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THE ANTIMAXIMUM PRINCIPLE AND THE
EXISTENCE OF A SOLUTION FOR THE GENERALIZED
p-LAPLACE EQUATIONS WITH INDEFINITE WEIGHT

MIEKO TANAKA

(Communicated by Jean-Pierre Gossez)

Abstract. This paper treats the antimaximum principle and the existence of a solution for quasi-
linear elliptic equation —div (a(x,|Vu|)Vu) = Am(x)|u|/P~>u+ h(x) in © under the Neumann
boundary condition. Here, a map a(x, |y|)y on Q x RY is strictly monotone in the second vari-
able and satisfies certain regularity conditions. This equation contains the p-Laplacian problem
as a special case.

1. Introduction

In this paper, we study the antimaximum principle (AMP) and consider the exis-
tence of a solution for the following quasilinear elliptic equation:

) —div (a(x,|Vu|)Vu) = Am(x)|u|P"2u+h(x) in Q,
(P:2,m;h) {%:0 on dQ,
where Q C RY is a bounded domain with C2 boundary dQ2, v denotes the outward unit
normal vector on dQ, a is a positive function on Q x (0,400), LER, 1< p<oo,me
L>(Q) and h € L”(Q). . Here, we set a map A(x,y) := a(x,|y|)y for (x,y) € Q x RV
and, then A is strictly monotone in the second variable and satisfies certain regularity
conditions (see the following assumption (A)). The equation (P;A,m,h) contains the
corresponding p-Laplacian problem as a special case. However, in general, we do not
suppose that the operator A is (p — 1)-homogeneous in the second variable.
Throughout this paper, we assume that

[{m>0}]:=[{x e Q;m(x) >0} >0 (1.1)

where |X| denotes the Lebesgue measure of a measurable set X . In this paper, we deal
with the following four cases concerning the weight function m € L (Q) under (1.1):
(iym# 0 and m(x) > 0 fora.e. x € Q; (i) [omdx > 0and [m < 0| > 0;
(ii) [omdx = 0; (iv) Jomdx < 0.
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Keywords and phrases: quasilinear elliptic equations, antimaximum principle, indefinite weight, non-
linear eigenvalue problems, the p-Laplacian, mountain pass theorem.
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Here, we say that u € W1P(Q) is a (weak) solution of (P;A,m,h) if
/ A(x,Vu)Vodx = l/ m\u|p_2u(pdx—|—/ hodx
Q Q Q

forall ¢ € W'r(Q).

In [8], the study of AMP started by Clement and Peletier. They proved that there
exists 6 > 0 for every A € (41,4 + 6) such that any solution is negative in Q for
—Au = Au+h in Q under the Dirichlet or Neumann boundary condition, where A; de-
notes the first eigenvalue of —A. This situation is called as that “AMP holds at right of
A1”. Although the above & depends on 4 in general, they presented also the existence
of such & independent of % in the case of N = 1 under the Neumann boundary condi-
tion. When we can take & independent of /2, we say that “AMP holds uniformly at right
of A;”. The AMP was extended in [ 16] to the case having the (indefinite) weight. More-
over, many authors have studied the AMP for the Laplace equation and other equations
(cf. [2], [3], [5], [6], [10], [11], [22]). In the case of the p-Laplacian, Godoy et al ([13]
and [14]) presented the several results concerning AMP for —A,u = Am|u|P~2u+h
in Q under the Dirichlet and Neumann boundary conditions. First purpose of this pa-
per is to prove similar results to one of [14] for the generalized p-Laplace equation
(P;A,m,h).

On the other hand, it is obvious that the AMP has no effect if a solution does not
exist. However, there are few existence results of a solution to our equation (and also
the p-Laplace equation). For example, if A < 0 and m = 1 holds, then the standard
argument guarantees the existence of a solution. In [14], it is shown that the equation
—Apu = m|uP~2u+h in Q has a unique positive solution provided 0 < A < A*(m),
Jomdx < 0 and 0 # h € L”(Q)4, where A*(m) is the principal eigenvalue defined
in Section 2.1. To the Laplace problems under the Dirichlet boundary condition, the
existence results are well known (cf. [1]).

Therefore, second purpose is to show that (P;A,m,h) has at least one solution
under some condition to A by variational methods. In particular, in the case where
A is asymptotically (p — 1) homogeneous (see the condition (AH) in Section 4.3),
(P;A,m,h) has at least one solution if A exists between the principal eigenvalue and
the second eigenvalue (Theorem 6 and see Remark 7).

Throughout this paper, we assume that the map A satisfies the following assump-
tion (A):

(A) A(x,y) = a(x,|y|)y, where a(x,t) >0 forall (x,t) € Q x (0,+oc0) and
(i) AeCofQx RN RY)NCH(Q x (RV\ {0}),RN);
(ii) there exists C; > 0 such that

IDyA(x,y)| < Cily[P~2 forevery x € Q, andy € R\ {0};

(iii) there exists Cp > 0 such that

DyA(x,y)E-E > Coly|P2|E)* forevery x€ Q, y € RV \ {0} and & € RY;
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(iv) there exists C, > 0 such that

DAY <G+ ]7) foreveryxe 0, y e RY\ {0}

(v) there exist C3 > 0 and 1 > 79 > 0 such that
DyA(x,y)| < Gsly”~! (—log|y|)
forevery x € Q, y € RN with 0 < |y| < 1.

Throughout this paper, we assume Cy < p— 1 < C; because we can take such desired
Co and C; anew if necessary.

A similar hypothesis to (A) is considered in the study of quasilinear elliptic prob-
lems (cf. [21, Example 2.2.] and [9], [20], [19]). Itis easily seen that many examples as
in the above references satisfy the condition (AH). In particular, for A(x,y) = |y|?~2y,
thatis, divA(x, Vu) stands for the usual p-Laplacian A,u, we cantake Co =C; =p—1
in (A). Conversely, in the case where Cyp = C; = p— 1 holdsin (A), by the inequalities
in Remark 1 (ii) and (iii) in Section 2, we see a(x,7) = |¢|P~> whence A(x,y) = |y|?~2y.

In section 2.1, we recall several results concerning the weighted eigenvalue prob-
lems for the p-Laplacian. Then, in Section 3, we show that the AMP holds at some A4
for our equation. Finally, we present the existence results to our equation (in Section
4).

2. Preliminaries

In what follows, the norm on W'P(Q) is ||ul|? := ||Vu||h + ||ul|5, where [|u]|,
denotes the norm of L9(Q) for u € L4(Q) (1 < g < o). Setting

Iyl
G(x,y) := / a(x,t)rdt,
0
then we can easily see that
V,G(x,y) =A(x,y) and G(x,0)=0 (2.1)

for every x € Q.

REMARK 1. It is easily seen that the following assertions hold under condition

(A):

(i) forall x € Q, A(x,y) is maximal monotone and strictly monotone in y;
(i) JA(x,y)| < 32 ly[P~! for every (x,y) € @ x RY;

(i) A(x,y)y > o2 |y|P forevery (x,y) € Q@ x RY;
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(iv) G(x,y) is convex in y for all x and satisfies the following inequalities:

C
< —I)W’ 2.2)

Alx,y)y =2 G(x,y) 2 <
(x.y)y > Glx,y) e

——1y|? and G(x,y
p(p—1)|| )

for every (x,y) € Q xRV,

where Cy and C) are the positive constants in (A).

REMARK 2. Let m € L”(Q) and h € L*(Q). Then, we remark the following:

() If u e W'P(Q) is asolution of (P;A,m,h), then u € C1**(Q) forsome 0 < o < 1
and du/dv =0 on 9Q;

(i) If u € WHP(Q) is a non-trivial solution of (P;A,m,h) such that u > 0, then
mingu > 0 holds;

Proof. For readers’ convenience, we give a sketch of the proof. (i): Let u €
WP (Q) be a solution of (P;A,m,h). Then, because u € L*(Q) by the Moser iteration
process (cf. Appendix in [19]), we see that u € C*(Q) (0 < o < 1) by the regularity
result in [17]. Furthermore, by [7, Theorem 3], u satisfies the boundary condition

- 814 - - 814 . fl/q,q
O—E—A(-,VM)V—a(~,|Vu|)W inWw (0Q)

for every 1 < g < oo (see [7] for the definition of W~1/99(9Q)). Since u € C"*(Q)
and a(x,t) > 0 for every t # 0, u satisfies the Neumann boundary condition, that is,
8v( x) =0 for every x € 9Q.

(ii): Let u € WIP(Q) be a solution of (P;A,m,h) satisfying u > 0 and u # 0.
Then, we have

—divA(x, Vi) + [A|||m]leu? P = h =0 inQ.

By noting that u € C"**(Q) (0 < & < 1) by (i), we have u(x) > 0 for every x € Q by
Theorem B in [19, Appendix]. Due to the strong maximum principle (see Theorem A
in [19, Appendix]), we easily see that u(x) > 0 for every x € dQ (note du/dv =0 on
dQ by (i)). This yields mingu > 0 because of u € C*(Q) by (i).

2.1. The weighted eigenvalue problems for the p-Laplacian
The following lemmas can be easily shown by way of contradiction. Here, we

omit the proofs.

LEMMA 1. ([14, Lemma 2.3.]) Assume [omdx <O0. Then, there exists a constant
¢ >0 such that [ |VulPdx > c|lu||}) for every u € WhP(Q) with [qm|ulP dx > 0.
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LEMMA 2. ([14, Lemma 2.8.]) Assume that fQ mdx # 0 and & > 0. Then, there
exists a constant b(m,&) > 0 such that

/\Vu\pdx—é/m|u\pdx>b(m,§)/ |u|P dx
Q Q Q
for every u € B(m) :={u e WHr(Q); [om|u|P dx < 0}.

LEMMA 3. Assume that m > 0 in Q. Then, for every & > 0 there exists d(&) >0
such that

/\Vu\pdx+§/m|u\pdx>d(§)/ lul? dx
Q Q Q
for every uc Whr(Q).

LEMMA 4. Let N < p, A >0 and A C R be a compact set. Define

B(m) := {u e WhP(Q); / mlu|? dx > 0 and u vanishes somewhere in ﬁ} .
Q
Then, there exists a C > 0 such that for every € € A, the following inequality holds:

/\Vu\pdx—kl/(m—|—£)\u|pdx>CHuH§ for every u € B(m+¢).
Q Q

Proof. By way of contradiction, we suppose that there exist {g,} C A and u, €
B(m+ &) such that

1
/ |vun|pdx+x/<m+en>\unv’dx< =12
Q Q n

Set v, == uy/||un|| . Then, because we have
1
/|an|de</ |an|de+/1/(m+en)\vn|l’dx< - 2.3)
Q Q Q n

by v, € B(m+¢&,), we may assume that v, weakly converges to some vy in wlp (Q)
and v, (x) converges to vo(x) uniformly in x € Q (note W!?(Q) — C(Q) is compact).
Moreover, it is easily seen that vy vanishes somewhere in Q because v, vanishes some-
where in Q by u, € B(m +¢&,). Since A is compact, we may assume that &, — & as
n — oo for some & € A by choosing a subsequence. Consequently, vy € B(m + &)
holds. On the other hand, by taking the limit inferior in (2.3), we have [ |Vvo|? dx < 0.
This implies that vy is a constant function such that ||vg||, = 1. This contradicts to the
fact that vy vanishes somewhere in Q.

Now, we state several known results relative to the following weighted eigenvalue
problems for the p-Laplacian:
du

— Apu = Am(x)|u|Pu  in Q, 5 = 0 onodQ. (2.4)
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We say that A € R is an eigenvalue of (2.4) if the equation (2.4) has a non-trivial
solution. First, we recall the following principal eigenvalue A*(m) which plays an
important role for studying AMP.

2% (m) ::inf{/ Vul? dx; u e WP (Q) and/m|updx:l}. 2.5)
Q Q

PROPOSITION 1. ([14, Proposition 2.2.]) The following assertions hold;
@) If [omdx >0 holds, then A*(m)=0;

(i) If Jomdx <0 holds, then A*(m) > 0 is a simple eigenvalue and it admits a pos-
itive eigenfunction. In addition, the interval (0,A*(m)) contains no eigenvalues

of (2.4).

Moreover, we recall a second value A (m) defined by

(2.6)

I(m) - il’lf{ fQ \Vu\l’dx; uec WIJ’(Q), fgm‘u|l’dx: 1 }

and u vanishes on some ball in Q

In the case of N < p (note that W'#(Q) is compactly imbedded into C(Q)), we intro-
duce A(m) as follows:

2.7)

JolVulPdx; ue Whp(Q), [omlulPdx = L
and u vanishes somewhere in Q |

A(m) == inf{

A(m) (see section 3 in [14]).
), the following result is shown in [14].

It is easily shown that A (m) =
Concerning A*(m) and A (m

LEMMA 5. ([14, Lemma3.1.]) If p < N, then A*(m) = A(m). If p > N, then
A*(m) < A(m). Moreover, if p> N, then (A*(m),A(m)] has no eigenvalues of (2.4).

To prove lemma above, we need the following lemma proved by the same argument as
in [13, Claim 4.1] or [5, Lemma 3.1.] (Note that Lemma 4 guarantees the boundedness
of a minimizing sequence of A (m)). Here, we omit the proof.

LEMMA 6. Assume that p > N. Then, Z(m) is attained. Furthermore, a mini-
mizer for A(m) vanishes at exactly one point in Q.

LEMMA 7. Let N < p. Then, i(nz—f—e’) < A(m+g€) < A(m) forevery € > & >0
holds. Moreover, limg_ oA (m+¢€) = A(m).

Proof. We choose a minimizer u for Z(m) because Lemma 6 guarantees the ex-

istence of it. Then, for every € > 0, we have

Z(m—i—s) < fQ|Vu|pdx < fQ‘Vu‘pdx _
= Jo(m+e)ulpdx ~ fomlulrdx

/ Vul? dx = 2 (m)
Q
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by the definition of ;l(m +¢€). By applying the same argument to a minimizer for
A(m+¢€), weobtain A(m+¢€') <A(m+e¢) for &’ >&>0.
Now, we shall prove
slinjok(m—f— €)= A(m).

Let {&,} be any sequence such that & > 0 and & — 0 as n — . Because we
know limsup, ... A(m+ &) < A(m) by the first assertion, it suffices only to prove
liminf, . A(m + €,) > A(m). We take a minimizer u, for A (m+ &,). Then, it fol-
lows from Lemma 4 with 2 = 1 and A = [0,sup, &,] that {u,} is bounded in W' (Q)
(note that ||Vuy||, = A(m+€,) < A(m)). Thus, we may assume, by choosing a sub-
sequence, that there exists ug € W17(Q) such that u, — up in W'"?(Q) and u, — up
in C(Q). Then, we see that [ m|ug|P dx =1 and ug vanishes somewhere in Q since
1n(x) converges to uo(x) uniformly in x € Q. Hence, by the definition of 4 (m), we
obtain

n—o0

1iminf1(m+en):hminf/ |Vun\1’dx>/ \Vuo|P dx > A(m),
n—eJO Q

whence our claim is shown. Because {g,} is an arbitrary sequence, our conclusion is
proved.

Finally, we recall the second eigenvalue of (2.4). The following result is shown in
[4] (Although they handle the asymmetry case, it is sufficient to consider the case of
m = n in this paper).

J) ;:/Q\vuv’dx foru € W'(Q),  J:=Jlsim) 2.8)
S(m) = {uEWl’I’(Q);/QmW”dx:l}, 2.9)
S(m) == {y € C([0,1],8(m)): ¥(0) € PAS(m), y(1) € (—P)AS(m)},  (2.10)
c(m):= inf max J(y(r)), (2.11)

yeX(m)t€(0,1]

where P:= {u € W?(Q); u(x) > 0 fora.e. x € Q}.

LEMMA 8. ([4, Theorem 3.2.]) We have: c(m) is an eigenvalue of (2.4) which
satisfies A*(m) < c(m). Moreover, there is no eigenvalues of (2.4) between A*(m) and
c(m).

REMARK 3. we remark that A(m) < c(m) (if N < p). Indeed, if A(m) > c(m)
under N < p, then it contradicts to the fact that (A*(m),A(m)] (note A(m) = A(m))
contains no eigenvalues of (2.4) by Lemma 5 since ¢(m) is an eigenvalue of (2.4) and
A*(m) < c(m).

LEMMA 9. For every € > & >0, we have c(m+¢€') < c(m+¢€) <c(m). In
addition, limg_, .gc(m+ €) = c(m) holds.
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Proof. First, we shall prove that c(m+¢€) < c(m) for € > 0. Because c(m) is
an eigenvalue, we can choose a solution u € W'7(Q) with [jul| =1 for —A,u =
c(m)m|u|P~%u in Q, du/dv =0 on dQ. Then, we note that u is a sign-changing func-
tion because any eigenfunction corresponding to A other than the principal eigenvalue
changes sign (refer to [15, Proposition 4.3.] or see Proposition 2 with Ch =C; =p — 1
and h = 0). Thus, we have 0 < ||Vui||, = c(m) [omull dx by taking +uy as test
function. Set a continuous path yy by

Yo(t) := (L =ty = tu- : forzs €[0,1].
(1 =2)? [omul] dx+ 17 [ mu” dx) /p

Then, it is easily seen that ¥ € X(m) and

IVe@ls 1Vl
T e}~ Jalnt )l ds

c(m) = V@), >

for every € [0,1] (note || (1)||, > 0). By setting

Ye = 1 1 62(7’”4—8),

(Jam+ )l ax) "

we obtain ¢(m) > c¢(m+ ¢€) by the definition of ¢(m+ €). By considering m + € and
(m+€)+(¢' —€), we obtain c(m+¢€) > c(m+¢€') for € > € due to the above assertion.

Let {&,} be any sequence such that &, > 0 and lim,_... &, = 0. By the first asser-
tion, we can get limsup,,_..c(m+¢&,) < ¢(m). Now, we shall prove

Ao = lirr,rlii,lfc(m—i_g”) > c(m).

We may put A9 = lim,_...c(m+¢€,) > 0 by choosing a subsequence (note ¢(m+¢,) >
A*(m+¢&,) = 0). By the same reason as in the first part, there exists a sign-changing
solution u, € W'P(Q) with [ju,| =1 for —Apu, = c(m+ &) (m+ &)|us|"u, in Q,
duy,/dv =0 on JQ. In addition, by the standard argument (refer to Proposition 3) and
the boundedness of ||u, ||, we may assume that u, converges to some ug in C!(Q) by
choosing a subsequence. Hence, u is a solution with [jug|| = 1 of —Apu= Agm|u|P~2u
in Q, du/dv =0 on dQ. This means that i is an eigenfunction corresponding to A
with weight m. Because u, changes sign and u, — ug in C'(Q), uy vanishes some-
where in Q. Hence, we can see that Ao # 0 and Ao # A *(m) because any eigenfunction
corresponding to the principal eigenvalue (that is, 0 or A*(m)) is positive or negative
in Q (see [15, Proposition 4.2.]). This implies that Ay > ¢(m) by Lemma 8, and so
liminf, . c(m+€&,) > c(m). As a result, our conclusion is shown since {g,} is an
arbitrary sequence.

LEMMA 10. Assume [omdx > 0. Then,

X(m):= {u € W“’(Q);/ m|u|P~udx =0 and / mlulP dx =1 } £0 (2.12)
Q Q
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and
c(m) > lx(m) = inf / |Vul|P dx >0 (2.13)

ueX(m

hold, where ¢(m) is the second eigenvalue defined by (2.11).

Proof. Since ¢(m) > 0 is an eigenvalue of (2.4), there exists a non-trivial solution
u for —Ayu = c(m)m|uP~u in Q, du/dv =0 on Q. Then, by taking ¢ =1 or
u as test function, we have [om|u|?~2udx =0 (note c¢(m) > 0) and [om|ulPdx >0
because u changes sign (so ||Vu||, > 0, cf. [14, Proposition 2.4.] or Proposition 2 with
Co=Cy = p—1), and hence u/([om|ulPdx)"/? belongs to X (m). As a result, it is
easily seen that c(m) > Ay, holds.

Now, we shall prove Ay, > 0 by way of contradiction. So, we assume that
there exists a {u,} C X(m) such that ||Vu,||, — 0 as n — e. Then, since Lemma 2
(with [, (—m)|u,|P dx = —1) guarantees the boundedness of ||u,||, by choosing a sub-
sequence if necessary, we may suppose that u, strongly converges to some constant
function ug in WP(Q) (note ||Vuo|, = 0). Hence, |ug| = 1/(fqmdx)"/? holds be-
cause of [, m|up|? dx = 1. On the other hand, by taking the limit in the equality

Oz/m|un|I’72LtncZ)c:u()/m|un\1’72und}c=/m|un|1’72u,,uodx7
Q Q Q

we obtain [ m|ug|” dx = 0. This is a contradiction.

REMARK 4. In the case of p >2 and m = 1, itis proved that c¢(m) = Ax ;) holds
(see [12, Theorem 6.2.29]).
2.2. Elementary results

Here, we define a positive constant A, by

A G (a)!
Pp—1\G

which is equal to 1 in the case of A(x,y) = |y|P~2y (i.e. the special case of the p-
Laplacian ) because we can choose Ch =C; =p — 1.

> 1, (2.14)

LEMMA 11. Let € >0. Forevery u, ¢ € WHP(Q)NCH(Q)NL=(Q) with u>0
and ¢ >0 in Q, we have

/AxVu( ‘P) )dx<A Vol

Proof. Let € >0 and let u, ¢ € WhP(Q)NCH(Q)NL=(Q) satisfy u > 0 and
¢ >0 in Q. Then, we have

A(x, Vi)V (#)
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( ) A(x,Vu)Vo — ( ¢ ) (x,Vu)V
u+E€
p—1 P
< 2 (HS) v 1vol-co (2 ) 9
p-l 1/p
[0} p cli=p)/p
{ Hw} (;2) et vl

—co( 0 ) Vuf?
+ &£

<A,|VolP inQ
by (ii) and (iii) in Remark 1 and Young’s inequality.

PROPOSITION 2. Let h € L*(Q) . If one of the following holds, then the equation
(P;A,m,h) has no solutions u % 0 such that u(x) >0 for a.e. x € Q:

) m=>20inQand A >0ifh£Z0o0or A£0if h=0;
[_APA‘*(_m>7O];
(ili) [omdx=0and A#0ifh=00rA€Rifh#0;

(iv) Jomdx <0 and A &€ [0,ApA*(m)].

Proof. Let u be a non negative solution of (P;A,m,h) with u % 0. Then, u €
C'%(Q) (some 0 < o < 1) and mingu > 0 by Remark 2.
(1): By taking ¢ =1 as test function, we have

Ozl/mup_ldx—I—/hdx.
Q Q
In the case of i # 0, this yields A < 0 because of
l/mu”fldx:—/hdx<0 and /mupfldx>0.
Q Q Q

In the case of h = 0, then we see that A = 0 occurs.
(i) ~ (iv): By Lemma 11, we obtain

P
ApHquH§>/QA(x,Vu)V <(1H_(PT) dx
p—1
= P v
x/ <u+£) ¢ dx+/h u+8)1’ rdx
p—1
P
k/ <u+£> 9" dx
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for every € >0 and @ € W'(Q)NC'(Q)NL*(Q) satisfying ¢ >0 in Q. Thus, by
€ 10 (note u >0 in Q), we have A,||Vo||, > A [ome? dx for every ¢ € WHP(Q)N
C(Q)NL>(Q) satisfying ¢ >0 in Q. By combining the above inequality and an
argument as in [14, Proposition 2.4.], we can easily prove our assertion (note Am =

(=2A)(=m)).
PROPOSITION 3. Let f,: Q X R — R be a Carathéodory function satisfying
|fu(x,t)| <D+ 1|71 foreveryxeQ,reR

with some positive constant D independent of n and r € [p,p*), where p* = oo if
N<p, p"=pN/(N—p) if N> p. Assume that A,: QxRN — RN is a map satisfying
(A) (1), (ii), (iii) and (iv) with positive constants C}, Cy and C} independent of n. If
uy is a solution for

—divA,(x,Vu) = fy(x,u) inQ, g_‘u/ =0 ondQ

and {u,} is bounded in W' (Q), then there exist a subsequence {uy,} of {u,} and
ug € CH(Q) such that u,, — ug in C*(Q) as [ — oo.

Proof. Since {uy} is bounded in W'P(Q), we may assume that u, weakly con-
verges to some ug in W' (Q) by choosing a subsequence.

We can show that there exists a C > 0 depend only |Q|, p, N, D, Cj, C} and the
embedding constant of W!?(Q) to L7 (Q) such that

tt]|o < Cax{1,|[uy]| PP/ 7" =)}

by the Moser iteration process (refer to Theorem C in [19]), where p* = p* if N > p
and p* > r is an any constant if N < p. Since D, C| and (|, are independent of n,
||tn |l is bounded. Therefore, the regularity result in [17] guarantees that there exist
y€(0,1) and M > 0 independent of n such that u, € C'¥(Q) and |[uy||c1.) <M
(where we use the fact that C} is independent of n also). Since the inclusion of C'7(Q)
to C'(Q) is compact, u, converges uy in C'(Q) (note that u, — ug in WH7(Q)).

3. Antimaximum principle

In this section, we assume that [,mdx > 0 without loss of generality by noting

Am = (—1)(~m).

THEOREM 1. Assume [omdx >0 (resp. [omdx=0). Then, for any 0 # h €
L=(Q)+ there exists & = 8(h) > 0 such that any solution u of (P;A,m,h) satisfies
u<0in Q provided 0 < L < 8 (resp. 0 <|A| < ).
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Proof. Because of Am = (—A)(—m), it is sufficient to prove that for any 0 £ h €
L=(Q) there exists § = d(h) > 0 such that any solution u of (P;A,m,h) satisfies
u <0 in Q provided 0 < A < §. By way of contradiction, we may assume that there
exist 0 #Z h € L*(Q),, {A,} and a solution u, € W'P(Q) of (P : A,,m,h) such that
Ax 1 0 and u, > 0 somewhere in Q. Note that u, € C!(Q) by Remark 2.

Moreover, we note that ||u,|| is bounded if ||u,||, is bounded by the following

inequality

Co
p—1

(Ve ||5 S/A(x,Vun)Vundx:l,,/ m|un\p—|—/ huy, dx
Q Q Q
< Anllm]leo[[unl|]; + 1]l ool 241 3.1

where we use (iii) in Remark 1. Hence, by applying Proposition 3 to A,(x,y) = A(x,y)
or Ay(x,y) ::A(ﬁ,yHunH,7)/||unH,’§_1 , we see that u, or uy,/||u,||, has a convergent sub-

sequence in C!(Q) in the case where ||u,||, is bounded or not, respectively. Therefore,
by the same argument as in [ 14, Theorem 3.2.], we can obtain a contradiction.

It follows from the following proposition that we can not take such 6 independent
of h as in Theorem 1.

PROPOSITION 4. Assume that N > p and [omdx > 0. Then, for any € >0 there
exists 0 # h € L™(Q)+ such that for any A > € the equation (P;A,m,h) has no solution
u satisfying u <0 in Q and |{x € Qs u(x) =0} | =0, where Q,, :== {x € Q; m(x) #
0}.

Proof. By using Lemma 11 instead of [14, Lemma 2.5.] as in the argument of
[14, Theorem 3.5.], we shall give the proof. Assume by contradiction that there ex-
ists & > 0 such that for any 0 # h € L*(Q)., there exist A; > & and u; being
a solution of (P;A;,m,h) with u, <0 in Q and |{x € Q;u,(x) = 0}| = 0. Fix
0< 8 <é&/A,, where A, is the positive constant defined by (2.14). Because we know
A(m) = A*(m) =0 in the case of N > p by Lemma 5, there exists ¢ € W'”(Q) such
that ¢ =0 on some (open) ball B C Q,

/m|<p|de=1 and /|V<pv’dx<5.
Q Q

By considering |¢| instead of ¢, we may assume that ¢ >0 in Q. Here, we choose & €
Cy () suchthat 2 >0, h # 0 and supp & C B. By the above contradictory hypothesis,
we can obtain A;, > & and u;, € W!?(Q) being a solution of (P;A;,m,h) with u, <0
in Q and |{x € Qy;u;(x) =0}|=0. Set v= —uy, then v is non negative solution of

—divA(x, Vv) = 4mvP 1 —h inQ, g—: =0 ondQ

since A is odd in the second variable. Let @y := max{¢@,M} € W'P(Q)NL(Q) for
M > 0. Then, for this ¢y and v, the inequality as in Lemma 11 holds because we
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see that p(@y/(v+€))P~'Vou — (p—1)(ou/(v+€))PVv e LP(Q)N (note v = —uy, €
C'(Q) (see Remark 2)). Thus, we obtain

-1
Pyt v\ P
Youll? VWV (| —M - -
Apll (pM||p>/A(x, V) ((v 8)p1>dx—7th/mm<v 8) Oy dx

forevery € >0 and M > 0 by supp hNsupp @y = supp AN supp ¢ = 0. Because v >0
a.e. on €, by taking € | 0 and M — o in the above inequality, we obtain

<= JLh/ m(pl’dx:kh/ m(pl’dngpHVq)Hg <A,0 < g.
Q Qm
This is a contradiction.

REMARK 5. For the usual p-Laplace equation under the Dirichlet boundary con-
dition, it is known that AMP holds at right of the principal eigenvalue A, (m) and at left
of —A;(—m) (see [14]). However, in generall, we do not know wherther AMP holds
near +A;(£m) or not for the equation

—divA(x,Vu)z?Lm|u\”72u+h inQ, u=0 ondQ, (3.2)

A major cause is that CoA;(m)/(p — 1) < ApAi(m) occurs in the case of Cy < C; be-
cause A;(m) is positive. On the other hand, by the same argument as in the proof
of Proposition 2, we can prove that equation (3.2) has no positive solutions provided
A & [—ApAi(—m),ApAi(m)] and 0 # h € L*(Q).

3.1. The caseof N < p

THEOREM 2. Assume that N < p and 0 # h € L*(Q)y. Then, the following
assertions hold:

(i) Suppose |qmdx >0 and A satisfies 0 <A < CoA(m)/(p—1). Then, any solu-
tion u of (P;A,m,h) satisfies u <0 in Q.

In addition, if |{m < 0}| >0 and (Cy/Co)?A*(—m) < A(—m), then the same
conclusion holds for every A satisfying
G

. 1}1(—m) <A < —A L (—m);

(i) Suppose [omdx =0 and A satisfies

Coh(m) or — Cor(=m) <A <O.
p—1 p—1

—~

0<A<

Then, any solution u of (P;A,m,h) satisfies u <0 in Q.
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Proof. By Am = (—A)(—m) and A*(m) =0 if [,mdx > 0, it is sufficient to
prove that any solution of (P;A,m,h) is negative in Q under the hypothesis that 0 #
heL”(Q)4, ApA*(m) <A < Cod(m)/(p—1) with any m € L=(Q) with (1.1). By
way of contradiction, we shall prove our assertion above. So, we assume that there
exist m € L”(Q) with (1.1), 0Z h € L”(Q) 1, A € (A,A*(m),CoA(m)/(p —1)] and

u € WP(Q) being a solution of (P : A,m,h) with u > 0 somewhere in Q. By taking
¢ = —u_ as test function, we have

Co » /
—[Vu_||;, < . —Vu_
o1 [Vu_||5 QA(x Vu)(—=Vu_)dx

zl/mulidx—/hu,dx
Q Q

S?L/Qmufdx. (3.3)

Then, we can see that [omu” dx > 0. Indeed, if [omu” dx =0 (note A > 0), then
Vu_ =0 and [ohu_dx=0 holds, whence u_ =0. Thus, u >0 and u#0 by h #0.
This contradicts to Proposition 2 because of 4 > A,A*(m).
As aresult, we can get a contradiction easily by the following inequality (obtained
by (3.3))
[Vally _ p—1
Jomu” dx = Co

A < A(m),
the definition of 1 (m), Lemma 6 and a similar argument to [5, Theorem 2.1.].

THEOREM 3. Assume that N < p and 0 #Z h € L*(Q)y. Then, the following
assertions hold:

(i) Let [omdx > 0. Then, there exists 6 = 0(h) > 0 for every A satisfying

CoA(m)/(p—1) <A < CoA(m)/(p—1)+6

such that any solution u of (P;A,m,h) satisfies u < 0 in Q.

In addition, if |{m < 0}| >0 and (C;/Co)?A*(—m) < A(—m), then there exists
6’ = &'(h) > 0 such that the same conclusion holds for every A satisfying

QO A em)y—5 <a< -0

P p_ll(—m);

(i) Let [omdx =0. Then, there exists & = &(h) > 0 for every A satisfying

M<A<M+6 —M—6’<A<—7
p—1 r—1 p—1 p—1

such that any solution u of (P;A,m,h) satisfies u < 0 in Q.
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Proof. By the same reason as in the proof of Theorem 2, it is sufficient to prove
that for any m € L*(Q) with (1.1) and 0 h € L*(Q), there exists a § > 0 such that
any solution of (P;A,m,h) is negative in € if

Am) g b

Co <A<Cy——=+06
1 p—1

under the hypothesis A,A*(m) < Cor(m)/(p—1) (note ApA*(m) < Cor(m)/(p—1)
if and only if (Cy/Co)PA*(m) < A(m)), where A p is the positive constant defined by
(2.14). Thus, by way of contradiction, we assume that there exist m € L*(Q) with
(I.1), 0 £h e L™(Q) 4, {A,} and {u,} € W'P(Q) such that A, | Cod(m)/(p — 1)
and u,, is a solution of (P;A,,m,h) satisfying u, > 0 somewhere in Q.

If ||u,||, is bounded, then we can obtain a subsequence {u,, } convergent to some
up in C'(Q) by Proposition 3 with A, = A. This implies that ug is a solution of
(P;A,m,h) with ug >0 somewhere in Q for A = CoA(m)/(p —1). This contradicts
to Theorem 2.

Thus, we may assume that ||u,||, — o as n — oo by choosing a subsequence if
necessary. Set v, := u,/||un||,. Then, by a similar inequality to (3.1), we can get
the boundedness of ||v,||. So, we may suppose, by choosing a subsequence, that there
exists v € WP (Q) such that v, — v in W?(Q) and v, (x) — v(x) uniformlyin x € Q.
We note that v > 0 somewhere in Q because v, > 0 somewhere in Q. Moreover, we
can obtain (note A, — Coi(m)/( —1)):

Vo |2 < /mv{;dx and |[Vv_||7 < /mv (3.4)

by taking the limit inferior in the following inequalities

/AxVu,,) s g = /mvn+dx+/
\Man ||Mn||

—Vu,_ n—
G v,,,H /AxVu,, “ =A, /mvp dx — /h Y — dx,
p—1 ||”n||p H’/‘an

where we use (iii) in Remark 1.

Here, we shall consider by dividing into three cases:

(@) Jomvl dx>0; (b) [omv] dx=0and [om’ dx=0
() Jomv! dx=0and [omv’ dx > 0.

Case (a): If vy > 0 in Q, then v, is positive in Q for sufficiently large n be-
cause v=vy >0 in Q and v,(x) — v(x) uniformly in x € Q. This means that u, is
a positive solution of (P;A,,m,h) for sufficiently large n. This contradicts to Proposi-
tion 2 because of A, > CoA(m)/(p— 1) > A,A*(m). So, we suppose that v, vanishes
somewhere in Q. Then, it follows from (3.4) that v /([omv! dx)"/? is a minimizer
for A (m). Thus v vanishes at exactly one point xo € Q by Lemma 6, whence v = v

occurs. Now we shall prove that
CoA(m)
p—1

/ moPdx < A,|[Vol? forevery p € W'P(Q) with 9 >0.  (3.5)
Q
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If (3.5) is shown, then we have a contradiction because we can choose some ¢ &
Whr(Q) with ¢ >0, [omePdx =1 and ||[Vel|h < A*(m)+ & for § > 0 satisfying
Apd < CoA(m)/(p—1) —ApA*(m) (note CoA(m)/(p—1) > ApA*(m)).

To prove (3.5), we fix € > 0 and ¢ € C'(Q) with ¢ > 0. For sufficiently large n,
we have v, +¢€ > €/2 in Q, and hence u, + &||u, ||, > €||lun|,/2(> 0) in Q since v,
converges to v = v, uniformly in Q. Thus, Lemma 11 yields the following inequality
(note u, € C1(Q)):

er
P > _— .
AlIVell,> /QA<X7VM")V ( (ttn + €| uan| p)P " ) & GO

/1/ < )p_l rax+ [ n il d
= 0] x+/ AT TR w—" W Y
un—i-sHuan o (un+€llunllp)P~!

p—1
14
> A / (Vn+£) oF dx.

Hence, by taking the limit in the above inequality, we have

CoA(m) v \7! »
< b
() e a<alvely

Moreover, by taking € | 0, we can get (3.5) since C'(Q) is dense in W!'*(Q) and
v(x) >0 if x # xp.

Case (b): In this case, it follows from (3.4) that Vv = 0 holds, and so v is a con-
stant function with ||v||, = 1. Because v > 0 somewhere in Q, we see v = 1/|Q|'/7.
Then, by the same reason as in the first part of the case (a), we have a contradiction.

Case (c): In this case, we can see that v is non positive in Q (thatis, v=—v_)
since Vv =0 by (3.4) and [omv] dx=0< [omv’ dx.

If v = —v_ does not vanish in Q, then u, < 0 in Q for sufficiently large n. This
yields a contradiction because u, > 0 somewhere in Q.

Thus, we may assume that v_ vanishes somewhere in Q. Then, (3.4) implies that
v_/(Jomv? dx)"/? is a minimizer for A(m). By considering

(pp
A -V n dx <A,||Vol?
JRC ((—un+e||unp>w> x<Advelly

instead of (3.6) as in the proof of case (a), we have the same inequality (3.5) for every
@ € WhP(Q) with @ > 0 (note that A is odd in the second variable and —u,,(x) +
€||un||p — oo uniformly in x € Q). As a result, we can get a contradiction by the same
reason as in the last part of the case (a).

4. Existence of a solution

4.1. Existence of a positive solution

THEOREM 4. Let 0 £ h € L*(Q)4. If one of the following cases holds, then
(P;A,m,h) has a positive solution:
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i) m>=0inQand A <0;
(i) [omdx>0, {m <0} >0and 0> A >—-CoA*(—m)/(p—1);
(ili) [omdx <0 and 0 <A <CoA*(m)/(p—1),
where A*(m) is the principal eigenvalue obtained by (2.5).

To prove the existence of a positive solution, we define a C' functional I;[ on W7 (Q)
as follows:

L (u /GxVu x——/muﬁdx /hudx—i——Hu 14 4.1

for A € R and u € W'P(Q), where G(x,y) := M a(x,t)tdt (see (2.1) for details).

REMARK 6. We remark that non-trivial critical points of I;[ correspond to posi-
tive solutions for (P;A,m,h). Indeed, if u is a critical point of /", then we have

-Ip < /QA(x,Vu)(—Vu,)dx—i-/Qhu,dx—F Ju—|5=0
by taking —u_ as test function. Thus, u_ =0, and hence u > 0. As a result,
/ A(x,Vu)Vodx = JL/ mup_l(pdx—k/ hodx
Q Q Q

holds for every ¢ € W'»(Q). Because of u # 0, u is a positive solution of (P;A,m,h)
by Remark 2.

LEMMA 12. Let 0 £ h € L*(Q) . Ifeither m >0 and A <0 or [omdx <0 and
0 <A < CoA*(m)/(p—1) holds, then I is bounded from below, coercive and weakly

lower semi-continuous (w.l.s.c.) on WIJ’(Q).

Proof. Note that ®(u) := [, G(x,Vu)dx is w.l.s.c. on WHP(Q) (cf. [18, Theorem
1.2.]) because @ is convex and continuous on W!?(Q). Thus, I{ is also w.l.s.c. on

W1P(Q) since the inclusion of W!7(Q) to LP(Q) is compact.
Now, we prove that I;[ is bounded from below and coercive on W7 (Q).
Case of m >0 and A < 0: By Lemma 3 and (2.2), we can obtain
Co
p(p—1)

Co Co ( 2(p—1)[A]
>——u_|IP+ ———1| ||Vu p—l—i/mupdx
p— || H ) (p—l) || +||p CO o +

+ 7\\VM+H” — sl 2171

2p(p—1)
Comin{d(&),1}
2p(p—1)

4] 1
LM (u) > Vu”—i——/mupdx—hmu + —Ju_||?
o () > [Vull? b Jo ™M (172l [ 2] 1 pll 15

a7 — Nl e ol 2| P~ D7



598 MIEKO TANAKA

for every u € WP(Q) (note p—1 > Cp), where d(&) > 0 is a constant obtained by
Lemma 3 with & = 2(p —1)|A|/Cy. This implies that ;" is bounded from below,
coercive because of p > 1.

Case of [omdx <0 and 0 <A < CoA*(m)/(p—1): Forevery u € WHr(Q) with
Jomut dx >0, we have

1/ G A ) Co 1
I (u) > — ) Vi |+ == [ Vu_ |5 = || el s + = |||
o () p( 1 () IVu|[§ p(p_1)|| 15 = 1] oo ||| pll 15
1/ G A c [ Go A
> __*r py & (= 7 p
2p< ~1 x*<m>)”v”+”f’+2p (,,_1 7o )1
Co _
+ ———(Ju_||” — ||| oo ]|, [ PP (4.2)
p(p—l)H 17 = (1] o 2] p €2

by (2.2), the definition of A*(m), Lemma | and Cp < p — 1, where ¢ is a positive
constant independent of u obtained in Lemma 1. Next, we deal with u € W!'*(Q) with
Jomu®, dx < 0. Take a § such that 0 < § < A. Then, we obtain for any u € W!7(Q)
with [, mui dx <0

Co
- . p_ P »
I (u) > 2p( _1) <||Vu+||p /mu+dx> ( )||V”+H
/’”” dt )Ilu 1P = {1l 2]
Cob( )y C
> 1) P+7 Vi |2
C
P = 1Al Q|(r=1/p 4
ooyl P = el 43)

by (2.2) and Lemma 2, where b(m, &) is a positive constant obtained in Lemma 2 with
& =2(p—1)8/Cy. Consequently, our conclusion follows from (4.2) and (4.3).

PROOF OF THEOREM 4. By the properties of I; obtained as in Lemma 12, I}
has a global minimizer in all cases as in Theorem 4 (cf. [18, Theorem 1.1.]), where,
we use Am = (—A)(—m) in the case (ii). Thus, we see that (P;A,m,h) has a positive
solution by Remark 6.

4.2. Other existence results for the general case

THEOREM 5. Assume 0% h € L”(Q)4. If one of the following conditions holds,
then (P;A,m,h) has a solution:

@ m>=0in Qand 0 <A < Coc(m)/(p—1);
(i) Jomdx>0and 0 <A < Colx(m)/(p—1);

(iti) N < p and ApA*(m) < A < Cod(m)/(p—1),
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where ¢(m), AX(,,,), A, and i(m) are positive constants defined by (2.11), (2.13),
(2.14) and (2.7), respectively.

To show the existence of a solution, we define a C' functional I, on W!'?(Q) as
follows:

L, (u) ::/QG(x,Vu)dx—%/Qmu|pdx—/Qhudx (4.4)

for A € R and u € W'P(Q), where G(x,y) := (lyla(xj)tdt (see (2.1) for details).
Note that critical points of I) correspond to solutions of (P;A,m,h) (see Remark 2).
First, we shall prove that I, has the mountain pass geometry.

LEMMA 13. Assume that h € L”(Q)4, [omdx#0 and

Ci A" (m) < Coc(m).
p—1 p—1

Then, I, is bounded from below on E(m) defined by
E(m):= {u ewhr(Q); [Vullh > c(m)/ m|u\1’dx}. 4.5)
Q

Furthermore, there exist ug, u; € WhP (Q) such that

max{l,l(uo)J,l(ul)} < inf [, < max I;L(’)/(t))
Em) " te0]

forevery y €T, where

I:={yeC([0,1],W"(Q)); (0) = uo, y(1) =u }.

Proof. First, we shall prove infg,, [} > —co. For every u € WP (Q) with

/m\u|pdx<0,
Q
we have
Co A
I (u) > Vup——/mu”dx—hwu
2 (1) p(p—l)H 15 > Jo |u [[72]]os o]l 1
Cob(m, &) »
> 2O e — | hwlu], QPP > —oo (4.6)
op—1) [l = N alloo el p| 2]

by (2.2), Lemma 2 and Holder’s inequality, where b(m,&) is a positive constant ob-
tained in Lemma 2 with & = (p — 1)A/Cy. Thus, I; is bounded from below on B(m),
where B(m) is a set defined by

B(m) :z{uerJ’(Q);/Qm\quxSO} C E(m). @4.7)
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Here, we choose a constant § such that 1 > 8 > A(p—1)/(c(m)Cy).
Let m >0 in Q. In this case, for every u € E(m), we have

Co(1-9) Codc(m .
hw) >~y IVule+ (T A)/mu|de—||h||mu,,|Q<P D/
_G01-9) p—1 C05c
M o (52 [
= [ flelull pl21
CQ(L=8), v _ /P s e
>d(&) o=y Nellp = Wl=llly Q=i > (4.8)

by (2.2), the definition of E(m) and Lemma 3, where d(&’) > 0 is a constant obtained
in Lemma 3 with
C()(Sc(m)

/ p—1
g= (et

Co(1-96)

—2).

Similarly, in the other cases (that is, m changes sign), for every u € E(m) with

/m\u|pdx>0,
Q
we obtain
M P Codc(m) _ Pdx— (p—1
) > SC Tl (B2 ) [l 2
_ Go(1— ){ p—1 <C05C(m) ) }
= -2 - rd
pipn UV GI=3) -] ol
— ||l ellul] 2 P
C
>b(—m,§)MH 15 = [l Je] p | P71/P > —eo (4.9)

by (2.2), the definition of E(m), Lemma 2 (note [, (—m)|u|?dx < 0) and Holder’s
inequality, where b(—m, &) is a positive constant obtained in Lemma 2 with

Cobc(m)
p—1

=Pl

G —3) —A)

Consequently, we see that I, is bounded from below on E(m) by (4.6) and (4.8) or
(4.9).

Fix a positive constant € such that C;(1*(m) +¢€)/(p —1) < A. Then, by the
definition of A*(m), we can choose a non negative function vy € W*(Q) (note that
we can use |vg| instead of vy if necessary) such that

/mvgdle and || Vvlls < A*(m)+ &
Q
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Then, for sufficiently large 7 > 0, we have

C\ TP ATP
L(£Tvy) < ———||Vvo p———i—T/ hvodx
(&) < TVl r [
<—T—<A— G (?L*(m)—i—e))—i—T/hv dx< infl,  (410)
p p—1 Q 0 E(m) * '

by (2.2), A —Ci(A*(m)+¢€)/(p—1) >0 and p > 1. Hence, we set uy := Tvy and
uy := —Tvy for T > 0 satisfying (4.10).
Now, we shall prove

I > inf I fi erT.
max lh (7(1)) Jnflp forevery y

Fix any y € T'. If y([0,1]) N B(m) # 0, then

L(y(t)) > inf I, > inf I
max 2 (v(7)) inflp > inf [

because of B(m) C E(m) (see (4.7)). So, we may assume that y([0,1]) N B(m) = 0,
namely [om|y(t)|P dx > 0 forevery r € [0,1]. Set

v()
(Jamly(e)|pdx)t/p’
and then 7 € Z(m) (see (2.10) for the definition of X(m)). By the definition of ¢(m),

we have max,c(o 1] [|V7(2)||;, > c¢(m). This implies that there exists uy € y([0,1]) such
that

(1) =

Vil > eon) [ iy
whence u, € E(m). As aresult, we obtain

L(v(t) =1 > inf I,.
max A (Y(1)) = I, (uy) dnt I

LEMMA 14. Assume that

heL”( /mdx—O and 0< A< 00(1).

Then, there exists € > 0 such that A < Coc(m+¢&y)/(p—1) and I, is bounded from
below on E(m+ €&)) defined by (4.5) with m+ &y. Furthermore, there exist uy, uj €
WP (Q) such that

I I inf 1 I
max{Iy (uo), I (u1)} <E(;1n+80) i < fé}g’ﬁ 1 (¥(2))

for every y € C([0,1],W'P(Q)) with y(0) = uy and y(1) = u;.
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Proof. By Lemma 9 and A < Coc(m)/(p— 1), we can choose & > 0 satisfying
A < Coc(m+g)/(p—1). Forevery u € WP(Q), we have
Co

A g
7Vup——/m—|—£ u|? dx + ——||ul|Z — ||| o||u||1-
1)” 15 p Q( 0)|ul ) [[aa]| 5 = [|72]| o ]| 1

I (u) 2 o

Thus, by the same argument as in the proof of Lemma 13 with m + &y instead of m, we
can show that 7, is bounded from below on E(m+ &) (note ggA > 0). Moreover, by
choosing a non negative function vy € W'?(Q) such that

/mvgdx=1 and [[Vyglls < A*(m)+e=e¢
Q

for0<e <A(p—1)/Cy, we have

TP Cie
L(£Tvy) < —— <7L S— ) —|—T/ hvodx < inf I
P p—1 Q E(m+g)

for sufficiently large T > 0, where we use (2.2) in the first integral. The last assertion

can be proved by the same argument as in the proof of Lemma 13 with m + & instead
of m.

PROOF OF THEOREM 5. By Proposition 6 in the last subsection 4.4, we will
see that [, satisfies the Palais-Smale condition in all cases. Hence, the mountain pass
theorem guarantees the existence of a critical point of I, since I, has the mountain
pass geometry by Lemma 13 (if [, mdx # 0) or Lemma 14 (if [omdx=0), where we
use A, > C;/(p—1) when [omdx <0 and N < p. Therefore, (P;A,m,h) has at least
one solution.

4.3. Asymptotically (p — 1) homogeneous case
In this subsection, we deal with the special case where the map A(x,y) is asymp-
totically (p — 1) homogeneous in the following sense:

(AH) there exist a positive function a.. € C '(Q,R) and a continuous function a(x,)
on Q x R such that

Alx,y) = aw(x) "y +a(x, )y foreveryxe Q, yeRY,
alx,t)

m — =0 uniformlyinx € Q,
t—foo (P

and A satisfies the hypothesis (A).
Under this hypothesis, we obtain the following existence result.

THEOREM 6. Assume that (AH), m € L”(Q) and 0 £ h € L= (Q)4. If

A% (m) supae(x) < A < c(m) inf ae(x),
x€Q xeQ

then (P;A,m,h) has at least one solution.
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Under the hypothesis (AH ), we define

Iy|
G(x,y) := / a(x, 1)t dx.
0
Then, the functional [, is written by

I (u) = l/ a.x,|Vu|pdx+/ é(x7Vu)dx—&/m\u|pdx—/hudx
pJQ Q pJa Q

for uc Wr(Q).
Now, we shall prove that /; has the mountain pass geometry.

LEMMA 15. Assume that (AH), h € L”(Q)4, [omdx#0 and

A% (m) supae(x) < A < c(m) inf ao(x).

x€Q x€Q

Then, I, is bounded from below on E(m) defined by (4.5). Furthermore, there exist
uo, uy € WhP(Q) such that

max{IA(uo)J;L(ul)} < inf I)L < max I;L(’)/(l))
E(m) r€[0,1]

forevery y €T, where

I:={yeC((0,1],W"?(Q)): y(0) = uo, y(1) =u }.

Proof. By the property of the function d as in (AH) and Young’s inequality, for
every € > 0 there exist constants C¢ > 0 and C, > 0 such that

~ €
|G| < S+ Celvl < b+ @.1)

forevery x€ Q and y € RV . Therefore, we have

a—pe

I (u) >
p

A
IVullp— ;/leu\”dx— 1] |oo| 2]} — Ce |2

for every u € WP (Q), where a:= inf,cq dw(x). Here, we choose € >0 and 0 < § < 1
such that A < (¢ — pe)dc(m). By a similar argument to Lemma 13, we can show that
I, is bounded from below on E(m).

Next, we shall prove the existence of desired uo and u;. Take € > 0 satisfying

A > (@+ pe) (A" (m)+¢€'),

where @ := sup, . @(x) . Choose a function vy € W' (Q) such that

/m|vo\1’dx:1 and  |[Vvo|l2 < A*(m) + £
Q
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Then, for sufficiently large 7 > 0, we have

TP
B(ETw) < = (A= @+ pe) (A (m) +€) ) + T/Qh\vo\dx+c;,\g|

< inf I,
El(m) A

where we use (4.11) with € = &’ Thus, by setting ug := Tvgy and u; := —Tvq for such
T > 0, our claim is shown. Finally, it follows from the same argument as in Lemma 13
that every y € T links E(m).

By combining the proof of Lemma 15 with one of Lemma 14, we can show the
following lemma in the case of [omdx = 0. Here, we omit the proof.

LEMMA 16. Assume that (AH), h€ L”(Q)4, [omdx=0 and

A% (m) supae(x) < A < c(m) inf ao(x).

xeQ x€Q

Then, there exists & > 0 such that A < c(m+ &) infreqae(x) and I) is bounded
Sfrom below on E(m+ &) defined by (4.5) with m+ €. Furthermore, there exist u,
uy € WhP(Q) such that

max{ly (uo),I; (u1)} < inf I < max I (y())
E(m+egp) r€[0,1]

for every y € C([0,1],WhP(Q)) with y(0) = uy and y(1) = u;.

PROOF OF THEOREM 6. It suffices to prove the existence of a critical point of I
because critical points of I) correspond to solutions of (P;A,m,h). By Proposition 6
in the last subsection 4.4, we will see that I, satisfies the Palais-Smale condition if 4
is not an eigenvalue of

—div (a.x,(x)|Vu|p72Vu) = Am(x)|u|’2u inQ, 3—: =0 ondQ. (4.12)

d
Hence, by admitting that A is not an eigenvalue of (4.12), the mountain pass theo-
rem guarantees the existence of a critical point of I, since I) has the mountain pass
geometry by Lemma 15 or 16 in the case of [, mdx # 0 or [, mdx =0, respectively.

Now, we shall prove that the equation (4.12) has no non-trivial solution provided
A*(m) supeq de(x) < A < ¢(m) infyeq aw(x) by way of contradiction. So, we assume
that there exists a non-trivial solution v € W'7(Q) of (4.12). By taking +v, as test
function, we have

inf ae (x)[|Vvi]|) < l/ mv! dx < supae(x)||Vv|D. (4.13)
x€Q Q xeQ

We shall show that [omv! dx >0 and [omv’ dx > 0. If [omv! dx =0 holds, then
v=—v_ or v=c>0 with ¢ = |[vy|, occurs because of ||[Vv,|, =0 obtained by
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(4.13). Thus, —v or v is a positive solution of (4.12) belonging to C'(Q) such that
ming v_ = ming (—v) > 0 or mingv > 0, respectively (see Remark 2 with & = 0).
Then, by applying an argument as in Proposition 2 (with 7 = 0) to the equation (4.12),
we obtain the inequality

2 mordr= [ avyul2vyv (22 4
QWP X = Qaw| V| 14 T x

< [ a-lVolrdx < supa- (0 Voll;
Q x€Q
for every ¢ € C'(Q) with ¢ >0, where y =v_ if v <0 or y = v, if v> 0. By the
density of C!(Q), we have

k/ me? dx < supa.(x)||[Ve||5  forevery ¢ € whr(Q) with @ > 0.
Q xeQ

This implies that A < A*(m) sup,cq a-(x) (refer to Proposition 2). This is a contradic-
tion.

Similarly, if [ mv¥ dx = 0, then we can get a contradiction since v = v, or v =
—c < 0 holds. Therefore, our claim is shown. As a result, we can define a continuous
path ¥ € X(m) (see (2.10) for the definition of X(m)) by

(I—t)vy —r1v_
(L=1)P fogmvt dx+1tP [omv’ dx)l/p

W(t) =

Hence, we have a contradiction to the definition of ¢(m) because

A

—_ f te 0,1
o an () <c(m) foreveryt € [0,1]

Jw(@) = IVr@)l; <
holds by (4.13), where J is the functional defined by (2.8).

REMARK 7. Let A*(@w,m) and c(a.,m) be the principal eigenvalue or the sec-
ond eigenvalue of

—div (aw(x)|Vu|p72Vu) =Am(x)[u|’2u inQ, 3—3 =0 onodQ, (4.14)

respectively. Namely,

A (deoym) ::inf{/ aN\Vu\pdx;/ mlu|P dx = 1},
Q Q

w,m) ;= inf | Vy(t)|P dx.
clam):= inf max /Q au| V()| dx

Then, in the assumption of Theorem 6, we can replace
A*(m) supae(x) < A < c(m) inf @e(x)
xeQ x€Q

with A*(de,m) < A < ¢(aw,m). In [23], the present author provides the existence
result in the more general cases.
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4.4. Palais-Smale condition

In this section, we prove that [, satisfies the Palais-Smale condition under the
several situation. The following result is proved in [20]. It plays an important role for
our poof.

PROPOSITION 5. ([20, Proposition 1]) Let A: WhP(Q) — WIP(Q)* be the map
defined by

(A(u),v) :/QA()QVM)Vvdx

for u, veW. Then, A is maximal monotone, strictly monotone and has the (S)1
property, that is, any sequence {uy} weakly convergent to u with

limsup(A(uy),u, —u) <0 strongly converges to u.

n—o0

First, we state the result for the Palais-Smale condition in the general case.

PROPOSITION 6. Let h € L”(Q). If one of the following cases holds, then I,
satisfies the Palais-Smale condition:

i) m=20in Qand 0 <A <Cyc(m)/(p—1),
(ii) fomdx>0and 0 <A < CoAyxpm/(p—1),
(iii) N < p and A,A*(m) <A <Cod(m)/(p—1),

where ¢(m), AX(,,,), A, and i(m) are positive constants defined by (2.11), (2.13),
(2.14) and (2.7), respectively.

Proof. Let {uy} be a Palais-Smale sequence of I, , namely,
L (up) — ¢ and  ||[ (un)|lw — 0 asn—oo

for some ¢ € R. It is sufficient to prove the boundedness of {u,} in W!'?(Q) because
the operator A defined in Proposition 5 has the (S)y4 property and the inclusion from
WP (Q) to LP(Q) is compact. Then, by noting the following inequality

Co

A
mHVuan</QG(x,Vun)dXZI;L(un)—i—;/Qm|un\pdx+/ghundx

<y (un) + Allml|eo[enl| 5/ P+ (| alleol[10n |1 (4.15)

by (2.2), it is sufficient to prove only the boundedness of {u,} in L”(Q). We shall
prove it by contradiction. So, we may assume |[u,||, — o by choosing a subsequence.
Put v, := u,/||uy||,. Then, we may suppose that there exists a v € W!7(Q) such that

v, =v inW"P(Q) andhence v, —v inLF(Q)
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since (4.15) ensures the boundedness of {v,} in W!?(Q). By taking the limit inferior
in the following inequality

Vuy,
u+dx

/A x, Vi)
lunll
—l/mvn+dx+/h rdx+ (D (u ),vnit
leenlls™ < 2eal 5 1>

(where we use Remark 1 (iii) in the first inequality), we have
Co
I\ JL/vaidx. (4.16)

Similarly, we also get

C
—OIHVV,Hgg?L/vafdx. 4.17)

Here, we note that it is sufficient to prove the two inequalities [, mvf’Ir dx >0 and
fQ mvP dx > 0. Indeed, if we can show the above inequalities, then we can define a
continuous path 9 € X(m) (see (2.10) for the definition of X(m)) by

(I—t)vy —r1v_
(1 =2)? fomV" dx+1? [omv” dx) e

W(t) =
For this continuous path, by an easy estimate with (4.16) and (4.17), we have
N —1
To(0) = V)l < E==2 < c(m) forevery € [0,1],
0

where J is the functional defined by (2.8). This contradicts to the definition of c(m).
So, we shall prove

/mvﬁdx>0 and /mvlidx>0
Q Q

in each case of (i) ~ (iii) by noting (4.16) and (4.17).
Case (i): If [, mvﬁ dx = 0, then v is a constant function by (4.16). Moreover,
because of fQ mdx > 0, we see that v, =0, and so v < 0 in Q. Then, by the equality

o(1) = (85 ) 1/ ;") = A [ mlonl? =2 [l i,

/m|v|p72vdx=—/mv’i_1:0
Q Q

(note A > 0). This yields that m(x)»" "' (x) = 0 for a.e. x € Q (note m >0 in Q).
Thus, m(x)v” (x) = 0 for a.e. x € Q. Therefore, (4.17) shows that v_ is a constant
function, and so

we have

v=—v_=0 by /mv’idsz.
Q
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This contradicts to ||v||, = 1. Hence, we have [omv! dx > 0. Similarly, we see that
Jomv! dx>0.

Case (ii): First, let fQ mv’]r dx = 0 occur. Then, by the same argument as in case
(i), we have v < 0 in Q and

/ m|v|P~2vdx = —/ m 1 =0.
Q Q

If [omv” dx >0 holds, then v_/( [omv” dx)'/P € X (m) and we have

IVv_p A
———<(p—1)= < Ax(m

Jomv” dx (P )Co X(m)
by (4.17). This contradicts to the definition of Ax -

On the other hand, if fQ mv” dx = 0, then v_ is a constant function by (4.17).
Hence we obtain a contradiction in this case also since

1
0:/mv’idx=v’1/mdx:—/mdx>0
Q Q Q] Ja

(note ||v||, =1 and also that v_ is a constant function). Consequently, we have shown
Jomvidx>0.

Similarly, we can prove that [, mv” dx > 0 by a similar argument above with v
instead of v_.

Case (iil): We consider by dividing into the following three cases:

(@) Jomv! dx=0= [omV’ dx;
(b) Jomv! dx>0= [om dx;
(© Jomdx=0< [om dx.

In the case of (a), it follows from (4.16) and (4.17) that v is a constant function.
Thus, v =1/|Q|"/? or v=—1/|Q|'/? occurs. First, we shall deal with the case of
v=1/|Q['/P > 0. Thus, we may assume that u, > ||u,||,/2|Q|"/? in Q for sufficiently
large n (note N < p and so W!'?(Q) < C(Q) is compact). So, we obtain

2P(p— 1)||VVHHI7 I (l/up—l) I, < 2p_1‘9|
n S

IV (/=) < - —
1 [Junll [

(4.18)

and so 1/ul”" € W''»(Q) for such sufficiently large n. Here, we fix any ¢ € C1(Q)
such that @ > 0 in Q. By taking the limit in the following inequality

14
A,/IVol? Z/A(x7Vu,,)V< f_1> dx
Q

Un

_ p ho? ' P /yP=!
_l mo dx—|— 1 dx+<IQL(un)a(P /un >
Q Quﬁf
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(note ||@?/ul""|| = o(1) by (4.18)), where the first inequality is shown by Proposi-
tion 2, we have

AolIVolp =2 [ mprds

for every ¢ € C'(Q) with ¢ >0 in Q. Since C!(Q) is dense in W!?(Q), we obtain
AVl >4 [ mpra
Q

for every @ € WHP(Q) with ¢ > 0 in Q. Because we can choose ¢, € W!?(Q) such
that @ >01in Q, [om@] dx=1 and | V||, < A*(m)+1/k (we consider |¢y| instead
of ¢y if necessary), we have a contradiction.

In the case of v = —1/]Q|"/? < 0 also, we have a contradiction by using —u,
instead of u,, as in the above argument (note that A is odd in the second variable).

In the case of (b), it is easily seen that v =v, > 0 holds by (4.17) and

/mv’idx:0</mvidx.
Q Q

HVV+||§ A 3
/TP < (p—1)=
ol < (1= D <A

Since we obtain

by (4.16) and [omv dx > 0, it follows that v, has no zero points in Q from the
definition of A(m). This means that v > 0 in Q. Thus, we may assume that u, >
8||unl| /2 in Q for sufficiently large n, where § = ming v(x) because the inclusion of
W1P(Q) to C(Q) is compact. So, we can get a contradiction by the same argument as
in the case of (b) under v > 0.

In the case of (c), we see that v < 0 in Q by a similar argument to the case of (b).
This yields a contradiction by a similar argument to the case of (a) under v < 0.

To deal with the case of (AH), we prepare the following result.
LEMMA 17. Assume (AH) and let {u,} C W'"P(Q) be a Palais-Smale sequence

for I with ||u||p, — oo as n— oo. Then, vy, 1= uy,/|un||p has a subsequence strongly
convergent to a solution v for

—div(aoo(x)\Vv|p72Vv)zlm\v\pfzv in Q, 8—320 on 0Q, (4.19)

d

where a.. is the positive function as in (AH).

Proof. By the same argument as in the proof of Proposition 6, we can show the
boundedness of ||v,|| and obtain the inequality

C
—OIHVWH%A/m|vn|de+o(1) 4 11— os, 4.20)
pP— Q
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So, we may suppose, by choosing a subsequence, that there exists a v € W!'?(Q) such
that
v, —v inW"(Q) andhence v, —v inL’(Q).

To prove that v, strongly converges to v in W!7(Q), it suffices to show

lim \Vv P=2Vv,V(v, —v)dx =0 (4.21)

n—00

because the p-Laplace operator has the (S); property. To obtain (4.21), we shall get
the following

/ a(x,|Vu,|)Vu,V(v, —v)dx| =0, (4.22)
Q

n—o0

1
anl5™

where 4 is the function as in (AH). Here, we fix an any € > 0. By the property of the
function &, there exist R > 0 and C > 0 such that

la(x,0)| < elt|P2if |f| > Rand |a(x,r)| < Cif |t| < R. (4.23)

Therefore, we obtain

/ a(x,|Vuu|)Vuy, V(v —v)dx
Q

(4.24)
1
|4 Hg

C|Vuy|
Vi< ]

|Q‘(P—1)/P

</| | £([Vonl? + [Vou|?~ 1|V dx+ (|Vva] + V] dx
Vu,|>R

e([Vvully + IVvall5~H VY p) + RV vallp + V] ) T
nllp

214l (p—1)||m|-e r Q-1
[Al(p = D)||m]| +01)> [o]

_ 2¢[Al(p—1)ml-
Co fuea |

Co

+o(1)+RC (
by (4.20), ||v4||, = 1 and Hélder’s inequality. Thus, by taking the limit superior in the

above inequality, we can get

< 2¢[A|(p— Dlimllw
Co

limsup

n—oo

/ a(x,Vun)Vu,V(v, —v)dx

-1
a5 /2

since ||up||p — oo as n — eo. This implies (4.22) because € > 0 is arbitrary. By taking
the limit in the following and noting (4.22)

o(l)= <15L(un) Vn — V>/||1,¢,1H1’*1

Vu, V n
_/a.x,\Vv,,V’ Vv, V(v —v)dx +/ | Vi) Vi ——————V(v, —v)dx

oen |5~

h
_l/m|vn‘17*2vn(vn—v)dx—/ ﬁ("n—")dx;
Q Q [lunllp
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we have the inequality (4.21) (note infga > 0), whence v, — v in WP (Q).

Finally, we shall show that v is a solution for (4.19). So, we fix any ¢ € W'?(Q).
Then, by considering ¢ instead of (v, —v) in (4.24), we have the following inequality
forevery € > 0:

e

a(x,|Vuy,|)Vu, _
[ Ll g 1| < eVl 199l +
@ lunllp [l
Al(p—1)||m|l (p=1)/p CR||Vol|,|Q|(P~D/p
0 l[un[p
This gives

tim [ Ao [Ven ) ¥itn g 4 — g (4.25)
meJQ ([t ||1p

since € > 0 is arbitrary. By taking the limit in

(I (un), @)
ot |

o(l)=

we have
/am\Vv|p72VvV(pdx=7L/m|v|p72\1(pdx
Q Q

by (4.25), v, — v in WhP(Q) and ||u,||, — e as n — co. Because ¢ is any function
in W'?(Q), our conclusion is shown.

Now, we state the result in the case of (AH).

PROPOSITION 7. Assume (AH) and A is not an eigenvalue of

d
—div (do(x)|Vu|P"?Vu) = Am|ulP"*u  in Q, % =0 ondQ, (4.26)
where a.. is the positive function as in (AH). Then, I, satisfies the Palais-Smale
condition.

Proof. Let {uy} be a Palais-Smale sequence of I, , namely,
L (up) — ¢ and || (un)|lws — 0 asn— oo

for some ¢ € R. It is sufficient to prove only the boundedness of ||u,||, by the same
reason as in the proof of Proposition 6. So, by contradiction, we may suppose that
lun||p — o= as n — oo by choosing a subsequence. Set v, := u,/|lun|/,. Then, it
follows from Lemma 17 that {v,} has a subsequence strongly convergent to a non-
trivial solution v for (4.26) with [|v||, = 1. This is a contradiction because A is not an
eigenvalue of (4.26).
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REMARK 8. Concerning the existence of a solution, under the Dirichlet bound-

ary condition also, we can similar results to the ones as in section 4 by using several
constants corresponding to the Dirichlet problem.

Acknowledgements. The author would like to express her sincere thanks to Profes-

sor Shizuo Miyajima for helpful comments and encouragement. The author thanks the
referee for his helpful comments and suggestions.

[1]
[2]

[3]
[4]
[5]

[6

—

[7]

[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

REFERENCES

A. AMBROSETTI, G. PRODI, A Primer of Nonlinear Analysis, Cambridge Studies Advanced Mathe-
matics, 34, Cambridge University Press, Cambridge, 1995.

A. ANANE, O. CHAKRONE, N. MORADI, Maximum and anti-maximum principles for the p-
Laplacian with a nonlinear boundary condition, Electr. J. Differential Equations, Conference 14
(2006), 95-107.

D. ARCOYA, J. D. ROSSI, Antimaximum principle for quasilinear problems, Adv. Differential Equa-
tions, 9 (2004), 1185-1200.

M. ARIAS, J. CAMPOS, M. CUESTA, J.-P. GOSSEZ, An asymmetric Neumann problem with weights,
Ann. Inst. Henri Poincaré., 25 (2008), 267-280.

M. ARIAS, J. CAMPOS, J.-P.GOSSEZ, On the antimaximum principle and the Fucik spectrum for the
Neumann p-Laplacian, Differential Integral Equations, 13 (2000), 217-226.

1. BIRINDELLI, Hopf’s lemma and antimaximum principle in general domains, J. Differential Equa-
tions, 119 (1995), 450-472.

E. CAsAs, L. A. FERNANDEZ, A Green's formula for quasilinear elliptic operators, J. Math. Anal.
Appl., 142 (1989), 62-73.

P. CLEMENT, L. PELETIER, An antimaximum principle for second-order elliptic operators, J. Differ-
ential Equations, 34 (1979), 218-229.

L. DAMASCELLL, Comparison theorems for some quasilinear degenerate elliptic operators and ap-
plications to symmetry and monotonicity results, Ann. Inst. Henri Poincaré, 15 (1998), 493-516.

J. FLECKINGER, J.-P. GOSSEZ, P. TAKAC, F. DE THELIN, Existence, non existence et principle de
I’antimaximum pour le p-Laplacien, C. R. Acad. Sci. Paris, 321 (1995), 731-734.

J. FLECKINGER, J.-P. GOSSEZ, F. DE THELIN, Maximum and antimaximum principles: beyond the

first eigenvalue, Differential Integral Equations, 22 (2009), 815-828.

L. GASINSKI, N. S. PAPAGEORGIOU, Nonlinear Analysis, vol. 9, Chapman & Hall/CRC, Boca Raton,
Florida, 2006.

T. GoDOY, J.-P. GOSSEZ, S. PACZKA, Antimaximum principle for elliptic problems with weight,
Electr. J. Differential Equations, 1999 (1999), 1-15.

T. GODOY, J.-P. GOSSEZ, S. PACZKA, On the antimaximum principle for the p-Laplacian with
indefinite weight, Nonlinear Anal., 51 (2002), 449-467.

S. E. HABIB, N. TSOULIL, On the spectrum of the p-Laplacian operator for Neumann eigenvalue
problems with weights, Electr. J. Differential Equations, 2005 (2005), 181-190.

P. HESS, An anti-maximum principle for linear elliptic equations with indefinite weight function, J.
Differential Equations, 41 (1981), 369-374.

G. M. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear
Anal., 12 (1988), 1203-1219.

J. MAWHIN, M. WILLEM, Critical Point Theory and Hamiltonian System, Springer-Verlag, New
York, 1989.

S. MIYAJIMA, D. MOTREANU, M. TANAKA, Multiple existence results of solutions for the Neumann
problems via super- and sub-solutions, J. Funct. Anal., 262 (2012), 1921-1953.

D. MOTREANU, V. V. MOTREANU, N. S. PAPAGEORGIOU, Multiple constant sign and nodal solu-
tions for Nonlinear Neumann eigenvalue problems, Ann. Sc. Norm. Super. Pisa CI. Sci. (5), 10 (2011),
729-755.



THE ANTIMAXIMUM PRINCIPLE AND THE EXISTENCE OF A SOLUTION 613

[21] D. MOTREANU, N. S. PAPAGEORGIOU, Multiple solutions for nonlinear Neumann problems driven
by a nonhomogeneous differential operator, Proc. Amer. Math. Soc., 139 (2011), 3527-3535.

[22] N. STAVRAKAKIS, F. DE THELIN, Principal eigenvalues and antimaximum principle for some quasi-
linear elliptic equations on R , Math. Nachr., 212 (2000), 155-171.

[23] M. TANAKA, Existence results for quasilinear elliptic equations with indefinite weight, to appear in
Abstract and Applied Analysis.

(Received December 7, 2011) Mieko Tanaka
Department of Mathematics

Tokyo University of Science

Kagurazaka 1-3, Shinjyuku-ku, Tokyo 162-8601

Japan

e-mail: tanaka@ma.kagu.tus.ac.jp

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com



