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p–LAPLACE EQUATIONS WITH INDEFINITE WEIGHT
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(Communicated by Jean-Pierre Gossez)

Abstract. This paper treats the antimaximum principle and the existence of a solution for quasi-
linear elliptic equation −div (a(x, |∇u|)∇u) = λm(x)|u|p−2u+ h(x) in Ω under the Neumann
boundary condition. Here, a map a(x, |y|)y on Ω×R

N is strictly monotone in the second vari-
able and satisfies certain regularity conditions. This equation contains the p -Laplacian problem
as a special case.

1. Introduction

In this paper, we study the antimaximum principle (AMP) and consider the exis-
tence of a solution for the following quasilinear elliptic equation:

(P;λ ,m,h)
{−div (a(x, |∇u|)∇u) = λm(x)|u|p−2u+h(x) in Ω,

∂u
∂ν = 0 on ∂Ω,

where Ω⊂R
N is a bounded domain with C2 boundary ∂Ω , ν denotes the outward unit

normal vector on ∂Ω , a is a positive function on Ω×(0,+∞) , λ ∈R , 1 < p < ∞ , m∈
L∞(Ω) and h ∈ L∞(Ω)+ . Here, we set a map A(x,y) := a(x, |y|)y for (x,y) ∈ Ω×R

N

and, then A is strictly monotone in the second variable and satisfies certain regularity
conditions (see the following assumption (A)). The equation (P;λ ,m,h) contains the
corresponding p -Laplacian problem as a special case. However, in general, we do not
suppose that the operator A is (p−1)-homogeneous in the second variable.

Throughout this paper, we assume that

|{m > 0}| := |{x ∈ Ω ; m(x) > 0}| > 0 (1.1)

where |X | denotes the Lebesgue measure of a measurable set X . In this paper, we deal
with the following four cases concerning the weight function m ∈ L∞(Ω) under (1.1):

(i) m �≡ 0 and m(x) � 0 for a.e. x ∈ Ω; (ii)
∫

Ω mdx > 0 and |m < 0| > 0;
(iii)

∫
Ω mdx = 0; (iv)

∫
Ω mdx < 0.
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Here, we say that u ∈W 1,p(Ω) is a (weak) solution of (P;λ ,m,h) if∫
Ω

A(x,∇u)∇ϕ dx = λ
∫

Ω
m|u|p−2uϕ dx+

∫
Ω

hϕ dx

for all ϕ ∈W 1,p(Ω) .
In [8], the study of AMP started by Clement and Peletier. They proved that there

exists δ > 0 for every λ ∈ (λ1,λ1 + δ ) such that any solution is negative in Ω for
−Δu = λu+h in Ω under the Dirichlet or Neumann boundary condition, where λ1 de-
notes the first eigenvalue of −Δ . This situation is called as that “AMP holds at right of
λ1 ”. Although the above δ depends on h in general, they presented also the existence
of such δ independent of h in the case of N = 1 under the Neumann boundary condi-
tion. When we can take δ independent of h , we say that “AMP holds uniformly at right
of λ1 ”. The AMP was extended in [16] to the case having the (indefinite) weight. More-
over, many authors have studied the AMP for the Laplace equation and other equations
(cf. [2], [3], [5], [6], [10], [11], [22]). In the case of the p -Laplacian, Godoy et al ([13]
and [14]) presented the several results concerning AMP for −Δpu = λm|u|p−2u + h
in Ω under the Dirichlet and Neumann boundary conditions. First purpose of this pa-
per is to prove similar results to one of [14] for the generalized p -Laplace equation
(P;λ ,m,h) .

On the other hand, it is obvious that the AMP has no effect if a solution does not
exist. However, there are few existence results of a solution to our equation (and also
the p -Laplace equation). For example, if λ < 0 and m ≡ 1 holds, then the standard
argument guarantees the existence of a solution. In [14], it is shown that the equation
−Δpu = m|u|p−2u+ h in Ω has a unique positive solution provided 0 < λ < λ ∗(m) ,∫

Ω mdx < 0 and 0 �≡ h ∈ L∞(Ω)+ , where λ ∗(m) is the principal eigenvalue defined
in Section 2.1. To the Laplace problems under the Dirichlet boundary condition, the
existence results are well known (cf. [1]).

Therefore, second purpose is to show that (P;λ ,m,h) has at least one solution
under some condition to λ by variational methods. In particular, in the case where
A is asymptotically (p− 1) homogeneous (see the condition (AH) in Section 4.3),
(P;λ ,m,h) has at least one solution if λ exists between the principal eigenvalue and
the second eigenvalue (Theorem 6 and see Remark 7).

Throughout this paper, we assume that the map A satisfies the following assump-
tion (A) :

(A) A(x,y) = a(x, |y|)y , where a(x,t) > 0 for all (x,t) ∈ Ω× (0,+∞) and

(i) A ∈C0(Ω×R
N ,RN)∩C1(Ω× (RN \ {0}),RN) ;

(ii) there exists C1 > 0 such that

|Dy A(x,y)| � C1|y|p−2 for every x ∈ Ω, and y ∈ R
N \ {0};

(iii) there exists C0 > 0 such that

Dy A(x,y)ξ ·ξ � C0|y|p−2|ξ |2 for every x ∈ Ω, y ∈ R
N \ {0} and ξ ∈ R

N ;
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(iv) there exists C2 > 0 such that

|Dx A(x,y)| � C2(1+ |y|p−1) for every x ∈ Ω, y ∈ R
N \ {0};

(v) there exist C3 > 0 and 1 � t0 > 0 such that

|Dx A(x,y)| � C3|y|p−1 (− log |y|)

for every x ∈ Ω , y ∈ R
N with 0 < |y| < t0 .

Throughout this paper, we assume C0 � p−1 � C1 because we can take such desired
C0 and C1 anew if necessary.

A similar hypothesis to (A) is considered in the study of quasilinear elliptic prob-
lems (cf. [21, Example 2.2.] and [9], [20], [19]). It is easily seen that many examples as
in the above references satisfy the condition (AH) . In particular, for A(x,y) = |y|p−2y ,
that is, divA(x,∇u) stands for the usual p -Laplacian Δpu , we can take C0 =C1 = p−1
in (A) . Conversely, in the case where C0 =C1 = p−1 holds in (A) , by the inequalities
in Remark 1 (ii) and (iii) in Section 2, we see a(x,t) = |t|p−2 whence A(x,y) = |y|p−2y .

In section 2.1, we recall several results concerning the weighted eigenvalue prob-
lems for the p -Laplacian. Then, in Section 3, we show that the AMP holds at some λ
for our equation. Finally, we present the existence results to our equation (in Section
4).

2. Preliminaries

In what follows, the norm on W 1,p(Ω) is ‖u‖p := ‖∇u‖p
p + ‖u‖p

p , where ‖u‖q

denotes the norm of Lq(Ω) for u ∈ Lq(Ω) (1 � q � ∞). Setting

G(x,y) :=
∫ |y|

0
a(x,t)t dt,

then we can easily see that

∇yG(x,y) = A(x,y) and G(x,0) = 0 (2.1)

for every x ∈ Ω .

REMARK 1. It is easily seen that the following assertions hold under condition
(A) :

(i) for all x ∈ Ω , A(x,y) is maximal monotone and strictly monotone in y ;

(ii) |A(x,y)| � C1
p−1 |y|p−1 for every (x,y) ∈ Ω×R

N ;

(iii) A(x,y)y � C0
p−1 |y|p for every (x,y) ∈ Ω×R

N ;
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(iv) G(x,y) is convex in y for all x and satisfies the following inequalities:

A(x,y)y � G(x,y) � C0

p(p−1)
|y|p and G(x,y) � C1

p(p−1)
|y|p (2.2)

for every (x,y) ∈ Ω×R
N ,

where C0 and C1 are the positive constants in (A) .

REMARK 2. Let m ∈ L∞(Ω) and h ∈ L∞(Ω)+ . Then, we remark the following:

(i) If u∈W 1,p(Ω) is a solution of (P;λ ,m,h) , then u∈C1,α(Ω) for some 0 < α < 1
and ∂u/∂ν = 0 on ∂Ω ;

(ii) If u ∈ W 1,p(Ω) is a non-trivial solution of (P;λ ,m,h) such that u � 0, then
minΩ u > 0 holds;

Proof. For readers’ convenience, we give a sketch of the proof. (i): Let u ∈
W 1,p(Ω) be a solution of (P;λ ,m,h) . Then, because u∈ L∞(Ω) by the Moser iteration
process (cf. Appendix in [19]), we see that u ∈C1,α(Ω) (0 < α < 1) by the regularity
result in [17]. Furthermore, by [7, Theorem 3], u satisfies the boundary condition

0 =
∂u

∂νA
= A(·,∇u)ν = a(·, |∇u|) ∂u

∂ν
in W−1/q,q(∂Ω)

for every 1 < q < ∞ (see [7] for the definition of W−1/q,q(∂Ω)). Since u ∈ C1,α(Ω)
and a(x, t) > 0 for every t �= 0, u satisfies the Neumann boundary condition, that is,
∂u
∂ν (x) = 0 for every x ∈ ∂Ω .

(ii): Let u ∈ W 1,p(Ω) be a solution of (P;λ ,m,h) satisfying u � 0 and u �≡ 0.
Then, we have

−divA(x,∇u)+ |λ |‖m‖∞up−1 � h � 0 in Ω.

By noting that u ∈C1,α(Ω) (0 < α < 1) by (i), we have u(x) > 0 for every x ∈ Ω by
Theorem B in [19, Appendix]. Due to the strong maximum principle (see Theorem A
in [19, Appendix]), we easily see that u(x) > 0 for every x ∈ ∂Ω (note ∂u/∂ν = 0 on
∂Ω by (i)). This yields minΩ u > 0 because of u ∈C1,α(Ω) by (i).

2.1. The weighted eigenvalue problems for the p -Laplacian

The following lemmas can be easily shown by way of contradiction. Here, we
omit the proofs.

LEMMA 1. ([14, Lemma 2.3.]) Assume
∫

Ω mdx < 0 . Then, there exists a constant
c > 0 such that

∫
Ω |∇u|p dx � c‖u‖p

p for every u ∈W 1,p(Ω) with
∫

Ω m|u|p dx > 0 .
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LEMMA 2. ([14, Lemma 2.8.]) Assume that
∫

Ω mdx �= 0 and ξ > 0 . Then, there
exists a constant b(m,ξ ) > 0 such that∫

Ω
|∇u|p dx− ξ

∫
Ω

m|u|p dx � b(m,ξ )
∫

Ω
|u|p dx

for every u ∈ B(m) := {u ∈W 1,p(Ω) ;
∫

Ω m|u|p dx � 0} .

LEMMA 3. Assume that m � 0 in Ω . Then, for every ξ > 0 there exists d(ξ ) > 0
such that ∫

Ω
|∇u|p dx+ ξ

∫
Ω

m|u|p dx � d(ξ )
∫

Ω
|u|p dx

for every u ∈W 1,p(Ω) .

LEMMA 4. Let N < p, λ > 0 and Λ ⊂ R be a compact set. Define

B̃(m) :=
{

u ∈W 1,p(Ω) ;
∫

Ω
m|u|p dx � 0 and u vanishes somewhere in Ω

}
.

Then, there exists a C > 0 such that for every ε ∈ Λ , the following inequality holds:∫
Ω
|∇u|p dx+ λ

∫
Ω
(m+ ε)|u|p dx � C‖u‖p

p for every u ∈ B̃(m+ ε).

Proof. By way of contradiction, we suppose that there exist {εn} ⊂ Λ and un ∈
B̃(m+ εn) such that∫

Ω
|∇un|p dx+ λ

∫
Ω
(m+ εn)|un|p dx <

1
n
‖un‖p

p.

Set vn := un/‖un‖p . Then, because we have∫
Ω
|∇vn|p dx �

∫
Ω
|∇vn|p dx+ λ

∫
Ω
(m+ εn)|vn|p dx <

1
n

(2.3)

by vn ∈ B̃(m+ εn) , we may assume that vn weakly converges to some v0 in W 1,p(Ω)
and vn(x) converges to v0(x) uniformly in x ∈ Ω (note W 1,p(Ω) ↪→C(Ω) is compact).
Moreover, it is easily seen that v0 vanishes somewhere in Ω because vn vanishes some-
where in Ω by un ∈ B̃(m+ εn) . Since Λ is compact, we may assume that εn → ε0 as
n → ∞ for some ε0 ∈ Λ by choosing a subsequence. Consequently, v0 ∈ B̃(m + ε0)
holds. On the other hand, by taking the limit inferior in (2.3), we have

∫
Ω |∇v0|p dx � 0.

This implies that v0 is a constant function such that ‖v0‖p = 1. This contradicts to the
fact that v0 vanishes somewhere in Ω .

Now, we state several known results relative to the following weighted eigenvalue
problems for the p -Laplacian:

−Δpu = λm(x)|u|p−2u in Ω,
∂u
∂ν

= 0 on ∂Ω. (2.4)
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We say that λ ∈ R is an eigenvalue of (2.4) if the equation (2.4) has a non-trivial
solution. First, we recall the following principal eigenvalue λ ∗(m) which plays an
important role for studying AMP.

λ ∗(m) := inf

{∫
Ω
|∇u|p dx ; u ∈W 1,p(Ω) and

∫
Ω

m|u|p dx = 1

}
. (2.5)

PROPOSITION 1. ([14, Proposition 2.2.]) The following assertions hold;

(i) If
∫

Ω mdx � 0 holds, then λ ∗(m) = 0 ;

(ii) If
∫

Ω mdx < 0 holds, then λ ∗(m) > 0 is a simple eigenvalue and it admits a pos-
itive eigenfunction. In addition, the interval (0,λ ∗(m)) contains no eigenvalues
of (2.4).

Moreover, we recall a second value λ (m) defined by

λ (m) := inf

{ ∫
Ω |∇u|p dx ; u ∈W 1,p(Ω),

∫
Ω m|u|p dx = 1

and u vanishes on some ball in Ω

}
. (2.6)

In the case of N < p (note that W 1,p(Ω) is compactly imbedded into C(Ω)), we intro-
duce λ̃(m) as follows:

λ̃ (m) := inf

{ ∫
Ω |∇u|p dx ; u ∈W 1,p(Ω),

∫
Ω m|u|p dx = 1

and u vanishes somewhere in Ω

}
. (2.7)

It is easily shown that λ (m) = λ̃ (m) (see section 3 in [14]).
Concerning λ ∗(m) and λ (m) , the following result is shown in [14].

LEMMA 5. ([14, Lemma 3.1.]) If p � N , then λ ∗(m) = λ (m) . If p > N , then
λ ∗(m) < λ (m) . Moreover, if p > N , then (λ ∗(m),λ (m)] has no eigenvalues of (2.4).

To prove lemma above, we need the following lemma proved by the same argument as
in [13, Claim 4.1] or [5, Lemma 3.1.] (Note that Lemma 4 guarantees the boundedness
of a minimizing sequence of λ̃ (m)). Here, we omit the proof.

LEMMA 6. Assume that p > N . Then, λ̃ (m) is attained. Furthermore, a mini-
mizer for λ̃ (m) vanishes at exactly one point in Ω .

LEMMA 7. Let N < p. Then, λ̃ (m+ε ′) < λ̃ (m+ε) < λ̃ (m) for every ε ′ > ε > 0
holds. Moreover, limε→+0 λ̃ (m+ ε) = λ̃ (m) .

Proof. We choose a minimizer u for λ̃(m) because Lemma 6 guarantees the ex-
istence of it. Then, for every ε > 0, we have

λ̃ (m+ ε) �
∫

Ω |∇u|p dx∫
Ω(m+ ε)|u|p dx

<

∫
Ω |∇u|p dx∫
Ω m|u|p dx

=
∫

Ω
|∇u|p dx = λ̃ (m)
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by the definition of λ̃ (m + ε) . By applying the same argument to a minimizer for
λ̃ (m+ ε) , we obtain λ̃ (m+ ε ′) < λ̃ (m+ ε) for ε ′ > ε > 0.

Now, we shall prove
lim

ε→+0
λ̃(m+ ε) = λ̃ (m).

Let {εn} be any sequence such that εn > 0 and εn → 0 as n → ∞ . Because we
know limsupn→∞ λ̃ (m + εn) � λ̃ (m) by the first assertion, it suffices only to prove
liminfn→∞ λ̃ (m + εn) � λ̃ (m) . We take a minimizer un for λ̃ (m + εn) . Then, it fol-
lows from Lemma 4 with λ = 1 and Λ = [0,supn εn ] that {un} is bounded in W 1,p(Ω)
(note that ‖∇un‖p

p = λ̃(m+ εn) < λ̃ (m)). Thus, we may assume, by choosing a sub-
sequence, that there exists u0 ∈W 1,p(Ω) such that un ⇀ u0 in W 1,p(Ω) and un → u0

in C(Ω) . Then, we see that
∫

Ω m|u0|p dx = 1 and u0 vanishes somewhere in Ω since
un(x) converges to u0(x) uniformly in x ∈ Ω . Hence, by the definition of λ̃ (m) , we
obtain

liminf
n→∞

λ̃ (m+ εn) = liminf
n→∞

∫
Ω
|∇un|p dx �

∫
Ω
|∇u0|p dx � λ̃(m),

whence our claim is shown. Because {εn} is an arbitrary sequence, our conclusion is
proved.

Finally, we recall the second eigenvalue of (2.4). The following result is shown in
[4] (Although they handle the asymmetry case, it is sufficient to consider the case of
m ≡ n in this paper).

J(u) :=
∫

Ω
|∇u|p dx for u ∈W 1,p(Ω), J̃ := J|S(m) (2.8)

S(m) :=
{

u ∈W 1,p(Ω) ;
∫

Ω
m|u|p dx = 1

}
, (2.9)

Σ(m) := {γ ∈C([0,1],S(m)) ; γ(0) ∈ P∩S(m), γ(1) ∈ (−P)∩S(m)} , (2.10)

c(m) := inf
γ∈Σ(m)

max
t∈[0,1]

J̃(γ(t)), (2.11)

where P := {u ∈W 1,p(Ω) ; u(x) � 0 for a.e. x ∈ Ω} .

LEMMA 8. ([4, Theorem 3.2.]) We have: c(m) is an eigenvalue of (2.4) which
satisfies λ ∗(m) < c(m) . Moreover, there is no eigenvalues of (2.4) between λ ∗(m) and
c(m) .

REMARK 3. we remark that λ̃ (m) < c(m) (if N < p ). Indeed, if λ̃ (m) � c(m)
under N < p , then it contradicts to the fact that (λ ∗(m), λ̃ (m)] (note λ̃(m) = λ (m))
contains no eigenvalues of (2.4) by Lemma 5 since c(m) is an eigenvalue of (2.4) and
λ ∗(m) < c(m) .

LEMMA 9. For every ε ′ > ε > 0 , we have c(m + ε ′) < c(m + ε) < c(m) . In
addition, limε→+0 c(m+ ε) = c(m) holds.
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Proof. First, we shall prove that c(m + ε) < c(m) for ε > 0. Because c(m) is
an eigenvalue, we can choose a solution u ∈ W 1,p(Ω) with ‖u‖ = 1 for −Δpu =
c(m)m|u|p−2u in Ω , ∂u/∂ν = 0 on ∂Ω . Then, we note that u is a sign-changing func-
tion because any eigenfunction corresponding to λ other than the principal eigenvalue
changes sign (refer to [15, Proposition 4.3.] or see Proposition 2 with C0 = C1 = p−1
and h ≡ 0). Thus, we have 0 < ‖∇u±‖p

p = c(m)
∫

Ω mup
± dx by taking ±u± as test

function. Set a continuous path γ0 by

γ0(t) :=
(1− t)u+− tu−(

(1− t)p
∫

Ω mup
+ dx+ t p

∫
Ω mup

−dx
)1/p

for t ∈ [0,1].

Then, it is easily seen that γ0 ∈ Σ(m) and

c(m) = ‖∇γ0(t)‖p
p >

‖∇γ0(t)‖p
p

1+ ε‖γ0(t)‖p
p

=
‖∇γ0(t)‖p

p∫
Ω(m+ ε)|γ0(t)|p dx

for every t ∈ [0,1] (note ‖γ0(t)‖p > 0). By setting

γε :=
γ0(∫

Ω(m+ ε)|γ0|p dx
)1/p

∈ Σ(m+ ε),

we obtain c(m) > c(m+ ε) by the definition of c(m+ ε) . By considering m+ ε and
(m+ε)+(ε ′−ε) , we obtain c(m+ε) > c(m+ε ′) for ε ′ > ε due to the above assertion.

Let {εn} be any sequence such that εn > 0 and limn→∞ εn = 0. By the first asser-
tion, we can get limsupn→∞ c(m+ εn) � c(m) . Now, we shall prove

λ0 := liminf
n→∞

c(m+ εn) � c(m).

We may put λ0 = limn→∞ c(m+ εn) � 0 by choosing a subsequence (note c(m+ εn) >
λ ∗(m+ εn) � 0). By the same reason as in the first part, there exists a sign-changing
solution un ∈W 1,p(Ω) with ‖un‖ = 1 for −Δpun = c(m+ εn)(m+ εn)|un|p−2un in Ω ,
∂un/∂ν = 0 on ∂Ω . In addition, by the standard argument (refer to Proposition 3) and
the boundedness of ‖un‖ , we may assume that un converges to some u0 in C1(Ω) by
choosing a subsequence. Hence, u0 is a solution with ‖u0‖= 1 of −Δpu = λ0m|u|p−2u
in Ω , ∂u/∂ν = 0 on ∂Ω . This means that u0 is an eigenfunction corresponding to λ0

with weight m . Because un changes sign and un → u0 in C1(Ω) , u0 vanishes some-
where in Ω . Hence, we can see that λ0 �= 0 and λ0 �= λ ∗(m) because any eigenfunction
corresponding to the principal eigenvalue (that is, 0 or λ ∗(m)) is positive or negative
in Ω (see [15, Proposition 4.2.]). This implies that λ0 � c(m) by Lemma 8, and so
liminfn→∞ c(m + εn) � c(m) . As a result, our conclusion is shown since {εn} is an
arbitrary sequence.

LEMMA 10. Assume
∫

Ω mdx > 0 . Then,

X(m) :=
{

u ∈W 1,p(Ω) ;
∫

Ω
m|u|p−2udx = 0 and

∫
Ω

m|u|p dx = 1

}
�= /0 (2.12)
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and
c(m) � λX(m) := inf

u∈X(m)

∫
Ω
|∇u|p dx > 0 (2.13)

hold, where c(m) is the second eigenvalue defined by (2.11).

Proof. Since c(m) > 0 is an eigenvalue of (2.4), there exists a non-trivial solution
u for −Δpu = c(m)m|u|p−2u in Ω , ∂u/∂ν = 0 on ∂Ω . Then, by taking ϕ ≡ 1 or
u as test function, we have

∫
Ω m|u|p−2udx = 0 (note c(m) > 0) and

∫
Ω m|u|p dx > 0

because u changes sign (so ‖∇u‖p > 0, cf. [14, Proposition 2.4.] or Proposition 2 with
C0 = C1 = p− 1), and hence u/(

∫
Ω m|u|p dx)1/p belongs to X(m) . As a result, it is

easily seen that c(m) � λX(m) holds.
Now, we shall prove λX(m) > 0 by way of contradiction. So, we assume that

there exists a {un} ⊂ X(m) such that ‖∇un‖p → 0 as n → ∞ . Then, since Lemma 2
(with

∫
Ω(−m)|un|p dx = −1) guarantees the boundedness of ‖un‖ , by choosing a sub-

sequence if necessary, we may suppose that un strongly converges to some constant
function u0 in W 1,p(Ω) (note ‖∇u0‖p = 0). Hence, |u0| = 1/(

∫
Ω mdx)1/p holds be-

cause of
∫

Ω m|u0|p dx = 1. On the other hand, by taking the limit in the equality

0 =
∫

Ω
m|un|p−2un dx = u0

∫
Ω

m|un|p−2un dx =
∫

Ω
m|un|p−2unu0 dx,

we obtain
∫

Ω m|u0|p dx = 0. This is a contradiction.

REMARK 4. In the case of p � 2 and m≡ 1, it is proved that c(m) = λX(m) holds
(see [12, Theorem 6.2.29]).

2.2. Elementary results

Here, we define a positive constant Ap by

Ap :=
C1

p−1

(
C1

C0

)p−1

� 1, (2.14)

which is equal to 1 in the case of A(x,y) = |y|p−2y (i.e. the special case of the p -
Laplacian ) because we can choose C0 = C1 = p−1.

LEMMA 11. Let ε > 0 . For every u, ϕ ∈W 1,p(Ω)∩C1(Ω)∩L∞(Ω) with u � 0
and ϕ � 0 in Ω , we have∫

Ω
A(x,∇u)∇

(
ϕ p

(u+ ε)p−1

)
dx � Ap‖∇ϕ‖p

p.

Proof. Let ε > 0 and let u , ϕ ∈ W 1,p(Ω)∩C1(Ω)∩ L∞(Ω) satisfy u � 0 and
ϕ � 0 in Ω . Then, we have

A(x,∇u)∇
(

ϕ p

(u+ ε)p−1

)
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= p

(
ϕ

u+ ε

)p−1

A(x,∇u)∇ϕ − (p−1)
(

ϕ
u+ ε

)p

A(x,∇u)∇u

� pC1

p−1

(
ϕ

u+ ε

)p−1

|∇u|p−1|∇ϕ |−C0

(
ϕ

u+ ε

)p

|∇u|p

=

{(
pC0

p−1

)1/p ϕ
u+ ε

|∇u|
}p−1 (

p
p−1

)1/p

C1C
(1−p)/p
0 |∇ϕ |

−C0

(
ϕ

u+ ε

)p

|∇u|p

� Ap|∇ϕ |p in Ω

by (ii) and (iii) in Remark 1 and Young’s inequality.

PROPOSITION 2. Let h∈L∞(Ω)+ . If one of the following holds, then the equation
(P;λ ,m,h) has no solutions u �≡ 0 such that u(x) � 0 for a.e. x ∈ Ω:

(i) m � 0 in Ω and λ > 0 if h �≡ 0 or λ �= 0 if h ≡ 0 ;

(ii)
∫

Ω mdx > 0 , |m < 0| > 0 and λ �∈ [−Apλ ∗(−m),0];

(iii)
∫

Ω mdx = 0 and λ �= 0 if h ≡ 0 or λ ∈ R if h �≡ 0 ;

(iv)
∫

Ω mdx < 0 and λ �∈ [0,Apλ ∗(m)] .

Proof. Let u be a non negative solution of (P;λ ,m,h) with u �≡ 0. Then, u ∈
C1,α(Ω) (some 0 < α < 1) and minΩ u > 0 by Remark 2.

(i): By taking ϕ ≡ 1 as test function, we have

0 = λ
∫

Ω
mup−1 dx+

∫
Ω

hdx.

In the case of h �≡ 0, this yields λ < 0 because of

λ
∫

Ω
mup−1 dx = −

∫
Ω

hdx < 0 and
∫

Ω
mup−1dx > 0.

In the case of h ≡ 0, then we see that λ = 0 occurs.
(ii) ∼ (iv): By Lemma 11, we obtain

Ap‖∇ϕ‖p
p �

∫
Ω

A(x,∇u)∇
(

ϕ p

(u+ ε)p−1

)
dx

= λ
∫

Ω
m

(
u

u+ ε

)p−1

ϕ p dx+
∫

Ω
h

ϕ p

(u+ ε)p−1 dx

� λ
∫

Ω
m

(
u

u+ ε

)p−1

ϕ p dx



THE ANTIMAXIMUM PRINCIPLE AND THE EXISTENCE OF A SOLUTION 591

for every ε > 0 and ϕ ∈W 1,p(Ω)∩C1(Ω)∩L∞(Ω) satisfying ϕ � 0 in Ω . Thus, by
ε ↓ 0 (note u > 0 in Ω), we have Ap‖∇ϕ‖p

p � λ
∫

Ω mϕ p dx for every ϕ ∈W 1,p(Ω)∩
C1(Ω)∩ L∞(Ω) satisfying ϕ � 0 in Ω . By combining the above inequality and an
argument as in [14, Proposition 2.4.], we can easily prove our assertion (note λm =
(−λ )(−m)).

PROPOSITION 3. Let fn : Ω×R→ R be a Carathéodory function satisfying

| fn(x,t)| � D(1+ |t|r−1) for every x ∈ Ω, t ∈ R

with some positive constant D independent of n and r ∈ [p, p∗) , where p∗ = ∞ if
N � p, p∗ = pN/(N− p) if N > p. Assume that An : Ω×R

N →R
N is a map satisfying

(A) (i), (ii), (iii) and (iv) with positive constants C′
1 , C′

0 and C′
2 independent of n . If

un is a solution for

−divAn(x,∇u) = fn(x,u) in Ω,
∂u
∂ν

= 0 on ∂Ω

and {un} is bounded in W 1,p(Ω) , then there exist a subsequence {unl} of {un} and
u0 ∈C1(Ω) such that unl → u0 in C1(Ω) as l → ∞ .

Proof. Since {un} is bounded in W 1,p(Ω) , we may assume that un weakly con-
verges to some u0 in W 1,p(Ω) by choosing a subsequence.

We can show that there exists a C > 0 depend only |Ω| , p , N , D , C′
0 , C′

1 and the
embedding constant of W 1,p(Ω) to Lp∗(Ω) such that

‖un‖∞ � Cmax{1,‖un‖(p∗−p)/(p∗−r)}

by the Moser iteration process (refer to Theorem C in [19]), where p∗ = p∗ if N > p
and p∗ > r is an any constant if N � p . Since D , C′

1 and C′
0 are independent of n ,

‖un‖∞ is bounded. Therefore, the regularity result in [17] guarantees that there exist
γ ∈ (0,1) and M > 0 independent of n such that un ∈ C1,γ(Ω) and ‖un‖C1,γ (Ω) � M

(where we use the fact that C′
2 is independent of n also). Since the inclusion of C1,γ(Ω)

to C1(Ω) is compact, un converges u0 in C1(Ω) (note that un ⇀ u0 in W 1,p(Ω)).

3. Antimaximum principle

In this section, we assume that
∫

Ω mdx � 0 without loss of generality by noting
λm = (−λ )(−m) .

THEOREM 1. Assume
∫

Ω mdx > 0 (resp.
∫

Ω mdx = 0 ). Then, for any 0 �≡ h ∈
L∞(Ω)+ there exists δ = δ (h) > 0 such that any solution u of (P;λ ,m,h) satisfies
u < 0 in Ω provided 0 < λ < δ (resp. 0 < |λ | < δ ).
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Proof. Because of λm = (−λ )(−m) , it is sufficient to prove that for any 0 �≡ h ∈
L∞(Ω)+ there exists δ = δ (h) > 0 such that any solution u of (P;λ ,m,h) satisfies
u < 0 in Ω provided 0 < λ < δ . By way of contradiction, we may assume that there
exist 0 �≡ h ∈ L∞(Ω)+ , {λn} and a solution un ∈W 1,p(Ω) of (P : λn,m,h) such that
λn ↓ 0 and un � 0 somewhere in Ω . Note that un ∈C1(Ω) by Remark 2.

Moreover, we note that ‖un‖ is bounded if ‖un‖p is bounded by the following
inequality

C0

p−1
‖∇un‖p

p �
∫

Ω
A(x,∇un)∇un dx = λn

∫
Ω

m|un|p +
∫

Ω
hun dx

� λn‖m‖∞‖un‖p
p +‖h‖∞‖un‖1, (3.1)

where we use (iii) in Remark 1. Hence, by applying Proposition 3 to An(x,y) = A(x,y)
or An(x,y) := A(x,y‖un‖p)/‖un‖p−1

p , we see that un or un/‖un‖p has a convergent sub-
sequence in C1(Ω) in the case where ‖un‖p is bounded or not, respectively. Therefore,
by the same argument as in [14, Theorem 3.2.], we can obtain a contradiction.

It follows from the following proposition that we can not take such δ independent
of h as in Theorem 1.

PROPOSITION 4. Assume that N � p and
∫

Ω mdx � 0 . Then, for any ε > 0 there
exists 0 �≡ h∈L∞(Ω)+ such that for any λ � ε the equation (P;λ ,m,h) has no solution
u satisfying u � 0 in Ω and |{x ∈ Ωm ; u(x) = 0}|= 0 , where Ωm := {x ∈ Ω ; m(x) �=
0} .

Proof. By using Lemma 11 instead of [14, Lemma 2.5.] as in the argument of
[14, Theorem 3.5.], we shall give the proof. Assume by contradiction that there ex-
ists ε0 > 0 such that for any 0 �= h ∈ L∞(Ω)+ , there exist λh � ε0 and uh being
a solution of (P;λh,m,h) with uh � 0 in Ω and |{x ∈ Ωm ; uh(x) = 0}| = 0. Fix
0 < δ < ε0/Ap , where Ap is the positive constant defined by (2.14). Because we know
λ (m) = λ ∗(m) = 0 in the case of N � p by Lemma 5, there exists ϕ ∈W 1,p(Ω) such
that ϕ = 0 on some (open) ball B ⊂ Ω ,∫

Ω
m|ϕ |p dx = 1 and

∫
Ω
|∇ϕ |p dx < δ .

By considering |ϕ | instead of ϕ , we may assume that ϕ � 0 in Ω . Here, we choose h∈
C∞

0 (Ω) such that h � 0, h �≡ 0 and supp h ⊂ B . By the above contradictory hypothesis,
we can obtain λh � ε0 and uh ∈W 1,p(Ω) being a solution of (P;λh,m,h) with uh � 0
in Ω and |{x ∈ Ωm ; uh(x) = 0}|= 0. Set v = −uh , then v is non negative solution of

−divA(x,∇v) = λhmvp−1−h in Ω,
∂v
∂ν

= 0 on ∂Ω

since A is odd in the second variable. Let ϕM := max{ϕ ,M} ∈W 1,p(Ω)∩L∞(Ω) for
M > 0. Then, for this ϕM and v , the inequality as in Lemma 11 holds because we
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see that p(ϕM/(v+ε))p−1∇ϕM − (p−1)(ϕM/(v+ε))p∇v ∈ Lp(Ω)N (note v =−uh ∈
C1(Ω) (see Remark 2)). Thus, we obtain

Ap‖∇ϕM‖p
p �

∫
Ω

A(x,∇v)∇
(

ϕ p
M

(v+ ε)p−1

)
dx = λh

∫
Ωm

m

(
v

v+ ε

)p−1

ϕ p
M dx

for every ε > 0 and M > 0 by supp h∩supp ϕM = supp h∩supp ϕ = /0 . Because v > 0
a.e. on Ωm , by taking ε ↓ 0 and M → ∞ in the above inequality, we obtain

ε0 � λh = λh

∫
Ω

mϕ p dx = λh

∫
Ωm

mϕ p dx � Ap‖∇ϕ‖p
p < Apδ < ε0.

This is a contradiction.

REMARK 5. For the usual p -Laplace equation under the Dirichlet boundary con-
dition, it is known that AMP holds at right of the principal eigenvalue λ1(m) and at left
of −λ1(−m) (see [14]). However, in generall, we do not know wherther AMP holds
near ±λ1(±m) or not for the equation

−divA(x,∇u) = λm|u|p−2u+h in Ω, u = 0 on ∂Ω, (3.2)

A major cause is that C0λ1(m)/(p− 1) < Apλ1(m) occurs in the case of C0 < C1 be-
cause λ1(m) is positive. On the other hand, by the same argument as in the proof
of Proposition 2, we can prove that equation (3.2) has no positive solutions provided
λ �∈ [−Apλ1(−m),Apλ1(m)] and 0 �= h ∈ L∞(Ω)+ .

3.1. The case of N < p

THEOREM 2. Assume that N < p and 0 �≡ h ∈ L∞(Ω)+ . Then, the following
assertions hold:

(i) Suppose
∫

Ω mdx > 0 and λ satisfies 0 < λ �C0λ̃ (m)/(p−1) . Then, any solu-
tion u of (P;λ ,m,h) satisfies u < 0 in Ω .

In addition, if |{m < 0}| > 0 and (C1/C0)pλ ∗(−m) < λ̃ (−m) , then the same
conclusion holds for every λ satisfying

− C0

p−1
λ̃ (−m) � λ < −Apλ ∗(−m);

(ii) Suppose
∫

Ω mdx = 0 and λ satisfies

0 < λ � C0λ̃ (m)
p−1

or − C0λ̃ (−m)
p−1

� λ < 0.

Then, any solution u of (P;λ ,m,h) satisfies u < 0 in Ω .
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Proof. By λm = (−λ )(−m) and λ ∗(m) = 0 if
∫

Ω mdx � 0, it is sufficient to
prove that any solution of (P;λ ,m,h) is negative in Ω under the hypothesis that 0 �≡
h ∈ L∞(Ω)+ , Apλ ∗(m) < λ � C0λ̃ (m)/(p− 1) with any m ∈ L∞(Ω) with (1.1). By
way of contradiction, we shall prove our assertion above. So, we assume that there
exist m ∈ L∞(Ω) with (1.1), 0 �≡ h ∈ L∞(Ω)+ , λ ∈ (Apλ ∗(m),C0λ̃ (m)/(p− 1)] and
u ∈W 1,p(Ω) being a solution of (P : λ ,m,h) with u � 0 somewhere in Ω . By taking
ϕ = −u− as test function, we have

C0

p−1
‖∇u−‖p

p �
∫

Ω
A(x,∇u)(−∇u−)dx

= λ
∫

Ω
mup

− dx−
∫

Ω
hu−dx

� λ
∫

Ω
mup

− dx. (3.3)

Then, we can see that
∫

Ω mup
−dx > 0. Indeed, if

∫
Ω mup

− dx = 0 (note λ > 0), then
∇u− ≡ 0 and

∫
Ω hu−dx = 0 holds, whence u− ≡ 0. Thus, u � 0 and u �≡ 0 by h �≡ 0.

This contradicts to Proposition 2 because of λ > Apλ ∗(m) .
As a result, we can get a contradiction easily by the following inequality (obtained

by (3.3))
‖∇u−‖p

p∫
Ω mup

−dx
� p−1

C0
λ � λ̃(m),

the definition of λ̃ (m) , Lemma 6 and a similar argument to [5, Theorem 2.1.].

THEOREM 3. Assume that N < p and 0 �≡ h ∈ L∞(Ω)+ . Then, the following
assertions hold:

(i) Let
∫

Ω mdx > 0 . Then, there exists δ = δ (h) > 0 for every λ satisfying

C0λ̃ (m)/(p−1) < λ < C0λ̃(m)/(p−1)+ δ

such that any solution u of (P;λ ,m,h) satisfies u < 0 in Ω .

In addition, if |{m < 0}| > 0 and (C1/C0)pλ ∗(−m) < λ̃ (−m) , then there exists
δ ′ = δ ′(h) > 0 such that the same conclusion holds for every λ satisfying

− C0

p−1
λ̃ (−m)− δ ′ < λ < − C0

p−1
λ̃(−m);

(ii) Let
∫

Ω mdx = 0 . Then, there exists δ = δ (h) > 0 for every λ satisfying

C0λ̃ (m)
p−1

< λ <
C0λ̃ (m)
p−1

+ δ or − C0λ̃ (−m)
p−1

− δ ′ < λ < −C0λ̃ (−m)
p−1

such that any solution u of (P;λ ,m,h) satisfies u < 0 in Ω .
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Proof. By the same reason as in the proof of Theorem 2, it is sufficient to prove
that for any m ∈ L∞(Ω) with (1.1) and 0 �≡ h ∈ L∞(Ω)+ , there exists a δ > 0 such that
any solution of (P;λ ,m,h) is negative in Ω if

C0
λ̃ (m)
p−1

< λ < C0
λ̃ (m)
p−1

+ δ

under the hypothesis Apλ ∗(m) < C0λ̃ (m)/(p− 1) (note Apλ ∗(m) < C0λ̃ (m)/(p− 1)
if and only if (C1/C0)pλ ∗(m) < λ̃ (m)), where Ap is the positive constant defined by
(2.14). Thus, by way of contradiction, we assume that there exist m ∈ L∞(Ω) with
(1.1), 0 �≡ h ∈ L∞(Ω)+ , {λn} and {un} ⊂ W 1,p(Ω) such that λn ↓ C0λ̃ (m)/(p− 1)
and un is a solution of (P;λn,m,h) satisfying un � 0 somewhere in Ω .

If ‖un‖p is bounded, then we can obtain a subsequence {unl} convergent to some
u0 in C1(Ω) by Proposition 3 with An = A . This implies that u0 is a solution of
(P;λ ,m,h) with u0 � 0 somewhere in Ω for λ = C0λ̃ (m)/(p− 1) . This contradicts
to Theorem 2.

Thus, we may assume that ‖un‖p → ∞ as n → ∞ by choosing a subsequence if
necessary. Set vn := un/‖un‖p . Then, by a similar inequality to (3.1), we can get
the boundedness of ‖vn‖ . So, we may suppose, by choosing a subsequence, that there
exists v∈W 1,p(Ω) such that vn ⇀ v in W 1,p(Ω) and vn(x)→ v(x) uniformly in x∈Ω .
We note that v � 0 somewhere in Ω because vn � 0 somewhere in Ω . Moreover, we
can obtain (note λn →C0λ̃ (m)/(p−1)):

‖∇v+‖p
p � λ̃ (m)

∫
Ω

mvp
+ dx and ‖∇v−‖p

p � λ̃ (m)
∫

Ω
mvp

− dx (3.4)

by taking the limit inferior in the following inequalities

C0

p−1
‖∇vn+‖p

p �
∫

Ω
A(x,∇un)

∇un+

‖un‖p
p
dx = λn

∫
Ω

mvp
n+ dx+

∫
Ω

h
vn+

‖un‖p−1
p

dx,

C0

p−1
‖∇vn−‖p

p �
∫

Ω
A(x,∇un)

−∇un−
‖un‖p

p
dx = λn

∫
Ω

mvp
n− dx−

∫
Ω

h
vn−

‖un‖p−1
p

dx,

where we use (iii) in Remark 1.
Here, we shall consider by dividing into three cases:
(a)

∫
Ω mvp

+ dx > 0; (b)
∫

Ω mvp
+ dx = 0 and

∫
Ω mvp

− dx = 0;

(c)
∫

Ω mvp
+ dx = 0 and

∫
Ω mvp

− dx > 0.
Case (a): If v+ > 0 in Ω , then vn is positive in Ω for sufficiently large n be-

cause v = v+ > 0 in Ω and vn(x) → v(x) uniformly in x ∈ Ω . This means that un is
a positive solution of (P;λn,m,h) for sufficiently large n . This contradicts to Proposi-
tion 2 because of λn > C0λ̃ (m)/(p−1) > Apλ ∗(m) . So, we suppose that v+ vanishes
somewhere in Ω . Then, it follows from (3.4) that v+/(

∫
Ω mvp

+ dx)1/p is a minimizer
for λ̃ (m) . Thus v+ vanishes at exactly one point x0 ∈ Ω by Lemma 6, whence v = v+
occurs. Now we shall prove that

C0 λ̃ (m)
p−1

∫
Ω

mϕ p dx � Ap‖∇ϕ‖p
p for every ϕ ∈W 1,p(Ω) with ϕ � 0. (3.5)
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If (3.5) is shown, then we have a contradiction because we can choose some ϕ ∈
W 1,p(Ω) with ϕ � 0,

∫
Ω mϕ p dx = 1 and ‖∇ϕ‖p

p < λ ∗(m)+ δ for δ > 0 satisfying
Ap δ < C0λ̃ (m)/(p−1)−Apλ ∗(m) (note C0λ̃ (m)/(p−1) > Apλ ∗(m)).

To prove (3.5), we fix ε > 0 and ϕ ∈C1(Ω) with ϕ � 0. For sufficiently large n ,
we have vn + ε � ε/2 in Ω , and hence un + ε‖un‖p � ε‖un‖p/2(> 0) in Ω since vn

converges to v = v+ uniformly in Ω . Thus, Lemma 11 yields the following inequality
(note un ∈C1(Ω)):

Ap‖∇ϕ‖p
p �

∫
Ω

A(x,∇un)∇
(

ϕ p

(un + ε‖un‖p)p−1

)
dx (3.6)

= λn

∫
Ω

m

(
un

un + ε‖un‖p

)p−1

ϕ p dx+
∫

Ω
h

ϕ p

(un + ε‖un‖p)p−1 dx

� λn

∫
Ω

m

(
vn

vn + ε

)p−1

ϕ p dx.

Hence, by taking the limit in the above inequality, we have

C0 λ̃(m)
p−1

∫
Ω

m

(
v

v+ ε

)p−1

ϕ p dx � Ap‖∇ϕ‖p
p.

Moreover, by taking ε ↓ 0, we can get (3.5) since C1(Ω) is dense in W 1,p(Ω) and
v(x) > 0 if x �= x0 .

Case (b): In this case, it follows from (3.4) that ∇v ≡ 0 holds, and so v is a con-
stant function with ‖v‖p = 1. Because v � 0 somewhere in Ω , we see v = 1/|Ω|1/p .
Then, by the same reason as in the first part of the case (a), we have a contradiction.

Case (c): In this case, we can see that v is non positive in Ω (that is, v = −v− )
since ∇v+ ≡ 0 by (3.4) and

∫
Ω mvp

+ dx = 0 <
∫

Ω mvp
− dx .

If v = −v− does not vanish in Ω , then un < 0 in Ω for sufficiently large n . This
yields a contradiction because un � 0 somewhere in Ω .

Thus, we may assume that v− vanishes somewhere in Ω . Then, (3.4) implies that
v−/(

∫
Ω mvp

− dx)1/p is a minimizer for λ̃(m) . By considering∫
Ω

A(x,−∇un)∇
(

ϕ p

(−un + ε‖un‖p)p−1

)
dx � Ap‖∇ϕ‖p

p

instead of (3.6) as in the proof of case (a), we have the same inequality (3.5) for every
ϕ ∈ W 1,p(Ω) with ϕ � 0 (note that A is odd in the second variable and −un(x) +
ε‖un‖p → ∞ uniformly in x ∈ Ω). As a result, we can get a contradiction by the same
reason as in the last part of the case (a).

4. Existence of a solution

4.1. Existence of a positive solution

THEOREM 4. Let 0 �≡ h ∈ L∞(Ω)+ . If one of the following cases holds, then
(P;λ ,m,h) has a positive solution:
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(i) m � 0 in Ω and λ < 0 ;

(ii)
∫

Ω mdx > 0 , |{m < 0}| > 0 and 0 > λ > −C0λ ∗(−m)/(p−1);

(iii)
∫

Ω mdx < 0 and 0 < λ < C0λ ∗(m)/(p−1) ,

where λ ∗(m) is the principal eigenvalue obtained by (2.5).

To prove the existence of a positive solution, we define a C1 functional I+λ on W 1,p(Ω)
as follows:

I+λ (u) :=
∫

Ω
G(x,∇u)dx− λ

p

∫
Ω

mup
+ dx−

∫
Ω

hudx+
1
p
‖u−‖p

p (4.1)

for λ ∈ R and u ∈W 1,p(Ω) , where G(x,y) :=
∫ |y|
0 a(x,t)t dt (see (2.1) for details).

REMARK 6. We remark that non-trivial critical points of I+λ correspond to posi-
tive solutions for (P;λ ,m,h) . Indeed, if u is a critical point of I+λ , then we have

C0

p−1
‖∇u−‖p

p +‖u−‖p
p �

∫
Ω

A(x,∇u)(−∇u−)dx+
∫

Ω
hu−dx+‖u−‖p

p = 0

by taking −u− as test function. Thus, u− ≡ 0, and hence u � 0. As a result,∫
Ω

A(x,∇u)∇ϕ dx = λ
∫

Ω
mup−1ϕ dx+

∫
Ω

hϕ dx

holds for every ϕ ∈W 1,p(Ω) . Because of u �≡ 0, u is a positive solution of (P;λ ,m,h)
by Remark 2.

LEMMA 12. Let 0 �≡ h∈ L∞(Ω)+ . If either m � 0 and λ < 0 or
∫

Ω mdx < 0 and
0 < λ < C0λ ∗(m)/(p−1) holds, then I+λ is bounded from below, coercive and weakly
lower semi-continuous (w.l.s.c.) on W 1,p(Ω) .

Proof. Note that Φ(u) :=
∫

Ω G(x,∇u)dx is w.l.s.c. on W 1,p(Ω) (cf. [18, Theorem
1.2.]) because Φ is convex and continuous on W 1,p(Ω) . Thus, I+λ is also w.l.s.c. on
W 1,p(Ω) since the inclusion of W 1,p(Ω) to Lp(Ω) is compact.

Now, we prove that I+λ is bounded from below and coercive on W 1,p(Ω) .
Case of m � 0 and λ < 0: By Lemma 3 and (2.2), we can obtain

I+λ (u) � C0

p(p−1)
‖∇u‖p

p +
|λ |
p

∫
Ω

mup
+ dx−‖h‖∞‖u‖1 +

1
p
‖u−‖p

p

� C0

p(p−1)
‖u−‖p +

C0

2p(p−1)

(
‖∇u+‖p

p +
2(p−1)|λ |

C0

∫
Ω

mup
+ dx

)
+

C0

2p(p−1)
‖∇u+‖p

p−‖h‖∞‖u‖p|Ω|(p−1)/p

� C0

p(p−1)
‖u−‖p +

C0 min{d(ξ ),1}
2p(p−1)

‖u+‖p−‖h‖∞‖u‖p|Ω|(p−1)/p
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for every u ∈ W 1,p(Ω) (note p− 1 � C0 ), where d(ξ ) > 0 is a constant obtained by
Lemma 3 with ξ = 2(p− 1)|λ |/C0 . This implies that I+λ is bounded from below,
coercive because of p > 1.

Case of
∫

Ω mdx < 0 and 0 < λ <C0λ ∗(m)/(p−1) : For every u ∈W 1,p(Ω) with∫
Ω mup

+ dx > 0, we have

I+λ (u) � 1
p

(
C0

p−1
− λ

λ ∗(m)

)
‖∇u+‖p

p +
C0

p(p−1)
‖∇u−‖p

p−‖h‖∞‖u‖1 +
1
p
‖u−‖p

p

� 1
2p

(
C0

p−1
− λ

λ ∗(m)

)
‖∇u+‖p

p +
c
2p

(
C0

p−1
− λ

λ ∗(m)

)
‖u+‖p

p

+
C0

p(p−1)
‖u−‖p−‖h‖∞‖u‖p|Ω|(p−1)/p (4.2)

by (2.2), the definition of λ ∗(m) , Lemma 1 and C0 � p− 1, where c is a positive
constant independent of u obtained in Lemma 1. Next, we deal with u∈W 1,p(Ω) with∫

Ω mup
+ dx � 0. Take a δ such that 0 < δ < λ . Then, we obtain for any u ∈W 1,p(Ω)

with
∫

Ω mup
+ dx � 0

I+λ (u) � C0

2p(p−1)

(
‖∇u+‖p

p−
2(p−1)δ

C0

∫
Ω

mup
+ dx

)
+

C0

2p(p−1)
‖∇u+‖p

p

+
δ −λ

p

∫
Ω

mup
+ dx+

C0

p(p−1)
‖u−‖p−‖h‖∞‖u‖1

� C0b(m,ξ )
2p(p−1)

‖u+‖p
p +

C0

2p(p−1)
‖∇u+‖p

p

+
C0

p(p−1)
‖u−‖p−‖h‖∞‖u‖p|Ω|(p−1)/p (4.3)

by (2.2) and Lemma 2, where b(m,ξ ) is a positive constant obtained in Lemma 2 with
ξ = 2(p−1)δ/C0 . Consequently, our conclusion follows from (4.2) and (4.3).

PROOF OF THEOREM 4. By the properties of I+λ obtained as in Lemma 12, I+λ
has a global minimizer in all cases as in Theorem 4 (cf. [18, Theorem 1.1.]), where,
we use λm = (−λ )(−m) in the case (ii). Thus, we see that (P;λ ,m,h) has a positive
solution by Remark 6.

4.2. Other existence results for the general case

THEOREM 5. Assume 0 �≡ h ∈ L∞(Ω)+ . If one of the following conditions holds,
then (P;λ ,m,h) has a solution:

(i) m � 0 in Ω and 0 < λ < C0c(m)/(p−1);

(ii)
∫

Ω mdx > 0 and 0 < λ < C0λX(m)/(p−1);

(iii) N < p and Apλ ∗(m) < λ < C0λ̃(m)/(p−1) ,
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where c(m) , λX(m) , Ap and λ̃ (m) are positive constants defined by (2.11), (2.13),
(2.14) and (2.7), respectively.

To show the existence of a solution, we define a C1 functional Iλ on W 1,p(Ω) as
follows:

Iλ (u) :=
∫

Ω
G(x,∇u)dx− λ

p

∫
Ω

m|u|p dx−
∫

Ω
hudx (4.4)

for λ ∈ R and u ∈ W 1,p(Ω) , where G(x,y) :=
∫ |y|
0 a(x,t)t dt (see (2.1) for details).

Note that critical points of Iλ correspond to solutions of (P;λ ,m,h) (see Remark 2).
First, we shall prove that Iλ has the mountain pass geometry.

LEMMA 13. Assume that h ∈ L∞(Ω)+ ,
∫

Ω mdx �= 0 and

C1λ ∗(m)
p−1

< λ <
C0 c(m)
p−1

.

Then, Iλ is bounded from below on E(m) defined by

E(m) :=
{

u ∈W 1,p(Ω) ; ‖∇u‖p
p � c(m)

∫
Ω

m|u|p dx
}

. (4.5)

Furthermore, there exist u0 , u1 ∈W 1,p(Ω) such that

max{Iλ (u0), Iλ (u1)} < inf
E(m)

Iλ � max
t∈[0,1]

Iλ (γ(t))

for every γ ∈ Γ , where

Γ :=
{

γ ∈C([0,1],W 1,p(Ω)) ; γ(0) = u0, γ(1) = u1
}

.

Proof. First, we shall prove infE(m) Iλ > −∞ . For every u ∈W 1,p(Ω) with∫
Ω

m|u|p dx � 0,

we have

Iλ (u) � C0

p(p−1)
‖∇u‖p

p−
λ
p

∫
Ω

m|u|p dx−‖h‖∞‖u‖1

� C0b(m,ξ )
p(p−1)

‖u‖p
p−‖h‖∞‖u‖p|Ω|(p−1)/p > −∞ (4.6)

by (2.2), Lemma 2 and Hölder’s inequality, where b(m,ξ ) is a positive constant ob-
tained in Lemma 2 with ξ = (p−1)λ/C0 . Thus, Iλ is bounded from below on B(m) ,
where B(m) is a set defined by

B(m) := {u ∈W 1,p(Ω) ;
∫

Ω
m|u|p dx � 0} ⊂ E(m). (4.7)
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Here, we choose a constant δ such that 1 > δ > λ (p−1)/(c(m)C0) .
Let m � 0 in Ω . In this case, for every u ∈ E(m) , we have

Iλ (u) � C0(1− δ )
p(p−1)

‖∇u‖p
p +

1
p

(
C0δc(m)

p−1
−λ

)∫
Ω

m|u|p dx−‖h‖∞‖u‖p|Ω|(p−1)/p

=
C0(1− δ )
p(p−1)

{
‖∇u‖p

p +
p−1

C0(1− δ )

(
C0δc(m)

p−1
−λ

) ∫
Ω

m|u|p dx

}
−‖h‖∞‖u‖p|Ω|(p−1)/p

� d(ξ ′)
C0(1− δ )
p(p−1)

‖u‖p
p−‖h‖∞‖u‖p|Ω|(p−1)/p > −∞ (4.8)

by (2.2), the definition of E(m) and Lemma 3, where d(ξ ′) > 0 is a constant obtained
in Lemma 3 with

ξ ′ =
p−1

C0(1− δ )
(
C0δc(m)

p−1
−λ ).

Similarly, in the other cases (that is, m changes sign), for every u ∈ E(m) with∫
Ω

m|u|p dx > 0,

we obtain

Iλ (u) � C0(1− δ )
p(p−1)

‖∇u‖p
p +

1
p

(
C0δc(m)

p−1
−λ

)∫
Ω

m|u|p dx−‖h‖∞‖u‖p|Ω|(p−1)/p

=
C0(1− δ )
p(p−1)

{
‖∇u‖p

p−
p−1

C0(1− δ )

(
C0δc(m)

p−1
−λ

) ∫
Ω
(−m)|u|p dx

}
−‖h‖∞‖u‖p|Ω|(p−1)/p

� b(−m,ξ ′)
C0(1− δ )

p−1
‖u‖p

p−‖h‖∞‖u‖p|Ω|(p−1)/p > −∞ (4.9)

by (2.2), the definition of E(m) , Lemma 2 (note
∫

Ω(−m)|u|p dx < 0) and Hölder’s
inequality, where b(−m,ξ ′) is a positive constant obtained in Lemma 2 with

ξ ′ =
p−1

C0(1− δ )
(
C0δc(m)

p−1
−λ ).

Consequently, we see that Iλ is bounded from below on E(m) by (4.6) and (4.8) or
(4.9).

Fix a positive constant ε such that C1(λ ∗(m) + ε)/(p− 1) < λ . Then, by the
definition of λ ∗(m) , we can choose a non negative function v0 ∈ W 1,p(Ω) (note that
we can use |v0| instead of v0 if necessary) such that∫

Ω
mvp

0 dx = 1 and ‖∇v0‖p
p < λ ∗(m)+ ε.
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Then, for sufficiently large T > 0, we have

Iλ (±Tv0) � C1T p

p(p−1)
‖∇v0‖p

p−
λT p

p
+T

∫
Ω

hv0 dx

< −T p

p

(
λ − C1

p−1
(λ ∗(m)+ ε)

)
+T

∫
Ω

hv0 dx < inf
E(m)

Iλ (4.10)

by (2.2), λ −C1(λ ∗(m)+ ε)/(p− 1) > 0 and p > 1. Hence, we set u0 := Tv0 and
u1 := −Tv0 for T > 0 satisfying (4.10).

Now, we shall prove

max
t∈[0,1]

Iλ (γ(t)) � inf
E(m)

Iλ for every γ ∈ Γ .

Fix any γ ∈ Γ . If γ([0,1])∩B(m) �= /0 , then

max
t∈[0,1]

Iλ (γ(t)) � inf
B(m)

Iλ � inf
E(m)

Iλ

because of B(m) ⊂ E(m) (see (4.7)). So, we may assume that γ([0,1])∩B(m) = /0 ,
namely

∫
Ω m|γ(t)|p dx > 0 for every t ∈ [0,1] . Set

γ̃(t) :=
γ(t)

(
∫

Ω m|γ(t)|p dx)1/p
,

and then γ̃ ∈ Σ(m) (see (2.10) for the definition of Σ(m)). By the definition of c(m) ,
we have maxt∈[0,1] ‖∇γ̃(t)‖p

p � c(m) . This implies that there exists uγ ∈ γ([0,1]) such
that

‖∇uγ‖p
p � c(m)

∫
Ω

m|uγ |p dx,

whence uγ ∈ E(m) . As a result, we obtain

max
t∈[0,1]

Iλ (γ(t)) � Iλ (uγ ) � inf
E(m)

Iλ .

LEMMA 14. Assume that

h ∈ L∞(Ω)+,
∫

Ω
mdx = 0 and 0 < λ <

C0 c(m)
p−1

.

Then, there exists ε0 > 0 such that λ < C0 c(m+ ε0)/(p−1) and Iλ is bounded from
below on E(m+ ε0) defined by (4.5) with m+ ε0 . Furthermore, there exist u0 , u1 ∈
W 1,p(Ω) such that

max{Iλ (u0), Iλ (u1)} < inf
E(m+ε0)

Iλ � max
t∈[0,1]

Iλ (γ(t))

for every γ ∈C([0,1],W 1,p(Ω)) with γ(0) = u0 and γ(1) = u1 .
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Proof. By Lemma 9 and λ < C0 c(m)/(p− 1) , we can choose ε0 > 0 satisfying
λ < C0 c(m+ ε0)/(p−1) . For every u ∈W 1,p(Ω) , we have

Iλ (u) � C0

p(p−1)
‖∇u‖p

p−
λ
p

∫
Ω
(m+ ε0)|u|p dx+

ε0λ
p

‖u‖p
p−‖h‖∞‖u‖1.

Thus, by the same argument as in the proof of Lemma 13 with m+ε0 instead of m , we
can show that Iλ is bounded from below on E(m+ ε0) (note ε0λ > 0). Moreover, by
choosing a non negative function v0 ∈W 1,p(Ω) such that∫

Ω
mvp

0 dx = 1 and ‖∇v0‖p
p < λ ∗(m)+ ε = ε

for 0 < ε < λ (p−1)/C1 , we have

Iλ (±Tv0) � −T p

p

(
λ − C1ε

p−1

)
+T

∫
Ω

hv0 dx < inf
E(m+ε0)

Iλ

for sufficiently large T > 0, where we use (2.2) in the first integral. The last assertion
can be proved by the same argument as in the proof of Lemma 13 with m+ ε0 instead
of m .

PROOF OF THEOREM 5. By Proposition 6 in the last subsection 4.4, we will
see that Iλ satisfies the Palais-Smale condition in all cases. Hence, the mountain pass
theorem guarantees the existence of a critical point of Iλ since Iλ has the mountain
pass geometry by Lemma 13 (if

∫
Ω mdx �= 0) or Lemma 14 (if

∫
Ω mdx = 0), where we

use Ap �C1/(p−1) when
∫

Ω mdx < 0 and N < p . Therefore, (P;λ ,m,h) has at least
one solution.

4.3. Asymptotically (p−1) homogeneous case

In this subsection, we deal with the special case where the map A(x,y) is asymp-
totically (p−1) homogeneous in the following sense:

(AH) there exist a positive function a∞ ∈ C1(Ω,R) and a continuous function ã(x,t)
on Ω×R such that

A(x,y) = a∞(x)|y|p−2y+ ã(x, |y|)y for every x ∈ Ω, y ∈ R
N ,

lim
t→+∞

ã(x,t)
t p−2 = 0 uniformly in x ∈ Ω,

and A satisfies the hypothesis (A) .
Under this hypothesis, we obtain the following existence result.

THEOREM 6. Assume that (AH) , m ∈ L∞(Ω) and 0 �≡ h ∈ L∞(Ω)+ . If

λ ∗(m) sup
x∈Ω

a∞(x) < λ < c(m) inf
x∈Ω

a∞(x),

then (P;λ ,m,h) has at least one solution.
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Under the hypothesis (AH) , we define

G̃(x,y) :=
∫ |y|

0
ã(x,t)t dx.

Then, the functional Iλ is written by

Iλ (u) =
1
p

∫
Ω

a∞|∇u|p dx+
∫

Ω
G̃(x,∇u)dx− λ

p

∫
Ω

m|u|p dx−
∫

Ω
hudx

for u ∈W 1,p(Ω) .
Now, we shall prove that Iλ has the mountain pass geometry.

LEMMA 15. Assume that (AH) , h ∈ L∞(Ω)+ ,
∫

Ω mdx �= 0 and

λ ∗(m) sup
x∈Ω

a∞(x) < λ < c(m) inf
x∈Ω

a∞(x).

Then, Iλ is bounded from below on E(m) defined by (4.5). Furthermore, there exist
u0 , u1 ∈W 1,p(Ω) such that

max{Iλ (u0), Iλ (u1)} < inf
E(m)

Iλ � max
t∈[0,1]

Iλ (γ(t))

for every γ ∈ Γ , where

Γ :=
{

γ ∈C([0,1],W 1,p(Ω)) ; γ(0) = u0, γ(1) = u1
}

.

Proof. By the property of the function ã as in (AH) and Young’s inequality, for
every ε > 0 there exist constants Cε > 0 and C′

ε > 0 such that∣∣∣ G̃(x,y)
∣∣∣ � ε

2
|y|p +Cε |y| � ε|y|p +C′

ε (4.11)

for every x ∈ Ω and y ∈ R
N . Therefore, we have

Iλ (u) � a− pε
p

‖∇u‖p
p−

λ
p

∫
Ω

m|u|p dx−‖h‖∞‖u‖1−C′
ε |Ω|

for every u∈W 1,p(Ω) , where a := infx∈Ω a∞(x) . Here, we choose ε > 0 and 0 < δ < 1
such that λ < (a− pε)δc(m) . By a similar argument to Lemma 13, we can show that
Iλ is bounded from below on E(m) .

Next, we shall prove the existence of desired u0 and u1 . Take ε ′ > 0 satisfying

λ > (a+ pε ′)(λ ∗(m)+ ε ′),

where a := supx∈Ω a∞(x) . Choose a function v0 ∈W 1,p(Ω) such that∫
Ω

m|v0|p dx = 1 and ‖∇v0‖p
p < λ ∗(m)+ ε ′.
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Then, for sufficiently large T > 0, we have

Iλ (±Tv0) � −T p

p

{
λ − (a+ pε ′)(λ ∗(m)+ ε ′)

}
+T

∫
Ω

h|v0|dx+C′
ε ′ |Ω|

< inf
E(m)

Iλ ,

where we use (4.11) with ε = ε ′ . Thus, by setting u0 := Tv0 and u1 := −Tv0 for such
T > 0, our claim is shown. Finally, it follows from the same argument as in Lemma 13
that every γ ∈ Γ links E(m) .

By combining the proof of Lemma 15 with one of Lemma 14, we can show the
following lemma in the case of

∫
Ω mdx = 0. Here, we omit the proof.

LEMMA 16. Assume that (AH) , h ∈ L∞(Ω)+ ,
∫

Ω mdx = 0 and

λ ∗(m) sup
x∈Ω

a∞(x) < λ < c(m) inf
x∈Ω

a∞(x).

Then, there exists ε0 > 0 such that λ < c(m + ε0) infx∈Ω a∞(x) and Iλ is bounded
from below on E(m+ ε0) defined by (4.5) with m+ ε0 . Furthermore, there exist u0 ,
u1 ∈W 1,p(Ω) such that

max{Iλ (u0), Iλ (u1)} < inf
E(m+ε0)

Iλ � max
t∈[0,1]

Iλ (γ(t))

for every γ ∈C([0,1],W 1,p(Ω)) with γ(0) = u0 and γ(1) = u1 .

PROOF OF THEOREM 6. It suffices to prove the existence of a critical point of Iλ
because critical points of Iλ correspond to solutions of (P;λ ,m,h) . By Proposition 6
in the last subsection 4.4, we will see that Iλ satisfies the Palais-Smale condition if λ
is not an eigenvalue of

−div
(
a∞(x)|∇u|p−2∇u

)
= λm(x)|u|p−2u in Ω,

∂u
∂ν

= 0 on ∂Ω. (4.12)

Hence, by admitting that λ is not an eigenvalue of (4.12), the mountain pass theo-
rem guarantees the existence of a critical point of Iλ since Iλ has the mountain pass
geometry by Lemma 15 or 16 in the case of

∫
Ω mdx �= 0 or

∫
Ω mdx = 0, respectively.

Now, we shall prove that the equation (4.12) has no non-trivial solution provided
λ ∗(m) supx∈Ω a∞(x) < λ < c(m) infx∈Ω a∞(x) by way of contradiction. So, we assume
that there exists a non-trivial solution v ∈ W 1,p(Ω) of (4.12). By taking ±v± as test
function, we have

inf
x∈Ω

a∞(x)‖∇v±‖p
p � λ

∫
Ω

mvp
± dx � sup

x∈Ω
a∞(x)‖∇v±‖p

p. (4.13)

We shall show that
∫

Ω mvp
+ dx > 0 and

∫
Ω mvp

−dx > 0. If
∫

Ω mvp
+ dx = 0 holds, then

v = −v− or v = c > 0 with c = ‖v+‖p occurs because of ‖∇v+‖p = 0 obtained by
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(4.13). Thus, −v or v is a positive solution of (4.12) belonging to C1(Ω) such that
minΩ v− = minΩ (−v) > 0 or minΩ v > 0, respectively (see Remark 2 with h ≡ 0).
Then, by applying an argument as in Proposition 2 (with h ≡ 0) to the equation (4.12),
we obtain the inequality

λ
∫

Ω
mϕ p dx =

∫
Ω

a∞|∇ψ |p−2∇ψ∇
(

ϕ p

ψ p−1

)
dx

�
∫

Ω
a∞|∇ϕ |p dx � sup

x∈Ω
a∞(x)‖∇ϕ‖p

p

for every ϕ ∈C1(Ω) with ϕ � 0, where ψ = v− if v < 0 or ψ = v+ if v > 0. By the
density of C1(Ω) , we have

λ
∫

Ω
mϕ p dx � sup

x∈Ω
a∞(x)‖∇ϕ‖p

p for every ϕ ∈W 1,p(Ω) with ϕ � 0.

This implies that λ � λ ∗(m)supx∈Ω a∞(x) (refer to Proposition 2). This is a contradic-
tion.

Similarly, if
∫

Ω mvp
− dx = 0, then we can get a contradiction since v = v+ or v =

−c < 0 holds. Therefore, our claim is shown. As a result, we can define a continuous
path γ0 ∈ Σ(m) (see (2.10) for the definition of Σ(m)) by

γ0(t) :=
(1− t)v+− tv−(

(1− t)p
∫

Ω mvp
+ dx+ t p

∫
Ω mvp

− dx
)1/p

.

Hence, we have a contradiction to the definition of c(m) because

J̃(γ0(t)) = ‖∇γ0(t)‖p
p � λ

infx∈Ω a∞(x)
< c(m) for every t ∈ [0,1]

holds by (4.13), where J̃ is the functional defined by (2.8).

REMARK 7. Let λ ∗(a∞,m) and c(a∞,m) be the principal eigenvalue or the sec-
ond eigenvalue of

−div
(
a∞(x)|∇u|p−2∇u

)
= λm(x)|u|p−2u in Ω,

∂u
∂ν

= 0 on ∂Ω, (4.14)

respectively. Namely,

λ ∗(a∞,m) := inf

{∫
Ω

a∞|∇u|p dx ;
∫

Ω
m|u|p dx = 1

}
,

c(a∞,m) := inf
γ∈Σ(m)

max
t∈[0,1]

∫
Ω

a∞|∇γ(t)|p dx.

Then, in the assumption of Theorem 6, we can replace

λ ∗(m) sup
x∈Ω

a∞(x) < λ < c(m) inf
x∈Ω

a∞(x)

with λ ∗(a∞,m) < λ < c(a∞,m) . In [23], the present author provides the existence
result in the more general cases.
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4.4. Palais-Smale condition

In this section, we prove that Iλ satisfies the Palais-Smale condition under the
several situation. The following result is proved in [20]. It plays an important role for
our poof.

PROPOSITION 5. ([20, Proposition 1]) Let A : W 1,p(Ω) →W 1,p(Ω)∗ be the map
defined by

〈A(u),v〉 =
∫

Ω
A(x,∇u)∇vdx

for u, v ∈ W . Then, A is maximal monotone, strictly monotone and has the (S)+
property, that is, any sequence {un} weakly convergent to u with

limsup
n→∞

〈A(un),un−u〉� 0 strongly converges to u.

First, we state the result for the Palais-Smale condition in the general case.

PROPOSITION 6. Let h ∈ L∞(Ω)+ . If one of the following cases holds, then Iλ
satisfies the Palais-Smale condition:

(i) m � 0 in Ω and 0 < λ < C0 c(m)/(p−1) ,

(ii)
∫

Ω mdx > 0 and 0 < λ < C0 λX(m)/(p−1) ,

(iii) N < p and Apλ ∗(m) < λ < C0 λ̃ (m)/(p−1) ,

where c(m) , λX(m) , Ap and λ̃ (m) are positive constants defined by (2.11), (2.13),
(2.14) and (2.7), respectively.

Proof. Let {un} be a Palais-Smale sequence of Iλ , namely,

Iλ (un) → c and ‖I′λ (un)‖W∗ → 0 as n → ∞

for some c ∈ R . It is sufficient to prove the boundedness of {un} in W 1,p(Ω) because
the operator A defined in Proposition 5 has the (S)+ property and the inclusion from
W 1,p(Ω) to Lp(Ω) is compact. Then, by noting the following inequality

C0

p(p−1)
‖∇un‖p

p �
∫

Ω
G(x,∇un)dx = Iλ (un)+

λ
p

∫
Ω

m|un|p dx+
∫

Ω
hun dx

� Iλ (un)+ λ‖m‖∞‖un‖p
p/p+‖h‖∞‖un‖1 (4.15)

by (2.2), it is sufficient to prove only the boundedness of {un} in Lp(Ω) . We shall
prove it by contradiction. So, we may assume ‖un‖p → ∞ by choosing a subsequence.
Put vn := un/‖un‖p . Then, we may suppose that there exists a v ∈W 1,p(Ω) such that

vn ⇀ v in W 1,p(Ω) and hence vn → v in Lp(Ω)



THE ANTIMAXIMUM PRINCIPLE AND THE EXISTENCE OF A SOLUTION 607

since (4.15) ensures the boundedness of {vn} in W 1,p(Ω) . By taking the limit inferior
in the following inequality

C0

p−1
‖∇vn+‖p

p �
∫

Ω
A(x,∇un)

∇un+

‖un‖p
p
dx

= λ
∫

Ω
mvp

n+ dx+
∫

Ω
h

vn+

‖un‖p−1
p

dx+
〈
I′λ (un),

vn+

‖un‖p−1
p

〉
(where we use Remark 1 (iii) in the first inequality), we have

C0

p−1
‖∇v+‖p

p � λ
∫

Ω
mvp

+ dx. (4.16)

Similarly, we also get
C0

p−1
‖∇v−‖p

p � λ
∫

Ω
mvp

− dx. (4.17)

Here, we note that it is sufficient to prove the two inequalities
∫

Ω mvp
+ dx > 0 and∫

Ω mvp
−dx > 0. Indeed, if we can show the above inequalities, then we can define a

continuous path γ0 ∈ Σ(m) (see (2.10) for the definition of Σ(m)) by

γ0(t) :=
(1− t)v+− tv−(

(1− t)p
∫

Ω mvp
+ dx+ t p

∫
Ω mvp

− dx
)1/p

.

For this continuous path, by an easy estimate with (4.16) and (4.17), we have

J̃(γ0(t)) = ‖∇γ0(t)‖p
p � p−1

C0
λ < c(m) for every t ∈ [0,1],

where J̃ is the functional defined by (2.8). This contradicts to the definition of c(m) .
So, we shall prove ∫

Ω
mvp

+ dx > 0 and
∫

Ω
mvp

− dx > 0

in each case of (i) ∼ (iii) by noting (4.16) and (4.17).
Case (i): If

∫
Ω mvp

+ dx = 0, then v+ is a constant function by (4.16). Moreover,
because of

∫
Ω mdx > 0, we see that v+ ≡ 0, and so v � 0 in Ω . Then, by the equality

o(1) = 〈I′λ (un),1/‖un‖p−1
p 〉 = λ

∫
Ω

m|vn|p−2vn dx+
∫

Ω
h/‖un‖p−1

p dx,

we have ∫
Ω

m|v|p−2vdx = −
∫

Ω
mvp−1

− = 0

(note λ > 0). This yields that m(x)vp−1
− (x) = 0 for a.e. x ∈ Ω (note m � 0 in Ω).

Thus, m(x)vp
−(x) = 0 for a.e. x ∈ Ω . Therefore, (4.17) shows that v− is a constant

function, and so

v = −v− ≡ 0 by
∫

Ω
mvp

− dx = 0.



608 MIEKO TANAKA

This contradicts to ‖v‖p = 1. Hence, we have
∫

Ω mvp
+ dx > 0. Similarly, we see that∫

Ω mvp
−dx > 0.
Case (ii): First, let

∫
Ω mvp

+ dx = 0 occur. Then, by the same argument as in case
(i), we have v � 0 in Ω and∫

Ω
m|v|p−2vdx = −

∫
Ω

mvp−1
− = 0.

If
∫

Ω mvp
− dx > 0 holds, then v−/(

∫
Ω mvp

− dx)1/p ∈ X(m) and we have

‖∇v−‖p
p∫

Ω mvp
− dx

� (p−1)
λ
C0

< λX(m)

by (4.17). This contradicts to the definition of λX(m) .
On the other hand, if

∫
Ω mvp

− dx = 0, then v− is a constant function by (4.17).
Hence we obtain a contradiction in this case also since

0 =
∫

Ω
mvp

−dx = vp
−

∫
Ω

mdx =
1
|Ω|

∫
Ω

mdx > 0

(note ‖v‖p = 1 and also that v− is a constant function). Consequently, we have shown∫
Ω mvp

+ dx > 0.
Similarly, we can prove that

∫
Ω mvp

− dx > 0 by a similar argument above with v+
instead of v− .

Case (iii): We consider by dividing into the following three cases:

(a)
∫

Ω mvp
+ dx = 0 =

∫
Ω mvp

− dx ;

(b)
∫

Ω mvp
+ dx > 0 =

∫
Ω mvp

− dx ;

(c)
∫

Ω mvp
+ dx = 0 <

∫
Ω mvp

− dx .

In the case of (a), it follows from (4.16) and (4.17) that v is a constant function.
Thus, v = 1/|Ω|1/p or v = −1/|Ω|1/p occurs. First, we shall deal with the case of
v = 1/|Ω|1/p > 0. Thus, we may assume that un � ‖un‖p/2|Ω|1/p in Ω for sufficiently
large n (note N < p and so W 1,p(Ω) ↪→C(Ω) is compact). So, we obtain

‖∇
(
1/up−1

n

)‖p � 2p(p−1)‖∇vn‖p

|Ω|‖un‖p−1
p

and ‖(
1/up−1

n

)‖p � 2p−1|Ω|
‖un‖p−1

p
, (4.18)

and so 1/up−1
n ∈W 1,p(Ω) for such sufficiently large n . Here, we fix any ϕ ∈ C1(Ω)

such that ϕ � 0 in Ω . By taking the limit in the following inequality

Ap‖∇ϕ‖p
p �

∫
Ω

A(x,∇un)∇
(

ϕ p

up−1
n

)
dx

= λ
∫

Ω
mϕ p dx+

∫
Ω

hϕ p

up−1
n

dx+ 〈I′λ(un),ϕ p/up−1
n 〉
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(note ‖ϕ p/up−1
n ‖ = o(1) by (4.18)), where the first inequality is shown by Proposi-

tion 2, we have

Ap‖∇ϕ‖p
p � λ

∫
Ω

mϕ p dx

for every ϕ ∈C1(Ω) with ϕ � 0 in Ω . Since C1(Ω) is dense in W 1,p(Ω) , we obtain

Ap‖∇ϕ‖p
p � λ

∫
Ω

mϕ p dx

for every ϕ ∈W 1,p(Ω) with ϕ � 0 in Ω . Because we can choose ϕk ∈W 1,p(Ω) such
that ϕk � 0 in Ω ,

∫
Ω mϕ p

k dx = 1 and ‖∇ϕk‖p
p < λ ∗(m)+1/k (we consider |ϕk| instead

of ϕk if necessary), we have a contradiction.
In the case of v = −1/|Ω|1/p < 0 also, we have a contradiction by using −un

instead of un as in the above argument (note that A is odd in the second variable).
In the case of (b), it is easily seen that v = v+ � 0 holds by (4.17) and∫

Ω
mvp

− dx = 0 <
∫

Ω
mvp

+ dx.

Since we obtain
‖∇v+‖p

p∫
Ω mvp

+ dx
� (p−1)

λ
C0

< λ̃ (m)

by (4.16) and
∫

Ω mvp
+ dx > 0, it follows that v+ has no zero points in Ω from the

definition of λ̃ (m) . This means that v > 0 in Ω . Thus, we may assume that un �
δ‖un‖p/2 in Ω for sufficiently large n , where δ = minΩ v(x) because the inclusion of
W 1,p(Ω) to C(Ω) is compact. So, we can get a contradiction by the same argument as
in the case of (b) under v > 0.

In the case of (c), we see that v < 0 in Ω by a similar argument to the case of (b).
This yields a contradiction by a similar argument to the case of (a) under v < 0.

To deal with the case of (AH) , we prepare the following result.

LEMMA 17. Assume (AH) and let {un} ⊂W 1,p(Ω) be a Palais-Smale sequence
for Iλ with ‖un‖p → ∞ as n → ∞ . Then, vn := un/‖un‖p has a subsequence strongly
convergent to a solution v for

−div
(
a∞(x)|∇v|p−2∇v

)
= λm|v|p−2v in Ω,

∂v
∂ν

= 0 on ∂Ω, (4.19)

where a∞ is the positive function as in (AH) .

Proof. By the same argument as in the proof of Proposition 6, we can show the
boundedness of ‖vn‖ and obtain the inequality

C0

p−1
‖∇vn‖p

p � λ
∫

Ω
m|vn|p dx+o(1) as n → ∞. (4.20)
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So, we may suppose, by choosing a subsequence, that there exists a v ∈W 1,p(Ω) such
that

vn ⇀ v in W 1,p(Ω) and hence vn → v in Lp(Ω).

To prove that vn strongly converges to v in W 1,p(Ω) , it suffices to show

lim
n→∞

∫
Ω
|∇vn|p−2∇vn∇(vn− v)dx = 0 (4.21)

because the p -Laplace operator has the (S)+ property. To obtain (4.21), we shall get
the following

lim
n→∞

∣∣∣∣∣ 1

‖un‖p−1
p

∫
Ω

ã(x, |∇un|)∇un∇(vn− v)dx

∣∣∣∣∣ = 0, (4.22)

where ã is the function as in (AH) . Here, we fix an any ε > 0. By the property of the
function ã , there exist R > 0 and C > 0 such that

|ã(x, t)| � ε|t|p−2 if |t| � R and |ã(x, t)| � C if |t| � R. (4.23)

Therefore, we obtain∣∣∣∣∣
∫

Ω

ã(x, |∇un|)∇un

‖un‖p−1
p

∇(vn− v)dx

∣∣∣∣∣ (4.24)

�
∫
|∇un|�R

ε(|∇vn|p + |∇vn|p−1|∇v|)dx+
∫
|∇un|�R

C|∇un|
‖un‖p−1

p
(|∇vn|+ |∇v|)dx

� ε(‖∇vn‖p
p +‖∇vn‖p−1

p ‖∇v‖p)+RC(‖∇vn‖p +‖∇v‖p)
|Ω|(p−1)/p

‖un‖p−1
p

� 2ε|λ |(p−1)‖m‖∞

C0
+o(1)+RC

(
2|λ |(p−1)‖m‖∞

C0
+o(1)

)1/p |Ω|(p−1)/p

‖un‖p−1
p

by (4.20), ‖vn‖p = 1 and Hölder’s inequality. Thus, by taking the limit superior in the
above inequality, we can get

limsup
n→∞

∣∣∣∣∣ 1

‖un‖p−1
p

∫
Ω

ã(x,∇un)∇un∇(vn− v)dx

∣∣∣∣∣ � 2ε|λ |(p−1)‖m‖∞

C0

since ‖un‖p → ∞ as n → ∞ . This implies (4.22) because ε > 0 is arbitrary. By taking
the limit in the following and noting (4.22)

o(1) = 〈I′λ (un),vn− v〉/‖un‖p−1
p

=
∫

Ω
a∞|∇vn|p−2∇vn∇(vn − v)dx+

∫
Ω

ã(x, |∇un|)∇un

‖un‖p−1
p

∇(vn − v)dx

−λ
∫

Ω
m|vn|p−2vn(vn − v)dx−

∫
Ω

h

‖un‖p−1
p

(vn− v)dx,
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we have the inequality (4.21) (note infΩ a > 0), whence vn → v in W 1,p(Ω) .
Finally, we shall show that v is a solution for (4.19). So, we fix any ϕ ∈W 1,p(Ω) .

Then, by considering ϕ instead of (vn− v) in (4.24), we have the following inequality
for every ε > 0:∣∣∣∣∣

∫
Ω

ã(x, |∇un|)∇un

‖un‖p−1
p

∇ϕ dx

∣∣∣∣∣ � ε‖∇vn‖p−1
p ‖∇ϕ‖p +

CR‖∇ϕ‖p|Ω|(p−1)/p

‖un‖p−1
p

� ε
( |λ |(p−1)‖m‖∞

C0
+o(1)

)(p−1)/p

‖∇ϕ‖p +
CR‖∇ϕ‖p|Ω|(p−1)/p

‖un‖p−1
p

.

This gives

lim
n→∞

∫
Ω

ã(x, |∇un|)∇un

‖un‖p−1
p

∇ϕ dx = 0 (4.25)

since ε > 0 is arbitrary. By taking the limit in

o(1) =
〈I′λ (un),ϕ〉
‖un‖p−1

p

,

we have ∫
Ω

a∞|∇v|p−2∇v∇ϕ dx = λ
∫

Ω
m|v|p−2vϕ dx

by (4.25), vn → v in W 1,p(Ω) and ‖un‖p → ∞ as n → ∞ . Because ϕ is any function
in W 1,p(Ω) , our conclusion is shown.

Now, we state the result in the case of (AH) .

PROPOSITION 7. Assume (AH) and λ is not an eigenvalue of

−div
(
a∞(x)|∇u|p−2∇u

)
= λm|u|p−2u in Ω,

∂u
∂ν

= 0 on ∂Ω, (4.26)

where a∞ is the positive function as in (AH) . Then, Iλ satisfies the Palais-Smale
condition.

Proof. Let {un} be a Palais-Smale sequence of Iλ , namely,

Iλ (un) → c and ‖I′λ (un)‖W∗ → 0 as n → ∞

for some c ∈ R . It is sufficient to prove only the boundedness of ‖un‖p by the same
reason as in the proof of Proposition 6. So, by contradiction, we may suppose that
‖un‖p → ∞ as n → ∞ by choosing a subsequence. Set vn := un/‖un‖p . Then, it
follows from Lemma 17 that {vn} has a subsequence strongly convergent to a non-
trivial solution v for (4.26) with ‖v‖p = 1. This is a contradiction because λ is not an
eigenvalue of (4.26).
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REMARK 8. Concerning the existence of a solution, under the Dirichlet bound-
ary condition also, we can similar results to the ones as in section 4 by using several
constants corresponding to the Dirichlet problem.
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