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Abstract. This work is devoted to proving existence of solutions for a singular fourth-order p -
Laplacian system. The nonlinearities depend on the solution and first derivatives and may exhibit
singularities. Existence results are proved using the Leray-Schauder nonlinear alternative. Ex-
amples of applications illustrate each one of the obtained results.

1. Introduction

In this paper, we are concerned with the existence of solutions to the fourth-order
nonlinear differential system associated with the p -Laplacian

(ϕp(u′′))′′ = f1(x,u,v,u′,v′), x ∈ (0,1),
(ϕp(v′′))′′ = f2(x,u,v,u′,v′), x ∈ (0,1),

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.1)

v(0) = v(1) = v′′(0) = v′′(1) = 0,

where for each i = 1,2, fi : [0,1]×R
4 −→ R is a Carathéodory function.

DEFINITION 1.1. f : [0,1]×R
4 −→ R is called a Carathéodory function if:

(i) the map x �−→ f (x,u,v,y,z) is measurable for all u,v,y,z ∈ R;

(ii) the map (u,v,y,z) �−→ f (x,u,v,y,z) is continuous for almost every x ∈ [0,1] ;
(iii) for every r > 0, there exists hr ∈ L1([0,1],R+) such that | f (x,u,v,y,z)| � hr(x) ,
for a.e. x ∈ [0,1] and for all u,v,y,z ∈ R, with |u| � r , |v| � r , |y| � r , and |z| � r .

Here ϕp(s) = s|s|p−2 (p > 1) refers to the p -Laplacian operator. By a solution
to Problem (1.1), we understand a couple of functions (u,v) ∈C2

(
[0,1],R2

)
such that

(ϕp(u′′),ϕp(v′′)) ∈C2
(
(0,1),R2

)
and (1.1) is satisfied for x ∈ (0,1) .

The typical problem for (1.1) stems from the modelization of the deformation of an
elastic beam under an external force f and simply supported at both ends. The bending
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is described by the following linear boundary-value problem (see e.g., [2, 3, 12, 15, 17]
and the references therein):

u(4)(x) = f (x), x ∈ (0,1),
u(0) = u(1) = u′′(0) = u′′(1) = 0.

The boundary conditions are motivated by the vanishing moments and shear forces at
the ends of the attached beam (see [9]). Many nonlinear fourth-order boundary value
problems, corresponding to f = f (t,u) , have been extensively studied in the recent
literature (see for instance [1, 8, 14]). Several methods ranging from the fixed point
index theory on cones of Banach spaces to monotone techniques have been used so far
(see [4, 5] for the case of equations). However, the study of general nonlinear systems
is less developed and only a few existence results are available in the literature. In [6],
a p -Laplacian system is investigated and existence of positive solutions are proved. In
fact, a recent vector version of the Krasnosel’skiı̆ fixed point theorem [13] was used
and new existence results were obtained. Our aim in this work is to complement some
results obtained in [6] and [10, 11] by considering the regular and singular cases on one
hand and the case when the nonlinearities depend on first derivatives on the other one.

In this section, we also give some preliminary results needed in this paper. The
regular problem where fi (i = 1,2) depend on the solution and first derivatives is dis-
cussed in Section 2. In Section 3, more general growth conditions are assumed when
the nonlinearities do not depend on the derivatives. Finally, in Section 4, we study
the problem where fi(x,u,v) ( i = 1,2) may possess a singularity at the origin. Each
existence result is illustrated by means of an example of application.

Let C([0,1],R) be the Banach space of all continuous functions from [0,1] into
R with norm ‖u‖0 = sup{|u(x)|, 0 � x � 1} and denote by E the Banach space
C([0,1],R2) := C([0,1],R)×C([0,1],R) endowed with the sup-norm

‖(u,v)‖0 = ‖u‖0 +‖v‖0.

E1 will refer to the Banach space C1([0,1],R2) :=C1([0,1],R)×C1([0,1],R) endowed
with the sup-norm

‖(u,v)‖1 = ‖u‖1 +‖v‖1,

where
‖u‖1 = max(‖u‖0,‖u′‖0).

L1(0,1) will denote the space of measurable functions which are Lebesgue integrable
on (0,1) . The norm in this Banach space is denoted by

|u|1 =
∫ 1

0
|u(t)|dt.

In order to transform Problem (1.1) into a fixed point problem, we need some auxiliary
results that are collected in this section. The following lemma is immediate.
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LEMMA 1.1. For any v ∈C([0,1],R) , the fourth-order boundary-value problem

(ϕp(u′′))′′(x) = v(x), 0 < x < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

has the unique solution

u(x) =
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ)v(τ)dτ

)
ds,

where ϕq stands for the inverse function ϕq(s) = ϕ−1
p (s) with conjugates p,q, i.e.,

1/p+1/q = 1 and

G(x,s) =

{
x(1− s), 0 � x � s � 1,

s(1− x), 0 � s � x � 1,
(1.2)

is the Green’s function of the second-order linear problem

−u′′(x) = 0, 0 < x < 1,

u(0) = u(1) = 0.

REMARK 1.1. It is clear that the Green’s function G satisfies:

(i) G(x,s) � G(s,s) , for 0 � x,s � 1

(ii) G(x,s) � 1/4, for 0 � x,s � 1.

The following Lemma is easily proved by induction.

LEMMA 1.2. Let a1,a2, ...,an be real numbers. Then

|a1 +a2...+an|r � Cr(|a1|r + |a2|r + ...+ |an|r), ∀r > 0,

where

Cr =

{
1, 0 < r � 1,

nr−1, r > 1.

By Lemma 1.1, we deduce that (u,v) is a solution of Problem (1.1) if and only if

u(x) =
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ) f1

(
τ,u(τ),v(τ),u′(τ),v′(τ)

)
dτ
)
ds

:= T1(u,v)(x)

and

v(x) =
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ) f2

(
τ,u(τ),v(τ),u′(τ),v′(τ)

)
dτ
)
ds
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:= T2(u,v)(x).

Hence, (u,v) ∈ E1 is a solution of Problem (1.1) if and only if it is a fixed point of the
operator

T = (T1,T2) : E1 −→ E1, (u,v) �→ (T1(u,v),T2(u,v)).

The following result, known as the Leray-Schauder nonlinear alternative, will be needed
in this paper.

THEOREM 1.1. (See [7, 16]) Let X be a Banach space, Ω ⊂ X be a bounded and
open set, 0 ∈ Ω, and A : Ω → X be a completely continuous operator. Then, either
there exist u ∈ ∂Ω and λ > 1 such that Au = λu or A has a fixed point in Ω .

2. The regular problem

In this section, we assume that the following conditions hold:

(H1) there exist ai,bi,ci ∈ L1([0,1],R+), such that for all (x,u,v,y,z) ∈ [0,1]×R
4

and for each i = 1,2,

| fi(x,u,v,y,z)| � ai(x)+bi(x)
(
ϕp(|u|)+ ϕp(|v|)

)
+ ci(x)

(
ϕp(|y|)+ ϕp(|z|)

)
,

(H2)
ϕq(2B)+ ϕq(2C) < 1/4Cq,

where B = max{|b1|1, |b2|1} , C = max{|c1|1, |c2|1} , and

Cq =

{
1, 1 < q � 2,

3q−2, q > 2.

The main result in this section is:

THEOREM 2.1. Suppose that (H1)-(H2) hold. Then Problem (1.1) has at least
one solution (u,v) ∈ E1 .

First, we prove

LEMMA 2.1. Under the condition that fi (i = 1,2) are Carathéodory functions,
for any bounded subset Ω of C1([0,1],R) , the mapping T : Ω×Ω → E1 is compact.

Proof. Let Ω := {u ∈ C1([0,1],R) : ‖u‖1 < R} where R is some positive real
constant. Since G and ϕq are continuous and f1, f2 are Carathéodory, the mappings
T1 and T2 are continuous on Ω×Ω .

Let (u,v) ∈ Ω×Ω with ‖(u,v)‖1 = ‖u‖1 +‖v‖1 � 2R . Since G(x,s) � 1 for 0 �
x,s � 1, the following estimates hold true for i = 1,2 :

|Ti(u,v)(x)| �
∫ 1

0
G(x,s)ds ϕq

(∫ 1

0
G(s,τ)hR(τ)dτ

)
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� ϕq(|hR|1) < ∞.

Hence, ‖Ti(u,v)‖0 < ∞ , for i = 1,2. Similarly, we can check that ‖(Ti(u,v))′‖0 < ∞ .
So, Ti(Ω×Ω) is uniformly bounded. Finally, if x1, x2 ∈ (0,1) , then∣∣(Ti(u,v))(x1)− (Ti(u,v))(x2)

∣∣
=
∣∣∣∣
∫ 1

0

(
G(x1,s)−G(x2,s)

)
ϕq

(∫ 1

0
G(s,τ) fi

(
τ,u(τ),u′(τ)v(τ),v′(τ)

)
dτ
)
ds

∣∣∣∣
� ϕq(|hR|1)

∫ 1

0

∣∣G(x1,s)−G(x2,s)
∣∣ ds

and the right-hand side tends to 0 as |x1− x2| → 0 since G is continuous. Also,

|(Ti(u,v))′(x1)− (Ti(u,v))′(x2)| � ϕq(|hR|1)
∫ 1

0

∣∣∣∣∂G
∂x

(x1,s)− ∂G
∂x

(x2,s)
∣∣∣∣ ds

tends to 0 as |x1 − x2| → 0 because ∂G/∂x is continuous. Consequently, Ti(Ω×Ω)
are equicontinuous for i = 1,2. The Arzelà-Ascoli theorem then implies that T1 and
T2 are completely continuous. Hence, T is completely continuous. �

PROOF OF THEOREM 2.1 Let A = max(|a1|1, |a2|1) . Using (H2) , let M > 0 be
such that

M >
ϕq(A)

1/4Cq−ϕq(2B)−ϕq(2C)

and consider the open ball

Ω := {u ∈C1([0,1],R) : ‖u‖1 < M}.

From Lemma 2.1, the mapping T : Ω×Ω → E1 is completely continuous. We claim
that (u,v) 	= λT (u,v) , for any (u,v) ∈ ∂ (Ω×Ω) and λ ∈ (0,1) . Indeed, let (u,v) ∈
∂ (Ω×Ω). By the relation

∂ (A×B) = (∂A×B)
⋃

(A× ∂B),

we have that

(u,v) ∈ ∂ (Ω×Ω)⇔ either (‖u‖1 = M and 0 � ‖v‖1 � M)
or (0 � ‖u‖1 � M and ‖v‖1 = M).

Hence, M � ‖(u,v)‖1 = ‖u‖1 + ‖v‖1 � 2M . Moreover, by Assumption (H1) , we
obtain, for each i = 1,2, that

|Ti(u,v)(x)| �
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ)×

(
ai(τ)+bi(τ)

(
ϕp(|u(τ)|)

+ ϕp(|v(τ)|))+ ci(τ)
(
ϕp(|u′(τ)|)+ ϕp(|v′(τ)|)))dτ

)
ds
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� ϕq

(
|ai|1 + |bi|1

(
ϕp(‖u‖0)+ ϕp(‖v‖0)

)
+ |ci|1

(
ϕp(‖u′‖0)+ ϕp(‖v′‖0)

))

� ϕq

(
|ai|1 + |bi|1

(
ϕp(M)+ ϕp(M)

)
+ |ci|1

(
ϕp(M)+ ϕp(M)

))

� ϕq

(
|ai|1 +2ϕp(M)

(|bi|1 + |ci|1
))

.

Passing to the supremum over x and using Lemma 1.2, we infer that

‖Ti(u,v)‖0 � ϕq

(
|ai|1 +2ϕp(M)

(|bi|1 + |ci|1
))

=
(
|ai|1 +2ϕp(M)(|bi|1 + |ci|1)

)q−1

� Cq

(
ϕq(|ai|1)+Mϕq(2|bi|1)+Mϕq(2|ci|1)

)
.

Hence,

‖T (u,v)‖0 = ‖T1(u,v)‖0 +‖T2(u,v)‖0

� 2Cq(ϕq(A)+Mϕq(2B)+Mϕq(2C)).

Similarly, we can show that

‖(T (u,v))′‖0 � 2Cq(ϕq(A)+Mϕq(2B)+Mϕq(2C)).

Therefore,

‖T (u,v)‖1 = ‖T (u,v)‖0 +‖(T(u,v))′‖0

� 4Cq(ϕq(A)+Mϕq(2B)+Mϕq(2C))
< M.

As a consequence,

(u,v) 	= λT (u,v), ∀(u,v) ∈ ∂ (Ω×Ω) and ∀λ ∈ (0,1).

By Theorem 1.1, we deduce that the operator T has a fixed point (u,v) in Ω×Ω ,
which is a solution of Problem (1.1). �

2.1. Example

Let fi = fi(x,u,v,u′,v′)(i = 1,2) with

f1 =
x
2

+
x
8

((
1+ |u(x)|)α1 +

(
1+ |v(x)|)β1 +

(
1+ |u′(x)|)γ1 +(1+ |v′(x)|)δ1

)
,

f2 =
1− x

4
+

1− x
16

((
1+ |u(x)|)α2 +

(
1+ |v(x)|)β2 +

(
1+ |u′(x)|)γ2 +

(
1+ |v′(x)|)δ2

)
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and where 0 < αi,βi,γi,δi < 1/2 (i = 1,2) . Clearly Assumption (H1) in Theorem 2.1
is satisfied for:

a1(x) = x/2+4x/8 = x,

a2(x) = (1− x)/4+4(1− x)/16= (1− x)/2,

b1(x) = c1(x) = x/8,

b2(x) = c2(x) = (1− x)/16.

Hence, A = 1/2 and B = C = 1/16. Notice that

(1+ |u|)γ � (1+ |u|) 1
2 � 1+ |u|1/2 for each 0 < γ < 1.

Also, for p = 3/2, we have q = Cq = 3; hence condition (H2) in Theorem 2.1 reads

(2B)2 +(2C)2 <
1

4.3
⇔ 1/16 < 1/12.

Therefore, all assumptions in Theorem 2.1 are fulfilled which implies that the following
problem has at least one solution:(

sgn(u′′)
√
|u′′|
)′′

= f1(x,u,v,u′,v′), x ∈ (0,1),(
sgn(v′′)

√
|v′′|
)′′

= f2(x,u,v,u′,v′), x ∈ (0,1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

v(0) = v(1) = v′′(0) = v′′(1) = 0,

where sgn(s)
√|s| = ϕ3/2(s), s ∈ R .

3. The case f = f (x,u,v)

In this section, we consider nonlinearities not depending on the first derivatives
and prove an existence result for general growth conditions on fi (i = 1,2). Consider
the boundary value problem:

(ϕp(u′′))′′ = f1(x,u,v), x ∈ (0,1),
(ϕp(v′′))′′ = f2(x,u,v), x ∈ (0,1),

u(0) = u(1) = u′′(0) = u′′(1) = 0, (3.1)

v(0) = v(1) = v′′(0) = v′′(1) = 0,

where, for each i = 1,2, fi : [0,1]×R
2 −→ R are Carathéodory functions. By Lemma

1.1, (u,v) is a solution of Problem (3.1) if and only if

u(x) =
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ) f1

(
τ,u(τ),v(τ)

)
dτ
)
ds := T1(u,v)(x)



644 KAMAL BACHOUCHE, SMAÏL DJEBALI AND TOUFIK MOUSSAOUI

and

v(x) =
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ) f2

(
τ,u(τ),v(τ)

)
dτ
)
ds := T2(u,v)(x).

Hence, (u,v) ∈ E is a solution of Problem (3.1) if and only if it is a fixed point of the
operator

T = (T1,T2) : E −→ E, (u,v) �→ (T1(u,v),T2(u,v)).

Our second existence result is the following

THEOREM 3.1. Suppose that:

(H3) there exist functions h1,h2 ∈ L1([0,1],R+) and nondecreasing positive functions
on [0,+∞), ψ1,ψ2,β1 , and β2 such that

| f1(x,u,v)| � h1(x)ψ1(|u|)β1(|v|), for x ∈ [0,1] and u,v ∈ R

and
| f2(x,u,v)| � h2(x)ψ2(|u|)β2(|v|), for x ∈ [0,1] and u,v ∈ R,

(H4) there exists M > 0 such that

4M > ϕq

(1
4
|h1|1ψ1(M)β1(M)

)
+ ϕq

(1
4
|h2|1ψ2(M)β2(M)

)
.

Then Problem (3.1) has at least one solution (u,v) ∈ E .

Proof. We will apply again Theorem 1.1 to obtain the existence of a solution for
Problem (3.1). Consider the open ball

Ω := {u ∈C([0,1],R) : ‖u‖0 < M},
where M > 0 is as defined in condition (H4) . We claim that (u,v) 	= λT (u,v) , for any
(u,v)∈ ∂ (Ω×Ω) and λ ∈ (0,1) . Indeed, let (u,v)∈ ∂ (Ω×Ω), that is M � ‖(u,v)‖0 =
‖u‖0+‖v‖0 � 2M . By assumptions (H3) and the fact that G(x,s) � 1/4 for 0 � x,s �
1, we obtain

λ |T1(u,v)(x)| �
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ)h1(τ)ψ1(|u(τ)|)β1(|v(τ)|)dτ

)
ds

�
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ)h1(τ)ψ1(‖u‖0)β1(‖v‖0)dτ

)
ds

� 1
4

∫ 1

0
ϕq

(∫ 1

0

1
4
|h1|1ψ1(‖u‖0)β1(‖v‖0)dτ

)
ds

=
1
4

ϕq

(1
4
|h1|1ψ1(‖u‖0)β1(‖v‖0)

)
.

Passing to the supremum, we get

λ‖T1(u,v)‖0 � 1
4

ϕq

(1
4
|h1|1ψ1(‖u‖0)β1(‖v‖0)

)
.
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Similarly, we have

λ‖T2(u,v)‖0 � 1
4

ϕq

(1
4
|h2|1ψ2(‖u‖0)β2(‖v‖0)

)
.

Therefore, by Assumption (H4)

λ‖T (u,v)‖0 � 1
4

ϕq

(1
4
|h1|1ψ1(‖u‖0)β1(‖v‖0)

)
+

1
4

ϕq

(1
4
|h2|1ψ2(‖u‖0)β2(‖v‖0)

)
< M.

As a consequence

(u,v) 	= λT (u,v), ∀(u,v) ∈ ∂ (Ω×Ω), ∀λ ∈ (0,1).

From Lemma 2.1, T is completely continuous. By Theorem 1.1, we conclude that the
operator T has a fixed point (u,v) in Ω×Ω , which is a solution of Problem (3.1). �

3.1. Example

(
u′′
√

|u′′|
)′′

=
( 1

24

)3/2
h1(x)e3v/2(1+u

)1/3
√

1+ v2, x ∈ (0,1),(
v′′
√
|v′′|
)′′

=
( 1

24

)3/2
h2(x)e3v/4(1+u

)1/5
√

1+ v2, x ∈ (0,1),

u(0) = u(1) = u′′(0) = u′′(1) = 0, (3.2)

v(0) = v(1) = v′′(0) = v′′(1) = 0,

where h1,h2 ∈ L1([0,1],R+) satisfy |h1|1 = |h2|1 = 4. With p = 5/2 and since

|1+u|1/3 � 1+ |u|1/3, |1+u|1/5 � 1+ |u|1/5 and
√

1+ v2 � 1+ |v|,
we may take

ψ1(u) = (1/24)3/2(1+u1/3), ψ2(u) = (1/24)3/2(1+u1/5),

β1(v) = β2(v) = e3v/2
√

1+ v.

Then Assumption (H4) in Theorem 3.1 becomes

∃M > 0, 48M > eM(1+M
)2/3

[(
1+M1/3)2/3 +

(
1+M1/5)2/3

]
. (3.3)

A sufficient for (3.3) be satisfied is

eM(1+M
)2/3

(
2+M2/9 +M2/5

)
� 48M

which is true whenever M = 1. Therefore, all assumptions in Theorem 3.1 are met and
Problem (3.2) has at least one solution.
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4. The singular problem

In this final section, we assume that the nonlinearities are positive, are allowed to
be singular at the solution but do not depend on the first derivative:

(ϕp(u′′))′′ = f1(x,u,v), x ∈ (0,1),
(ϕp(v′′))′′ = f2(x,u,v), x ∈ (0,1),

u(0) = u(1) = u′′(0) = u′′(1) = 0, (4.1)

v(0) = v(1) = v′′(0) = v′′(1) = 0,

where, for each i = 1,2, the function fi : [0,1]× (0,+∞)2 −→ R
+ is Carathéodory and

may be singular at the solution, i.e.

lim
u+v→0 (u,v�0)

fi(x,u,v) = +∞.

We will assume that the following conditions hold:

(H5) there exist ai,bi ∈ L1([0,1],R+) satisfying
∫ 1
0 B(s)ϕp(1/s)ds < ∞, such that for

all (x,u,v) ∈ [0,1]× (0,+∞)× (0,+∞) and for each i = 1,2,

0 � fi(x,u,v) � ai(x)+bi(x)ϕp

( 1
u+ v

)
;

(H6) there exists M > 0 such that

A+ ϕp

( 1
M +1

)∫ 1

0
B(τ)ϕp

(
1/p(τ)

)
dτ < ϕp

(M +1
2

)
.

Here

p(s) = min
s∈[0,1]

(s,1− s), B(s) = max
s∈[0,1]

(
b1(s),b2(s)

)
and A = max

(|a1|1, |a2|1
)
.

THEOREM 4.1. Suppose that (H5) and (H6) hold. Then Problem (4.1) has at
least one solution (u,v) ∈ E.

To prove this theorem, we need the following lemma

LEMMA 4.1. Let w ∈ L1([0,1]), w � 0 a.e. and let u satisfy

(ϕp(u′′))′′(x) = w(x), 0 < x < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0. (4.2)

Then
u(x) � p(x)‖u‖0, ∀x ∈ [0,1],

where
p(x) = min(x,1− x), for x ∈ [0,1]. (4.3)
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Proof. Let −ϕp(u′′) = v, then (ϕp(u′′))′′ = −v′′ with v(0) = v(1) = 0. So, Prob-
lem (4.2) is equivalent to the linear problem

−v′′(x) = w(x), 0 < x < 1,

v(0) = v(1) = 0. (4.4)

Equivalently

v(x) =
∫ 1

0
G(x,s)w(s)ds,

where G is the function defined by (1.2). Since v> 0 on (0,1) , ϕp(u′′)=−v� 0. Then
u′′ � 0, since ϕp is nondecreasing; thus u is concave on (0,1), with u(0) = u(1) = 0.
In addition, there exists some 0 < x0 < 1 such that u′(x0) = 0. By Lemma 1.1, we have
u(x) > 0, on (0,1). Then, u is positive, concave and admits a unique maximum at x0.
Its graph is then above the lines joining u(x0) to the endpoints. It follows that:

u(x) � x
u(x0)
x0

� xu(x0) = x‖u‖0, ∀x ∈ [0,x0],

and

u(x) � (1− x)
u(x0)
1− x0

� (1− x)u(x0) = (1− x)‖u‖0, ∀x ∈ [x0,1].

The lemma is proved. �

PROOF OF THEOREM 4.1 For n ∈ {1,2, . . .} and (x,u,v) ∈ [0,1]× (0,+∞)2 , de-
fine the operator Tn = (Tn

1 ,Tn
2 ) (i = 1,2) by

Tn
i (u,v)(x) :=

∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ) fi

(
τ,un(τ),vn(τ)

)
dτ
)
ds,

where un(.) = u(.)+1/n and vn(.) = v(.)+1/n . Then (un,vn) ∈ E is a solution of the
problem

(ϕp(u′′n))
′′ = f1(x,un,vn), x ∈ (0,1),

(ϕp(v′′n))
′′ = f2(x,un,vn), x ∈ (0,1),

un(0) = un(1) = u′′n(0) = u′′n(1) = 0, (4.5)

vn(0) = vn(1) = v′′n(0) = v′′n(1) = 0

if and only if (un,vn) is a fixed point of the operator Tn. Now consider the open ball

Ω := {u ∈C([0,1],R) : ‖u‖0 < M +1},
where M is as defined in (H6) . Since the functions

f n
i (x,u,v) = fi(x,u+1/n,v+1/n)

are Carathéodory on [0,1]× (0,+∞)2, Lemma 2.1 guarantees that the operator Tn :
Ω×Ω → E is completely continuous. The remainder of the proof is split into three
steps:
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Step 1. We claim that (u,v) 	= λTn(u,v) , for any (u,v) ∈ ∂ (Ω×Ω) and λ ∈ (0,1) .
Arguing by contradiction, let (u,v) ∈ ∂ (Ω×Ω) be such that (u,v) = λTn(u,v) ; that
is,

M +1 � ‖u‖0 +‖v‖0 = ‖u+ v‖0 � 2+2M.

On one hand, we have by Lemma 4.1 and the positivity of fi , that u(s) � p(s)‖u‖0. So
u(s)+1/n > u(s) � p(s)‖u‖0. Also, v(s)+1/n > v(s) � p(s)‖v‖0. Then,

p(s)(‖u‖0 +‖v‖0) � u(s)+ v(s) � ‖u‖0 +‖v‖0.

Moreover, for s ∈ [0,1] , we have

1
‖u‖0 +‖v‖0 +2/n

� 1
u(s)+ v(s)+2/n

� 1
p(s)(‖u‖0 +‖v‖0)

� 1
(M +1)p(s)

.

On the other hand, by Assumption (H5) and since G(x,s) � 1 for 0 � x,s � 1, we
have for each i = 1,2 :

|Tn
i (u,v)(x)| � ϕq

(∫ 1

0
ai(τ)+bi(τ)ϕp

(
1

u(τ)+ v(τ)+2/n

)
dτ

)

� ϕq

(∫ 1

0
ai(τ)+bi(τ)ϕp

(
1

(M +1)p(τ)

)
dτ

)

� ϕq

(
|ai|1 + ϕp

(
1

M +1

)∫ 1

0
bi(τ)ϕp

(
1

p(τ)

)
dτ

)
.

Passing to the supremum over x , we find that

‖Tn
i (u,v)‖0 � ϕq

(
|ai|1 + ϕp

(
1

M +1

)∫ 1

0
bi(τ)ϕp

(
1

p(τ)

)
dτ

)
.

Consequently,

‖Tn(u,v)‖0 = ‖Tn
1 (u,v)‖0 +‖Tn

2 (u,v)‖0

� 2ϕq

(
A+ ϕp

(
1

M +1

)∫ 1

0
B(τ)ϕp

(
1

p(τ)

)
dτ

)
.

Since ϕq = ϕ−1
p , assumption (H6) implies that

‖Tn(u,v)‖0 < M +1, ∀(u,v) ∈ ∂ (Ω×Ω)

while ‖(u,v)‖0 = ‖u‖0 +‖v‖0 � M +1. Therefore,

(u,v) 	= λTn(u,v), ∀(u,v) ∈ ∂ (Ω×Ω), ∀λ ∈ (0,1).

Theorem 1.1 yields that the operator Tn has a fixed point denoted by (un,vn) in Ω×Ω ,
which is a solution of Problem (4.5).
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Step 2 . Equicontinuity. Consider the sequences {(un(.)} and {vn(.)} . Since ‖un‖0 �
M + 1 and ‖vn‖0 � M + 1, it follows that they are uniformly bounded on [0,1] . We
show that they are equicontinuous on [0,1] . First, for (un,vn) ∈ Ω×Ω , we have for
each s ∈ [0,1] ,

1
‖un‖0 +‖vn‖0 +2/n

� 1
un + vn +2/n

� 1
p(s)(‖un‖0 +‖vn‖0)

� 1
(M +1)p(s)

.

Let x1, x2 ∈ (0,1) ; then we have

|un(x1)−un(x2)| =
∫ 1

0
|G(x1,s)−G(x2,s)|

×ϕq

(∫ 1

0
G(s,τ) f1

(
τ,un(τ)+

1
n
,vn(τ)+

1
n

)
dτ
)

ds

�
∫ 1

0
|G(x1,s)−G(x2,s)|

×ϕq

(∫ 1

0
ai(τ)+bi(τ)ϕp

( 1
un(τ)+ v(τ)+2/n

)
dτ
)

ds

�
∫ 1

0
|G(x1,s)−G(x2,s)|

×ϕq

(
A+

∫ 1

0
B(τ)ϕp

( 1
(M +1)p(τ)

)
dτ
)

ds.

By continuity of G , the right-hand side tends to 0, as |x1 − x2| → 0. Hence {un(x)}
and {vn(x)} are equicontinuous on [0,1] .
Step 3 . A sequential argument. The Arzelà-Ascoli theorem together with Step 2 imply
that {un(.)} and {vn(.)} are relatively compact on C([0,1],R). Hence there exists a
subsequence, still denoted {un(.)} , and a function u0(.) in C([0,1],R) , and there exists
a subsequence still denoted {vn(.)} and a function v0(.) in C([0,1],R) such that

lim
n→+∞

sup
x∈[0,1]

|un(x)−u0(x)| = 0

and
lim

n→+∞
sup

x∈[0,1]
|vn(x)− v0(x)| = 0.

Now

un(x) =
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ) f1

(
τ,u(τ)+

1
n
,v(τ)+

1
n

)
dτ
)

ds

and

vn(x) =
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ) f2

(
τ,u(τ)+

1
n
,v(τ)+

1
n

)
dτ
)

ds,

where for each i = 1,2:

0 � fi
(

τ,u(τ)+
1
n
,v(τ)+

1
n

)
� ai(τ)+bi(τ)ϕp

(
1

u(τ)+ v(τ)+2/n

)
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� ai(τ)+bi(τ)ϕp

(
1

p(τ)(M +1)

)
.

Letting n → +∞ , the Lebesgue Dominated Convergence Theorem guarantees that

u0(x) =
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ) f1

(
τ,u0(τ),v0(τ)

)
dτ
)
ds

and

v0(x) =
∫ 1

0
G(x,s)ϕq

(∫ 1

0
G(s,τ) f2

(
τ,u0(τ),v0(τ)

)
dτ
)
ds.

Differentiating, we get(
ϕp(u′′0(x))

)′′ = f1(x,u0(x),v0(x)), 0 < x < 1,

and (
ϕp(v′′0(x))

)′′ = f2(x,u0(x),v0(x)), 0 < x < 1,

and u0(0) = u0(1) = u′′0(0)= u′′0(1) = 0, v0(0) = v0(1) = v′′0(0) = v′′0(1) = 0. Therefore,
(u0(x),v0(x)) is a couple of solutions to Problem (4.1), ending the proof of the theorem.
�

4.1. Example

Consider the 5/2-Laplacian fourth-order boundary value problem:(
u′′
√
|u′′|
)′′

= a1(x)+
b1(x)√
u+ v

, x ∈ (0,1),

(
v′′
√
|v′′|
)′′

= a2(x)+b2(x)
(

1

u+
√

u+ v
+

1

v+
√

u+ v

)
, x ∈ (0,1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

v(0) = v(1) = v′′(0) = v′′(1) = 0, (4.6)

where a1,a2 ∈L1([0,1],(0,+∞)) satisfy |a1|1 = |a2|1 = 1 and b1(x)= 2b2(x)= p(x)3/2 .
Since

∫ 1
0 B(s)ϕp(1/p(s))ds = 1 < ∞, and for all u,v ∈ (0,+∞) ,

1
u+

√
u

<
1√
u
,

1

u+
√

u+ v
<

1√
u+ v

and
1

v+
√

u+ v
<

1√
u+ v

,

assumption (H5) in Theorem 4.1 is fulfilled. Also, assumption (H6) in Theorem 4.1
reads

∃M > 0, 1+
1(

M +1
)3/2

<

(
M +1

2

)3/2

,

which is satisfied for M = 3. Therefore, all assumptions in Theorem 4.1 are met, which
implies that Problem (4.6) has at least one solution (u,v) ∈C([0,1],R2) .
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