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(Communicated by Jurang Yan)

Abstract. In this paper, we present some new sufficient conditions for the oscillations of all
solutions of a second order retarded differential equations with impulses.These results extend
the known results for the differential equations without impulses.An example is provided to
illustrate our result.

1. Introduction

In this paper we are concerned with the oscillatory behaviour of solutions of im-
pulsive differential equations with deviating arguments

⎧⎨
⎩

[
r(t)|u′(t)|α−1u′(t)

]′ + p(t) f
(
u(τ(t))

)
= 0, t �= θk,

Δ
[
r(t)|u′(t)|α−1u′(t)

]∣∣
t=θk

+bkh
(
u(τ(θk))

)
= 0, t ∈ [t0,∞), k ∈ N,

(1)

where
Δ[z(t)]∣∣

t=θ
= z(θ+)− z(θ−)

in which z(θ∓) := lim
t→θ∓ z(t) . For convenience we define z(θ ) = z(θ−) .

Through out this paper we assumed the following conditions to hold:

(H1) α > 0, r ∈C([t0,∞)) , r(t) > 0, p ∈C([t0,∞)) , p(t) > 0;

(H2) R(t) =
∫ t

t0

ds

r
1
α (s)

→ ∞ as t → ∞ ;

(H3) r ∈C′([t0,∞)) , τ(t) � t , τ ′(t) > 0, τ(t) → ∞ as t → ∞ ;

(H4) {θk} is a fixed strictly increasing unbounded sequence of positive real numbers
and {bk} is a sequence of positive real numbers;

(H5) f ∈C(R) , h ∈C(R) , x f (x) > 0, f ′(x) � 0, xh(x) > 0 for x �= 0, f ∈C′(RD) ,
where RD = (−∞,−D)∪ (D,∞) , D > 0;

(H6) for any given c1 > 0 there exists c2 > 0 such that |h(x)| � c2| f (x)|
for all |x| � c1 .
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By a solution of equation (1) on an interval J ⊂ R+ , we mean a continuous func-
tion u(t) which is defined on J such that u′(t) , (r(t)|u′(t)|α−1u′(t)) ∈ PLC(J) and
which satisfies equation (1), where PLC(J) denotes the set of all real-valued func-
tion g(t) defined on J such that g(t) is continuous on (θk,θk+1), g(θ±

k ) exists and
g(θk) = g(θ−

k ) for each k � k0 . We consider only those solutions u(t) of equation (1)
which satisfy sup{|u(t)| : t � Tu} > 0 for all Tu � t0 . It will be assumed that equation
(1) has a solutions which are nontrivial for large t . Such a solution of equation (1) is
called oscillatory if it has no last zero, and nonoscillatory otherwise. An equation is
said to be oscillatory if all its solutions are oscillatory.

Recently, the theory of impulsive differential equations has been intensively stud-
ied by many authors since such equations are mathematical approaches for simulation
of process and phenomena observed in control theory,physics, chemistry, population
dynamics, biotechnology, economics, etc.There are many papers have devoted to the
oscillation criteria of second order differential equations with impulses, see for exam-
ple [1, 2, 3, 5, 6, 13, 16, 17], and the references cited therein.

In this paper our aim is to extend the results established in [22] to the impulsive
differential equations (1). An example is provided to illustrate the main result.

2. Main results

In this section,we obtain some new oscillation criteria for the solutions of equation
(1).

THEOREM 1. Let there exists a constant k > 0 such that

f ′(x)

| f (x)|1− 1
α

� k for all x ∈ RD. (2)

If

lim
t→∞

∫ t

t0

[ 1
r(s)

∫ ∞

s
p(z)dz

] 1
α
ds = ∞, (3)

and there exists a differentiable function ρ : [t0,∞) → (0,∞), such that ρ ′(t) � 0 and

limsup
t→∞

[∫ t

t0

(
p(s)ρα(s)−μ

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)

)
ds+ ∑

t0�θk<t

c2bkρα(θk)
]

= ∞, (4)

where μ =
(

α
α+1

)α+1(α
k

)α
, then the impulsive differential equation (1) is oscillatory.

Proof. The proof is based on the arguments developed in [22]. Suppose that there
exist a nonoscillatory solution u(t) of equation (1). We may assume that u(t) is even-
tually positive.The case u(t) eventually negative is similar, so that we can omit it.

Since τ(t)→∞ as t →∞ , there exist a positive real number T such that x(τ(t)) >
0 for all t > T. From equation (1), we have[

r(t)|u′(t)|α−1u′(t)
]′ = −p(t) f

(
u(τ(t))

)
� 0.
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Hence the function r(t)|u′(t)|α−1u′(t) is nonincreasing on each interval (θk,θk+1)
whenever θk � T .

If t = θk , then

r(θ+
k )|u′(θ+

k )|α−1u′(θ+
k )− r(θk)|u′(θk)|u′(θk) = −bkh(x(τ(θk))) � 0.

Thus r(t)|u′(t)|α−1u′(t) is nonincreasing in (T,∞). We claim that u′(t) is eventually
positive. In fact, if u′(t∗) � 0 for some t∗ � T , then

r(t)|u′(t)|α−1u′(t) � r(t∗)|u′(t∗)|α−1u′(t∗) � 0 for t � t∗.

Dividing the last inequality by r(t) and integrating the resulting inequality from t∗ to
t we have

u(t)−u(t∗) � r
1
α (t∗)u′(t)

∫ t

t∗
1

r
1
α (s)

ds. (5)

Letting t →∞ and using the hypothesis (H2) in (5), we see that u(t) must be eventually
negative, which is a contradiction. Therefore our claim is true.

Define

w(t) = r(t)
(ρ(t)u′(t))α

f (u(τ(t)))
, t �= θk. (6)

Then w(t) > 0. Differentiating w(t) , we get

w′(t) =
ρα(t)(r(t)(u′(t))α )′

f (u(τ(t)))
+

αr(t)
ρ(t)

(ρ(t)u′(t))α ρ ′(t)

− r(t)(ρ(t)u′(t))α

f 2(u(τ(t)))
f ′(u(τ(t)))u′(τ(t))τ ′(t),

where t �= θk . Since r(t)(u′(t))α is decreasing and using equation (1), we have

w′(t) = α
ρ ′(t)
ρ(t)

w(t)− p(t)ρα(t)− (w(t))1+ 1
α f ′(u(τ(t)))τ ′(t)

[ f (u(τ(t)))]1−
1
α ρ(t)[r(τ(t))]

1
α

, (7)

Δw(t)∣∣
t=θk

=
ρα(θk)

f (u(τ(θk)))
[−bkh(u(τ(θk)))]. (8)

Let us assume that u(t) is bounded. Then there exists positive constants k1 and k2 such
that for all t � t0 ,

k2 � τ(t) � k1 and k2 � u(τ(t)) � k1.

Integrating equation (1) from t to ∞ , we obtain

r(t)(u′(t))α |∞t +
∫ ∞

t
p(s) f (u(τ(s)))ds = 0.

Since r(t)(u′(t))α is positive and nonincreasing, we have

r(t)(u′(t))α �
∫ ∞

t
p(s) f (u(τ(s)))ds.
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Integrating the last inequality from t0 to t , we obtain

k1 � u(t) � f
1
α
0

∫ t

t0

[ 1
r(s)

∫ ∞

s
p(z)dz

] 1
α
ds,

where f0 = minu∈[k1,k2] f (u) . Letting t → ∞ , the last inequality contradicts (3). There-
fore, we conclude that u(t) → ∞ as t → ∞ . Thus u(τ(t)) > 0 for all large t enough.
Now from (2),we have

f ′
(
u(τ(t))

)
[
f (u(τ(t)))

]1− 1
α

� k.

Equation (7) implies

w′(t) � α
ρ ′(t)
ρ(t)

w(t)− p(t)ρα(t)− k
(w(t))1+ 1

α τ ′(t)
(r(τ(t)))

1
α ρ(t)

, t �= θk. (9)

By using the inequality,

Ax−Bx1+ 1
α � αα

(α +1)α+1 Aα+1B−α , A � 0, B > 0, x � 0 (10)

we get from (9) that

w′(t) � −
[
ρα(t)p(t)− μ

r(τ(t))(ρ ′(t))α+1

ρ(t)(τ ′(t))α

]
, t �= θk. (11)

In view of (8) and
∫ t

t1
w′(s)ds = w(t)−w(t1)− ∑

t1�θk<t

Δw(θk), (12)

if we integrate (11) from t1 to t, then using condition (H6) , we obtain

w(t) � w(t1) −
∫ t

t1

[
p(s)ρα(s) − μ

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)

]
ds − ∑

t1�θk<t

c2bkρα(θk).

Taking liminf,in the last inequality we obtain that w(t) → −∞ inview of (4),
which contradicts the fact that w(t) > 0. This completes the proof. �

COROLLARY 2. Assume that conditions (2) and (3) are satisfied. If there exists a
differentiable positive function ρ such that ρ ′(t) > 0 for all t � t0,

∫ ∞

t0

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)
ds+ ∑

t0�θk<∞
c2bkρα(θk) = ∞, (13)

and

lim
t→∞

ρα+1(t)p(t)(τ ′(t))α

r(τ(t))(ρ ′(t))α+1 > μ , (14)

then the impulsive delay differential equation (1) is oscillatory.
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Proof. From the assumption (13), it follows that there exists ε > 0 such that for
all large t

ρα+1(t)p(t)(τ ′(t))α

r(τ(t))(ρ ′(t))α+1 > μ + ε.

From Theorem 1, we have

w′(t) � − r(τ(t))(ρ ′(t))α+1

ρ(t)(τ ′(t))α

[
μ − ρα(t)p(t)ρ(t)(τ ′(t))α

r(τ(t))(ρ ′(t))α+1

]
, t �= θk, (15)

Δw(t)∣∣
t=θk

= −ρα(θk)bkh(u(τ(θk)))
f (u(τ(θk)))

. (16)

Integrating (15) from t1 to t, using (12) and (16),we obtain

w(t) � w(t1)−
∫ t

t1

r(τ(s))(ρ ′(s))α+1

ρ(s)(τ ′(s))α

[
μ − ρα(s)p(s)ρ(s)(τ ′(s))α

r(τ(s))(ρ ′(s))α+1

]
ds

− ∑
t1�θk<t

bkρα(θk)h(u(τ(θk)))
f (u(τ(θk)))

,

that is,

w(t) � w(t1)−
[
ε

∫ t

t1

r(τ(s))(ρ ′(s))α+1

ρ(s)(τ ′(s))α ds+ ∑
t1�θk<t

c2bkρα(θk)
]
,

where we have used (H6).Taking limit as t → ∞ in the last inequality, we obtain a
contradiction with w(t) > 0. This completes the proof. �

Next, let us introduce the class of functions P defined as in [4, 18, 19],which will
be extensively used in the sequel.

Let

D0 = {(t,s) : t > s � t0} and D = {(t,s) : t � s � t0}.
We say that the function H ∈C(D,R) belongs to the class P denoted by H ∈ P, if

(F1) H(t, t) = 0 for t � t0 and H(t,s) > 0 on D0 ;

(F2)
∂H(t,s)

∂ s � 0 for all (t,s) ∈ D .

Suppose that λ : D0 → R is a continuous function such that

(F3) α ρ ′(s)
ρ(s) H(t,s) = −λ (t,s)(H(t,s))

α
α+1 for all (t,s) ∈ D0 ,

where λ is a locally integrable function.

THEOREM 3. Assume conditions (2) and (3) hold. If there exists a positive con-
tinuous differentiable function ρ and H ∈ P such that
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limsup
t→∞

[ 1
H(t, t0)

∫ t

t0
H(t,s)

(
p(s)ρα(s)− μ

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)

)
ds

+
1

H(t,t0)
∑

t0�θk<t

H(t,θk)c2bkρα(θk)
]

= ∞, (17)

then the impulsive differential equation (1) is oscillatory.

Proof. Let u(t) be a nonoscillatory solution of equation (1).Then we may assume
that u(t) > 0 eventually,since the proof for the case u(t) < 0 is similar.Proceeding as
in the proof of Theorem 1,we have the following

w′(t) � −
[
ρα(t)p(t)− μ

r(τ(t))(ρ ′(t))α+1

ρ(t)(τ ′(t))α

]
, t �= θk.

Δw(t)∣∣
t=θk

= −ρα(θk)bkh(u(τ(θk)))
f (u(τ(θk)))

. (18)

Multiplying the last inequality by H(t,s) , we obtain

H(t,s)w′(t) � −H(t,s)
[
ρα(t)p(t)− μ

r(τ(t))(ρ ′(t))α+1

ρ(t)(τ ′(t))α

]
, t �= θk. (19)

Integrating the inequality (19) from t1 to t, using (12) and (18),we obtain

∫ t

t1
H(t,s)w′(s)ds � −

∫ t

t1
H(t,s)

[
p(s)ρα(s)− μ

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)

]
ds

− ∑
t1�θk<t

H(t,θk)
bkρα(θk)h(u(τ(θk)))

f (u(τ(θk)))
,

that is,

∫ t

t1
H(t,s)

[
p(s)ρα(s)− μ

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)

]
ds

+ ∑
t1�θk<t

H(t,θk)
bkρα(θk)h(u(τ(θk)))

f (u(τ(θk)))

� H(t,t1)w(t1) � H(t, t0)w(t1),

where we have used (F1) and (F2). Therefore

∫ t

t0
H(t,s)

[
p(s)ρα(s)− μ

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)

]
ds

+ ∑
t1�θk<t

H(t,θk)
bkρα(θk)h(u(τ(θk)))

f (u(τ(θk)))

=
∫ t1

t0
H(t,s)

[
p(s)ρα(s)− μ

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)

]
ds
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+
∫ t

t1
H(t,s)

[
p(s)ρα(s)− μ

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)

]
ds

+ ∑
t1�θk<t

H(t,θk)
bkρα(θk)h(u(τ(θk)))

f (u(τ(θk)))

� H(t,t0)
∫ t1

t0
p(s)ρα(s)ds+H(t,t0)w(t1).

Thus,

1
H(t, t0)

∫ t

t0
H(t,s)

[
p(s)ρα(s)− μ

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)

]
ds

+
1

H(t,t0)
∑

t0�θk<t

H(t,θk)c2bkρα(θk)

�
∫ t1

t0
p(s)ρα(s)ds+w(t1). (20)

Taking limsup in (20) we obtain a contradiction with (17). This completes the proof.

THEOREM 4. Assume conditions (2) and (3) hold. If there exists a positive con-
tinuous differentiable function ρ(t) satisfying (F3) and H ∈ P with

limsup
t→∞

[ 1
H(t, t0)

∫ t

t0

(
H(t,s)p(s)ρα(s)− μ1

r(τ(s))(ρ ′(s))α

(τ ′(s))α (λ (t,s))α+1
)
ds

+
1

H(t,t0)
∑

t1�θk<t

H(t,θk)c2bkρα(θk)
]

= ∞, (21)

where μ1 = 1
(α+1)α+1 (α

k )α hold, then the impulsive differential equation (1) is oscilla-
tory.

Proof. Proceeding as in the proof of Theorem 1 we obtain the following

w′(t) � α
ρ ′(t)
ρ(t)

w(t)− p(t)ρα(t)− k
(w(t))1+ 1

α τ ′(t)
(r(τ(t)))

1
α ρ(t)

, t �= θk,

Δw(t)∣∣
t=θk

= −ρα(θk)bkh(u(τ(θk)))
f (u(τ(θk)))

.

Multiplying the last inequality by H(t,s) and integrating from t1 to t, we get

∫ t

t1
H(t,s)w′(s)ds �

∫ t

t1
αH(t,s)

ρ ′(s)
ρ(s)

w(s)ds−
∫ t

t1
H(t,s)p(s)ρα(s)ds

−
∫ t

t1
kH(t,s)

(w(s))1+ 1
α τ ′(s)

(r(τ(s)))
1
α ρ(s)

ds− ∑
t1�θk<t

H(t,θk)
bkρα(θk)h(u(τ(θk)))

f (u(τ(θk)))
.
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Now using the inequality (10) and simplifying,we obtain

∫ t

t1

[
H(t,s)p(s)ρα (s)ds− μ1ρα(s)

r(τ(s))(λ (t,s))α+1

(τ ′(s))α

]
ds

+ ∑
t1�θk<t

H(t,θk)
bkρα(θk)h(u(τ(θk)))

f (u(τ(θk)))
� H(t,t1)w(t1).

The rest of the proof is similar to that of Theorem 2.2 and hence the details are
omitted.

3. Example

In this section, we present an example to illustrate the main result.

EXAMPLE 5. Consider the following second order impulsive type delay differen-
tial equation ⎧⎪⎪⎨

⎪⎪⎩

[|u′(t)|α−1u′(t)
]′

+
1
t

∣∣u(
t/2

)∣∣β−1
u
(
t/2

)
= 0, t �= mβ ,

Δ|u′(t)|α−1u′(t)]∣∣
t=mβ

+
1

mβ

∣∣u(
mβ /2

)∣∣β−1
u
(
mβ /2

)
= 0,

(22)

where α , β are positive constants such that β � α and p ∈ C([1,∞),R+) . Here
f (u) = |u|β−1u. Then there exists a k > 0 such that f ′(u) � k for all u ∈ RD , k large
enough. Hence (2) holds.

By choosing ρ(t) = tη/α for t � s � 1 such that α +1 < η < α2 .Here

r(t) = 1, p(t) =
1
t
, τ(t) =

t
2
, bk =

1

mβ , θk = mβ , and c2 = 1.

lim
t→∞

∫ t

t0

[ 1
r(s)

∫ ∞

s
p(z)dz

] 1
α
ds = lim

t→∞

∫ t

1

[∫ ∞

s

1
z
dz

] 1
α
ds = ∞.

Hence condition (3) is satisfied. Now

limsup
t→∞

[∫ t

t0

(
p(s)ρα(s)− μ

r(τ(s))(ρ ′(s))α+1

(τ ′(s))α ρ(s)

)
ds+ ∑

t0�θk<t

c2bkρα(θk)
]

= limsup
t→∞

[∫ t

t0

(1
s
sη − μ

(η
α

)α+1(
s

η−α
α

)α+1 1

( 1
2 )αs

η
α

)
ds+ ∑

t0�θk<t

1

mβ θ η
k

]

= limsup
t→∞

[ 1
η

(tη −1)− μ
(η
2

)α+1
2α α

η −α2

(
t

η−α2
α −1

)
+ ∑

t0�θk<t

1

mβ θ η
k

]

= ∞.

Therefore all conditions of Theorem 1 are satisfied, and hence equation (22) is oscilla-
tory.
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