for all x = (u,v), x = (u,v) ∈C [0,t0]
2 and some matrix M converging to zero.
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Let (u,v),(u,v) be any two elements of C [0,t0]
2 . We have that

|T1(u,v)(t)−T1(u,v)(t)|
=
∣∣∣∫ t0

0
G(t,s) f (s,u(s) ,v(s))ds+

t
t0

φ(u(η),v(η))

−
∫ t0

0
G(t,s) f (s,u(s),v(s))ds− t

t0
φ(u(η),v(η))

∣∣∣
�
∫ t0

0
|G(t,s)| · ∣∣ f (s,u(s),u′(s)

)− f (s,u(s),v(s))
∣∣ds

+
t
t0
|φ(u(η),v(η))−φ(u(η),v(η))|

�
∫ t0

0
|G(t,s)| · (a1 |u(s)−u(s)|+b1 |v(s)− v(s)|)ds

+
t
t0
· (c1 |u(η)−u(η)|+d1 |v(η)− v(η)|) .

Therefore, since t < t0,

‖T1(u,v)−T1(u,v)‖∞ �
(a1

8
t20 + c1

)
‖u−u‖∞ +

(
b1

8
t20 +d1

)
‖v− v‖∞ . (3.4)

Similarly,

‖T2(u,v)−T2(u,v)‖∞ �
(a2

8
t20 + c2

)
‖u−u‖∞ +

(
b2

8
t20 +d2

)
‖v− v‖∞ . (3.5)

Now, (3.4) and (3.5) can be put together and be rewritten equivalently as[‖T1(u,v)−T1(u,v)‖∞
‖T2(u,v)−T2(u,v)‖∞

]
� M

[‖u−u‖∞
‖v− v‖∞

]
. (3.6)

Then (3.6) is equivalent to

‖T (x)−T (x)‖C[0,t0] � M‖x− x‖C[0,t0] ,

where x = (u,v),x = (u,v) ∈C [0,t0]
2 . The result follows now from Perov’s fixed point

theorem.

3.2. Nonlinearities with growth at most linear. Application of Schauder’s fixed
point theorem

Here the existence of solutions to problem (3.1) is established by means of Schauder’s
fixed point theorem in case that f ,g satisfy instead of the Lipschitz condition the more
relaxed condition of growth at most linear, that is⎧⎪⎪⎪⎨⎪⎪⎪⎩

| f (t,u,v)| � ã1 |u|+ b̃1 |v|+ c̃1,

|g(t,u,v)| � ã2 |u|+ b̃2 |v|+ c̃2,

|φ(u,v)| � ã01 |u|+ b̃01 |v|+ c̃01,

|ψ(u,v)| � ã02 |u|+ b̃02 |v|+ c̃02,

(3.7)
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for all t ∈ [0, t0] , u,v ∈ R and some ãi, b̃i, c̃i, ã0i, b̃0i, c̃0i > 0, i = 1,2.

THEOREM 3.2. If f ,g satisfy conditions (3.7) and matrix

MS :=

[
ã1
8 t20 + ã01

b̃1
8 t20 + b̃01,

ã2
8 t20 + ã02

b̃2
8 t20 + b̃02

]
(3.8)

converges to zero, then problem (3.1) has at least one solution in C [0,t0]
2 .

Proof. In order to apply Schauder’s fixed point theorem we look for a nonempty,
bounded, closed and convex subset B of C [0,t0]

2 , so that T (B) ⊂ B.
Let u,v be any two elements of C [0,t0] . We have that

|T1(u,v)(t)| =
∣∣∣∣∫ t0

0
G(t,s) f (s,u(s),v(s))ds+

t
t0

φ(u(η),v(η))
∣∣∣∣

�
∫ t0

0
|G(t,s)| · | f (s,u(s),v(s))|ds+

t
t0
· |φ(u(η),v(η))|ds

�
∫ t0

0
|G(t,s)| · (ã1 |u(s)|+ b̃1 |v(s)|+ c̃1)ds

+
t
t0

(ã01 |u(s)|+ b̃01 |v(s)|+ c̃01).

Therefore, since t < t0 , we obtain

‖T1(u,v)‖∞ �
(

ã1

8
t20 + ã01

)
‖u‖∞ +

(
b̃1

8
t20 + b̃01

)
‖v‖∞ + d̃1, (3.9)

where d̃1 = c̃1
8 t20 + c̃01. Similarly,

‖T2(u,v)‖∞ �
(

ã2

8
t20 + ã02

)
‖u‖∞ +

(
b̃2

8
t20 + b̃02

)
‖v‖∞ + d̃2, (3.10)

where d̃2 = c̃2
8 t20 + c̃02. Now, (3.9) and (3.10) can be put together and be rewritten

equivalently as [‖T1(u,v)‖∞
‖T2(u,v)‖∞

]
� MS

[‖u‖∞
‖v‖∞

]
+

[
d̃1

d̃2

]
. (3.11)

Next, we look for two positive numbers R1,R2 such that if ‖u‖∞ � R1,‖v‖∞ � R2, then
‖T1(u,v)‖∞ � R1,‖T2(u,v)‖∞ � R2. To this end it is sufficient that⎧⎨⎩

(
ã1
8 t20 + ã01

)
R1 +

(
b̃1
8 t20 + b̃01

)
R2 + d̃1 � R1,(

ã2
8 t20 + ã02

)
R1 +

(
b̃2
8 t20 + b̃02

)
R2 + d̃2 � R2,
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or equivalently

MS

[
R1

R2

]
+

[
d̃1

d̃2

]
�
[

R1

R2

]
whence [

R1

R2

]
� (I−MS)

−1

[
d̃1

d̃2

]
.

Notice that I −MS is invertible and its inverse (I−MS)
−1 has nonnegative elements

since MS converges to zero. Thus, if

B =
{
(u,v) ∈C [0,t0]

2 : ‖u‖∞ � R1,‖v‖∞ � R2
}

then T (B) ⊂ B and Schauder’s fixed point theorem can be applied.

4. Existence results on a larger interval

Next, we present existence results for the three-point boundary value problem:{
u′′ = f (t,u,u′) , 0 < t < 1,
u(0) = 0, u(t0) = g(u(η)), (4.1)

where 0 < t0 < η < 1 and f ,g are continuous functions. Problem (4.1) could be splitted
into two parts, one for the subinterval [0,t0] and the other one for [t0,1] . More exactly,
we look for u such as

u(t) =
{

v(t), if t ∈ [0,t0] ,
w(t), if t ∈ [t0,1] ,

where v solves {
v′′ = f (t,v,v′) , 0 < t < t0,
v(0) = 0, v(t0) = g(v(η)), (4.2)

while w is a solution of ⎧⎨⎩
w′′ = f (t,w,w′) , t0 < t < 1,
w(t0) = v(t0),
w′(t0) = v′(t0).

(4.3)

Problem (4.2) was already discussed in Section 2. Here we just point out that it is
equivalent to a fixed point problem for the Fredholm operator TF :C1 [0,t0]→C1 [0,t0] ,

(TFv)(t) =
∫ t0

0
G(t,s) f

(
s,v(s) ,v′(s)

)
ds+

t
t0

g(v(η)).

For (4.3) we construct a Volterra integral operator TV : C1 [t0,1] →C1 [t0,1] given by

(TV w)(t) = v(t0)+ (t− t0)v′(t0)+
∫ t

t0

∫ σ

t0
f
(
s,w(s),w′(s)

)
dsdσ . (4.4)
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Notice that w solves (4.3) if and only if w is a fixed point of the operator TV . We shall
endow C1 [t0,1] with an equivalent norm of Bielecki type:

‖w‖B = max
{‖w‖θ ,

∥∥w′∥∥
θ
}

,

where ‖w‖θ = max
t0�t�1

|w(t)|e−θ(t−t0) and θ is a suitable positive number. In this way,

we shall guarantee the applicability of Banach’s and Schauder’s fixed point theorems.

4.1. Application of Banach’s Contraction Principle

We assume global Lipschitz conditions, that is the existence of a1,b1 > 0 such
that

| f (t,u,v)− f (t,u,v)| � a1 |u−u|+b1 |v− v| , (4.5)

for all t ∈ [t0,1] and u,v,u,v ∈ R.

THEOREM 4.1. If f satisfies (4.5) for some arbitrary a1,b1 > 0, then problem
(4.3) has a unique solution .

Proof. Consider TV : C1 [t0,1] →C1 [t0,1] given by (4.4). We have

|(TVw)(t)− (TVw)(t)|

=
∣∣∣∣∫ t

t0

∫ σ

t0
f
(
s,w(s),w′(s)

)
dsdσ −

∫ t

t0

∫ σ

t0
f
(
s,w(s),w′(s)

)
dsdσ

∣∣∣∣
�
∫ t

t0

∫ σ

t0

∣∣ f (s,w(s),w′(s)
)− f

(
s,w(s),w′(s)

)∣∣dsdσ

�
∫ t

t0

∫ σ

t0
(a1 |w(s)−w(s)|+b1

∣∣w′(s)−w′(s)
∣∣)dsdσ

=
∫ t

t0

∫ σ

t0
a1 |w(s)−w(s)| · e−θ(s−t0) · eθ(s−t0)+

+b1
∣∣w′(s)−w′(s)

∣∣ · e−θ(s−t0) · eθ(s−t0))dsdσ

� a1 ‖w−w‖θ

∫ t

t0

∫ σ

t0
eθ(s−t0)dsdσ +b1

∥∥w′ −w′∥∥
θ

∫ t

t0

∫ σ

t0
eθ(s−t0)dsdσ

� a1

θ
‖w−w‖θ

∫ t

t0
(eθ(σ−t0)−1)ds+

b1

θ
∥∥w′ −w′∥∥

θ

∫ t

t0
(eθ(σ−t0)−1)ds

� a1

θ 2 ‖w−w‖θ · eθ(t−t0) +
b1

θ 2

∥∥w′ −w′∥∥
θ · eθ(t−t0).

Dividing by eθ(t−t0) and taking the supremum, we obtain

‖TVw−TVw‖θ � a1

θ 2 ‖w−w‖θ +
b1

θ 2

∥∥w′ −w′∥∥
θ .

Using the same method, we obtain∥∥∥(TV w)
′ − (TVw)

′∥∥∥
θ

� a1

θ
‖w−w‖θ +

b1

θ
∥∥w′ −w′∥∥

θ .
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Therefore, if θ � 1, then

‖TV w−TVw‖B = max
{
‖TVw−TVw‖θ ,

∥∥∥(TV w)
′ − (TV w)

′∥∥∥
θ

}
� 1

θ
(a1 +b1)‖w−w‖B .

This shows that TV is a contraction if we choose θ � 1 large enough that

a1 +b1

θ
< 1.

Thus, Banach’s Contraction Principle can be applied.

4.2. Application of Schauder’s fixed point theorem

THEOREM 4.2. If the condition (2.2) holds with

α1 + α2

θ
< 1, (4.6)

then problem (4.3) has at least one solution.

Proof. We show that TV has a fixed point in C1 [t0,1] .Let

B2 = {w ∈C1 [t0,1] : w(t0) = v(t0),w′(t0) = v′(t0),‖w− v(t0)‖θ � R,
∥∥w′∥∥

θ � R}.

Using (2.2), we have∣∣TVw(t)− v(t0)
∣∣

=
∣∣∣∣v(t0)+ (t− t0)v′(t0)+

∫ t

t0

∫ σ

t0
f
(
s,w(s) ,w′(s)

)
dsdσ − v(t0)

∣∣∣∣
� |t− t0|

∣∣v′(t0)∣∣+∫ t

t0

∫ σ

t0

∣∣ f (s,w(s),w′(s)
)∣∣dsdσ

� |t− t0|
∣∣v′(t0)∣∣+∫ t

t0

∫ σ

t0

(
α1 |w(s)|+ α2

∣∣w′(s)
∣∣+ α3

)
dsdσ

� c+
∫ t

t0

∫ σ

t0

(
α1 |w(s)− v(t0)|+ α1 |v(t0)|+ α2

∣∣w′(s)
∣∣+ α3

)
dsdσ

= c+
∫ t

t0

∫ σ

t0

(
α1 |w(s)− v(t0)| · e−θ(s−t0) · eθ(s−t0) + α1 |v(t0)|

+ α2
∣∣w′(s)

∣∣ · e−θ(s−t0) · eθ(s−t0) + α3

)
dsdσ

� c+
∫ t

t0

∫ σ

t0

(
α1 ‖w− v(t0)‖θ · eθ(s−t0) + α2

∥∥w′∥∥
θ · eθ(s−t0) + c1

)
dsdσ

� c+(1− t0)
∫ t

t0

(α1

θ
‖w− v(t0)‖θ · eθ(s−t0) +

α2

θ
∥∥w′∥∥

θ · eθ(s−t0) + c1

)
dσ
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� c+(1− t0)
(α1

θ 2 ‖w− v(t0)‖θ · eθ(t−t0) +
α2

θ 2

∥∥w′∥∥
θ · eθ(t−t0) + c2

)
,

where c := (1− t0) |v′(t0)| ,c1 := α1 |v(t0)|+ α3 and c2 := c1(1− t0)2. Dividing by
eθ(t−t0) and taking the supremum, we obtain

‖TV w− v(t0)‖θ � c̃+(1− t0)
(α1

θ 2 ‖w− v(t0)‖θ +
α2

θ 2

∥∥w′∥∥
θ

)
,

where c̃ := c+(1− t0)c2. If w ∈ B2, then

‖TVw− v(t0)‖θ � c̃+(1− t0)
α1 + α2

θ 2 R.

Furthermore,∣∣∣(TVw)
′
(t)
∣∣∣

�
∣∣v′(t0)∣∣+ ∣∣∣∣∫ t

t0
(1− t0) f

(
σ ,w(σ) ,w′(σ)

)
dσ
∣∣∣∣

�
∣∣v′(t0)∣∣+(1− t0)

∫ t

t0

(
α1 |w(σ)|+ α2

∣∣w′(σ)
∣∣+ α3

)
dσ

�
∣∣v′(t0)∣∣+(1− t0)

(
α1 |w(σ)− v(t0)| · e−θ(σ−t0) · eθ(σ−t0)

+ α2
∣∣w′(σ)

∣∣ · e−θ(σ−t0) · eθ(σ−t0) + α1 |v(t0)|+ α3

)
dσ

�
∣∣v′(t0)∣∣+(1− t0)

(
α1 ‖w− v(t0)‖θ · eθ(σ−t0) + α2

∥∥w′∥∥
θ · eθ(σ−t0) +d

)
dσ .

Dividing by eθ(σ−t0) and taking the supremum, we have that∥∥∥(TVw)
′∥∥∥

θ
� d̃ +(1− t0)

α1

θ
‖w− v(t0)‖θ +

α2

θ 2

∥∥w′∥∥
θ ,

where d̃ := |v′(t0)|+(1− t0)2d and d := α1 |v(t0)|+ α3. Taking

‖w− v(t0)‖θ � R,
∥∥w′∥∥

θ � R,

we obtain ∥∥∥(TV w)
′∥∥∥

θ
� d̃ +(1− t0)

α1 + α2

θ
R.

If
c̃+(1− t0)

α1 + α2

θ 2 R � R (4.7)

and
d̃ +(1− t0)

α1 + α2

θ
R � R, (4.8)

then TV applies B2 into B2. Thus a number R > 0 with (4.7) and (4.8) exists provided
that { α1+α2

θ2 < 1,
α1+α2

θ < 1.
(4.9)
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Notice that for θ � 1,
α1 + α2

θ 2 � α1 + α2

θ
and both conditions in (4.9) hold if

α1 + α2

θ
< 1.

Since TV is a completely continuous operator, from Schauder’s fixed point theorem it
results that TV has at least one fixed point.

4.3. Existence and uniqueness results on [0,1]

Putting together the results from Section 2.1, Section 4.1 and the results from
Section 2.2, Section 4.2 respectively, we obtain the following results for equations on
the entire interval [0,1] :

THEOREM 4.3. If f ,g satisfy (H1) with (2.6) and condition (4.5) , then problem
(4.1) has a unique solution on [0,1] .

THEOREM 4.4. Assume that (H2) holds with (2.8). If, in addition, condition (2.2)
holds with (4.6), then problem (4.1) has at least one solution on [0,1] .

5. Systems on a larger interval

Here we consider the three point boundary value problems for second order dif-
ferential systems of the type:⎧⎪⎪⎨⎪⎪⎩

u′′(t) = f (t,u(t),v(t)) ,
v′′(t) = g(t,u(t),v(t)) , 0 < t < 1,
u(0) = 0, u(t0) = φ(u(η),v(η)),
v(0) = 0, v(t0) = ψ(u(η),v(η)),

(5.1)

and we give existence and uniqueness results for ordinary differential systems of this
type. These systems can be splitted into two parts, one for the subinterval [0,t0] and
the other one for [t0,1] , respectively . A similar algorithm was given for equations in
Section 4. Systems on [0,t0] were already discussed in Section 3.

In what follows, we treat three point value problems for differential systems on
C [t0,1] of the type: ⎧⎪⎪⎨⎪⎪⎩

w′′(t) = f (t,w(t),x(t)) ,
x′′(t) = g(t,w(t),x(t)) , t0 < t < 1,
w(t0) = v(t0), w′(t0) = v′(t0),
x(t0) = x(t0), x′(t0) = v′(t0).

(5.2)

Problem (3.1) is equivalent with the following integral system in C [t0,1]2 :{
w(t) = v(t0)+ (t− t0)v′(t0)+

∫ t
t0

∫ σ
t0

f (s,w(s),x(s))dsdσ ,

x(t) = v(t0)+ (t− t0)v′(t0)+
∫ t
t0

∫ σ
t0

g(s,w(s),x(s))dsdσ .
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This can be viewed as a fixed point problem in C [t0,1]2 for a completely continuous
operator T = (T1,T2) , T : C [t0,1]2 →C [t0,1]2 , where{

w(t) = T1(w(t),x(t))
x(t) = T2(w(t),x(t))

and T1,T2 respectively are given by:{
T1(u,v)(t) = v(t0)+ (t− t0)v′(t0)+

∫ t
t0

∫ σ
t0

f (s,w(s) ,x(s))dsdσ ,

T2(u,v)(t) = v(t0)+ (t− t0)v′(t0)+
∫ t
t0

∫ σ
t0

g(s,w(s) ,x(s))dsdσ .

5.1. Nonlinearities with the Lipschitz property. Application of Perov’s fixed point
theorem

Here we show that the existence of solutions to problem (5.2) is established by
means of Perov’s fixed point theorem. For this, we assume global Lipschitz conditions,
that is there exist a1,b1,c1,d1 > 0 such that:{ | f (t,w,x)− f (t,w,x)| � a1 |w−w|+b1 |x− x| ,

|g(t,w,x)−g(t,w,x)| � c1 |w−w|+d1 |x− x| , (5.3)

for t ∈ [t0,1] and w,x,w,x ∈ R.

THEOREM 5.1. Assume that the conditions (5.3) hold. If matrix

Mθ :=

[
a1
θ2

b1
θ2

c1
θ2

d1
θ2

]
(5.4)

converges to zero, then problem (5.2) has a unique solution in C [t0,1]2 .

Proof. We shall apply Perov’s fixed point theorem in C [t0,1]2 endowed with the
vector norm ‖·‖B defined by

‖y‖B = max{‖w‖θ ,‖x‖θ}
and

‖w‖θ = max
t0�t�1

|w(t)| · e−θ(t−t0),

where y = (w,x)∈C [0,t0]
2 . We have to prove that T is a generalized contraction, more

exactly that
‖T (y)−T (y)‖C[t0,1] � Mθ ‖y− y‖C[t0,1]

for all y = (w,x),y = (w,x) ∈ C [t0,1]2 and some matrix Mθ converging to zero for a
large enough θ .

Let (w,x),(w,x) be any elements of C [t0,1]2 . We have that∣∣T1(w,x)(t)−T1(w,x)(t)
∣∣
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=
∣∣∣∣∫ t

t0

∫ σ

t0
f (s,w(s),x(s))dsdσ −

∫ t

t0

∫ σ

t0
f (s,w(s),x(s))dsdσ

∣∣∣∣
�
∫ t

t0

∫ σ

t0
| f (s,w(s),x(s))− f (s,w(s),x(s))|dsdσ

�
∫ t

t0

∫ σ

t0
(a1 |w(s)−w(s)|+b1 |x(s)− x(s)|)dsdσ

=
∫ t

t0

∫ σ

t0
(a1 |w(s)−w(s)| · e−θ(s−t0) · eθ(s−t0)+

+b1 |x(s)− x(s)| · e−θ(s−t0) · eθ(s−t0))dsdσ

� a1 ‖w−w‖θ

∫ t

t0

∫ σ

t0
eθ(s−t0)dsdσ +b1‖x− x‖θ

∫ t

t0

∫ σ

t0
eθ(s−t0)dsdσ

� a1

θ
‖w−w‖θ

∫ t

t0
(eθ(σ−t0)−1)ds+

b1

θ
‖x− x‖θ

∫ t

t0
(eθ(σ−t0)−1)ds

� a1

θ 2 ‖w−w‖θ · eθ(t−t0) +
b1

θ 2 ‖x− x‖θ · eθ(t−t0).

We obtain

‖T1(w,x)−T1(w,x)‖θ � a1

θ 2 ‖w−w‖θ +
b1

θ 2 ‖x− x‖θ .

Similarly

‖T2(w,x)−T2(w,x)‖θ � c1

θ 2 ‖w−w‖θ +
d1

θ 2 ‖x− x‖θ .

This can be rewritten equivalently as[ ‖T1(w,x)−T1(w,x)‖θ
‖T2(w,x)−T2(w,x)‖θ

]
� Mθ

[ ‖w−w‖θ
‖x− x‖θ

]
. (5.5)

Then (5.5) is equivalent to

‖T (y)−T (y)‖C[t0,1] � Mθ ‖y− y‖C[t0,1]

for all y = (w,x),y = (w,x)∈C [t0,1]2 . The result follows now from Perov’s fixed point
theorem.

5.2. Nonlinearities with growth at most linear. Application of Schauder’s fixed
point theorem

Here we show that the existence of solutions to problem (5.2) is established by
means of Schauder’s fixed point theorem in case that f ,g satisfy instead of the Lipschitz
conditions, the more relaxed conditions of growth at most linear, that is{

| f (t,w,x)| � ã1 |w|+ b̃1 |x|+ c̃1,

|g(t,w,x)| � ã2 |w|+ b̃2 |x|+ c̃2,
(5.6)

for t ∈ [t0,1] , w,x ∈ [−R,R] and some ãi, b̃i, c̃i > 0, i = 1,2.
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THEOREM 5.2. If f ,g satisfy conditions (5.6) and

M
′
θ :=

[
ã1
θ2

b̃1
θ2 ,

ã2
θ2

b̃2
θ2 ,

]
(5.7)

converges to zero for a large enough θ , then problem (5.2) has at least one solution in
C [t0,1]2 .

Proof. In order to apply Schauder’s fixed point theorem we look for a nonempty,
bounded, closed and convex subset B of C [t0,1]2 , so that T (B) ⊂ B.

Let w,x be any elements of C [t0,1] . We have that

|T1(w,x)(t)| =
∣∣∣∣v(t0)+ (t− t0)v′(t0)+

∫ t

t0

∫ σ

t0
f (s,w(s),x(s))dsdσ

∣∣∣∣
� |v(t0)|+ |t− t0| ·

∣∣v′(t0)∣∣
+
∫ t

t0

∫ σ

t0

(
ã1 |w(s)|+ b̃1 |x(s)|+ c̃1

)
dsdσ

� c̃0 +
ã1

θ 2 ‖w‖θ · e(t−t0) +
b̃1

θ 2 ‖x‖θ · e(t−t0) + c̃01,

where c̃01 = c̃1
∫ t
t0

∫ σ
t0

dsdσ and c̃0 := |v(t0)|+ |t− t0| · |v′(t0)| . We obtain

‖T1(w,x)‖θ � ã1

θ 2 ‖w‖θ +
b̃1

θ 2 ‖x‖θ + d̃01, (5.8)

where d̃01 := c̃0+ c̃01. Similarly,

‖T2(w,x)‖ � ã2

θ 2 ‖w‖+
b̃2

θ 2 ‖x‖+ d̃02, (5.9)

where d̃02 := c̃0+ c̃02. (5.8) and (5.9) can be put together and be rewritten equivalently
as [‖T1(w,x)‖θ

‖T2(w,x)‖θ

]
� M

′
θ

[ ‖w‖θ
‖x‖θ

]
+

[
d̃01

d̃02

]
.

Next, we look for two positive numbers R1,R2 such that if ‖w‖θ � R1,‖x‖θ � R2 , then

‖T1(w,x)‖θ � R1,‖T2(w,x)‖θ � R2.

To this end it is sufficient that{
ã1
θ2 R1 + b̃1

θ2 R2 + d̃01 � R1,
ã2
θ2 R1 + b̃2

θ2 R2 + d̃02 � R2,

or equivalently

M
′
θ

[
R1

R2

]
+

[
d̃01

d̃02

]
�
[

R1

R2

]
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whence [
R1

R2

]
�
(
I−M

′
θ

)−1
[

d̃01

d̃02

]
.

Notice that I−M
′
θ is invertible and its inverse

(
I−M

′
θ

)−1
has nonnegative elements

since M
′
θ converges to zero for a large enough θ . Thus, if

B =
{
(w,x) ∈C [t0,1]2 : ‖w‖θ � R1,‖x‖θ � R2

}
,

then T (B) ⊂ B and Schauder’s fixed point theorem can be applied.

5.3. Existence and uniqueness results for systems on [0,1]

Putting together the results from Section 3.1, Section 5.1 and the results from
Section 3.2, Section 5.2 respectively, we obtain the following results for systems on the
entire interval [0,1] :

THEOREM 5.3. Assume that conditions (3.2) and (5.3) hold. If matrices (3.3) and
(5.4) are convergent to zero, then problem (5.1) has a unique solution in C [0,1]2 .

THEOREM 5.4. If f ,g satisfy conditions (3.7) and (5.6) and if matrices (3.8) and
(5.7) are convergent to zero, then problem (5.1) has at least one solution in C [0,1]2 .

Acknowledgements. The author would like to warmly thank referee for careful
reading, constructive appreciations and the suggestion of using the Boyd-Wong Theo-
rem.
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