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RIEMANN PROBLEM FOR ONE–DIMENSIONAL SYSTEM

OF CONSERVATION LAWS OF MASS, MOMENTUM

AND ENERGY IN ZERO–PRESSURE GAS DYNAMICS

HONGJUN CHENG

(Communicated by Ferruccio Colombini)

Abstract. This paper studies the one-dimensional Riemann problem for the system of conser-
vation laws of mass, momentum and energy in zero-pressure gas dynamics. Using the charac-
teristic analysis method, two kinds of solutions are obtained: vacuum and delta-shock solution.
Under suitable generalized Rankine-Hugoniot relation and entropy condition, both existence and
uniqueness of delta-shock solutions are established. These analytical results well match the re-
sults obtained through numerical simulations.

1. Introduction

Nonlinear hyperbolic conservation laws are a fundamental principle in building
mathematical models for many natural process. As basic examples in fluid dynamics,
Euler equations represent the conservation of mass, momentum and energy. However,
the full Euler equations are so complicated that it is very difficult to do a complete
investigation. Thus, to approach the full Euler equations, various mathematical simpli-
fication models are studied. Among them, a very important one is the zero-pressure gas
dynamics, which can describe the motion of free particles which stick under collision
and explain the formation of large-scale structures in the universe. The zero-pressure
gas dynamics system consisting of conservation laws of mass and momentum has been
investigated extensively and some excellent results have been obtained. For related re-
sults, see [2, 13, 19, 3, 6] and the papers cited therein. However, it is well known that
for the media which can be considered as having no pressure, we must take into account
energy transport. Therefore it is very necessary to consider the energy conservation law
in zero-pressure gas dynamics.

These motivate us to consider the system of conservation laws of mass, momentum
and energy in zero-pressure gas dynamics in one space dimension⎧⎪⎪⎨

⎪⎪⎩
ρt +(ρu)x = 0,

(ρu)t +(ρu2)x = 0,(
ρu2/2+H

)
t +

(
(ρu2/2+H)u

)
x = 0,

(1.1)
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where ρ and u represent the density and velocity, respectively, H = ρτ is the internal
energy, τ is the internal energy per unit mass. The density ρ and internal energy
H are nonnegative; the regions in the physical space where ρ = 0 and H = 0 are
identified with vacuum regions of the flow. For convenience, we here consider H as an
independent variable.

As we know, a flow is formed by two kinds of effects: the effect of inertia and the
effect of pressure difference. When we neglect the effect of pressure difference in the
Euler equation of nonisentropic gas dynamic⎧⎪⎪⎨

⎪⎪⎩
ρt +(ρu)x = 0,

(ρu)t +(ρu2 + p)x = 0,

(ρE)t +
(
(ρE + p)u

)
x = 0,

(1.2)

that is, the pressure p is a constant, system (1.2) is reduced to system (1.1), where
ρE = ρu2/2+ ρτ is the total energy.

One main feature of system (1.1) is that ρ , H and ∂u/∂x blow up simultaneously
in a finite time even starting from smooth initial data. Therefore, we have to understand
(1.1) in the sense of measures and introduce delta shock waves in the piecewise smooth
solutions of (1.1). In the delta-shock solutions, both the density and energy develop
an extreme concentration. As for delta shock waves, there have been rich results. For
instance, Bouchut [2], Li, Sheng and Zhang [13, 19], Zheng [23], Tan, Zhang and
Zheng [20, 21], Keyfits and Kranzer [11], Hayes and Lefloch [10], Yang [22], Chen
and Liu [3], Cheng and Yang [4, 5, 6], Danilov, Shelkovich and Panov [7, 8, 18, 17],
Guo, Sheng and Zhang [9], etc.

Early, system (1.1) was studied in [12]. To construct a solution for arbitrary initial
data, the discontinuities which are different from classical ones and carry mass, impulse
and energy were needed. Recently, papers [16, 15] further considered system (1.1). In
order to define delta-shock solutions, special integral identities were introduced. Using
these integral identities, the Rankine-Hugoniot conditions for delta shock waves are
obtained. The balance laws describing mass, momentum and energy transport from the
area outside the delta shock wave front onto its front were derived. Next, in [1], the
multidimensional case of system (1.1) was considered.

In this paper, we continue to study solutions of system (1.1) by considering the
Riemann problem with initial data

(ρ ,u,H)(t = 0,x) =

{
(ρ−,u−,H−), x < 0,

(ρ+,u+,H+), x > 0.
(1.3)

By using the characteristic analysis method, we solve the Riemann problem (1.1) and
(1.3) constructively. There are only two kinds of solutions: the one involving vacuum
and the other containing delta shock wave. Then we focus our attention on delta shock
waves. By a definition of measure solution to (1.1), we derive the generalized Rankine-
Hugoniot relation, which consists of a system of ordinary differential equations and
describes the relationship among the location, propagation speed, weights and assign-
ment of u on their discontinuity relative to delta shock wave. To guarantee uniqueness,
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the delta shock waves must satisfy the entropy condition, which is overcompressive
one. Thus the existence and uniqueness of solutions involving delta shock waves can
be obtained by solving the generalized Rankine-Hugoniot relation under entropy con-
dition.

The rest of this paper is arranged as follows. In Section 2, we present some pre-
liminary knowledge about system (1.1) and construct the Riemann solutions by charac-
teristic analysis method. Section 3 proposes the generalized Rankine-Hugoniot relation
and entropy condition, and applies them to solving the Riemann problem. Finally, in
Section 4, we simulate the Riemann solutions containing vacuum and delta shock wave.

2. Preliminaries and solutions obtained with characteristic method

2.1. Preliminaries

We consider the Riemann problem (1.3) for system (1.1). The system has a triple
eigenvalue

λ = u (2.1)

and two right eigenvectors

r1 = (1,0,0)T , r2 = (0,0,1)T (2.2)

satisfying
∇λ · ri ≡ 0, i = 1,2. (2.3)

Thus (1.1) is extremely nonstrictly hyperbolic and λ is linearly degenerate. The linear
degeneracy also excludes the possibility of rarefaction wave and shock wave solutions.
The characteristic equations can be written as

dx
dt

= u,
du
dt

= 0,
dρ
dt

= −ρux,
dH
dt

= −Hux, (2.4)

which mean that characteristic lines are straight and u keeps constants along each of
them.

As usual, we should seek the self-similar solution

(ρ ,u,H)(t,x) = (ρ ,u,H)(ξ ), ξ = x/t, (2.5)

for which system (1.1) becomes⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−ξ ρξ +(ρu)ξ = 0,

−ξ (ρu)ξ +(ρu2)ξ = 0,

−ξ
(
ρu2/2+H

)
ξ +

(
(ρu2/2+H)u

)
ξ = 0

(2.6)

and initial condition (1.3) changes to the boundary condition

(ρ ,u,H)(±∞) = (ρ±,u±,H±). (2.7)
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This is a two-point boundary value problem of first-order ordinary differential equations
with the boundary values in the infinity.

For smooth solution, (2.6) is reduced to⎛
⎜⎝

u− ξ ρ 0

0 u− ξ 0

0 H u− ξ

⎞
⎟⎠

⎛
⎜⎝

ρ
u

H

⎞
⎟⎠

ξ

= 0. (2.8)

It provides either general solution (constant state)

(ρ ,u,H)(ξ ) = constant (ρ �= 0,H �= 0) (2.9)

or singular solution (vacuum state, denoted by Vac)

ξ = u, ρ = 0, H = 0, (2.10)

where u(ξ ) is arbitrary smooth functions. Thus the smooth solutions of system (1.1)
only contain constants and vacuum solutions.

For a bounded discontinuity at ξ = ω , the Rankine-Hugoniot relation can be writ-
ten as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−ω [ρ ]+ [ρu] = 0,

−ω [ρu]+ [ρu2] = 0,

−ω
[
ρu2/2+H

]
+

[
(ρu2/2+H)u

]
= 0,

(2.11)

where and after [G] = Gl −Gr denotes the jump of G across the discontinuity. Solving
(2.11), we obtain that

ξ = ω = ul(= λl) = ur(= λr). (2.12)

It is a contact discontinuity, denoted by J , which is just the characteristic line for both
sides in (t,x)-plane. Two states (ρl,ul ,Hl) and (ρr,ur,Hr) can be connected by a
contact discontinuity J if and only if ul = ur , that is, these two states are located on
the plane u = ul = ur in the (ρ ,u,H)–phase space. The contact discontinuity J in
(t,x)-plane is characterized by x/t = ul = ur .

2.2. Structures of Riemann solutions

With the constants, vacuum and contact discontinuity, we solve Riemann problem
(1.1) and (1.3) by two different cases.

Case 1. u− � u+ . For this case, this is no overlap of characteristic lines and no
characteristic line passes though the region Ω = {(t,x)

∣∣u− � x/t � u+} in (t,x)-plane.
Therefore the vacuum should appear there. Thus we can construct the solution which
consists of two contact discontinuities and a vacuum state besides two constants (see
Fig.1(left)). The solution can be expressed as

(ρ ,u,H)(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

(ρ−,u−,H−), −∞ < ξ < u−,

(0,u(ξ ),0), u− � ξ � u+,

(ρ+,u+,H+), u+ < ξ < +∞,

(2.13)
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where u(ξ ) satisfies that u(u−) = u− and u(u+) = u+ .

O

x

∧

>

t

(−) (+)

V ac
J J

x/t = u+x/t = u−

O

∧

>

t

x

(−) (+)

δ : x/t = σ

x/t = u−x/t = u+

Ω

Fig.1. u− � u+ (left) and u− > u+ (right)

Case 2. u− > u+ . For this case, the characteristics line from the x -axis will over-
lap in the domain Ω = {(t,x)

∣∣u+ � x/t � u−} in (t,x)-plane. So the singularity of
solutions must develop in Ω . By a method similar to that in [22], one can prove that ρ ,
H and ∂u/∂x blow up simultaneously in a finite time even starting from smooth initial
data. Therefore no solution exists in the bounded variation space.

Thus, motivated by [13, 19, 22, 6], for the case u− > u+ , using delta shock wave,
we can construct the solution which consists of a delta shock wave besides two constant
states (see Fig.1(right)), where σ is the propagation speed of delta shock wave.

In the next section, we will study in more detail the existence and uniqueness of
solutions involving delta shock waves.

3. Generalized Rankine-Hugoniot relations of delta shock waves

Due to the simultaneous occurrence of two blowup mechanism of solutions, it is
natural to seek solutions in the space of Borel measures. Denote by BM(R1) the space
of bounded Borel measures on R

1 , then the definition of a measure solution of (1.1) in
BM(R1) can be given as follows.

DEFINITION 3.1. A triple distribution (ρ ,u,H) constitutes a measure solution of
(1.1) if it satisfies

(a) ρ ∈ L∞(
[0,∞),BM(R1)

)
∩C

(
[0,∞),H−s(R1)

)
,

(b) u ∈ L∞(
[0,∞),L∞(R1)

)
∩C

(
[0,∞),H−s(R1)

)
,

(c) H ∈ L∞(
[0,∞),BM(R1)

)
∩C

(
[0,∞),H−s(R1)

)
, s > 0,

(d) u is measurable with respect to ρ and H at almost for all t � 0,

and ⎧⎪⎨
⎪⎩

∫ ∞

0

∫
R1

(φt +uφx)dρdt = 0,

∫ ∞

0

∫
R1

u(φt +uφx)dρdt = 0,∫ ∞

0

∫
R1

(u2/2)(φt +uφx)dρdt +
∫ ∞

0

∫
R1

(φt +uφx)dHdt = 0,

(3.1)

hold in the sense of measures for all φ ∈C∞
0

(
[0,∞)×R

1
)
.
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DEFINITION 3.2. A two-dimensional weighted delta function w(s)δL supported
on a smooth curve L parameterized as x = x(s),y = y(s)(c � s � d) is defined by

〈
w(s)δL,φ(x,y)

〉
=

∫ d

c
w(s)φ

(
x(s),y(s)

)
ds

for all φ ∈C∞
0 (R2) .

DEFINITION 3.3. A triple distribution (ρ ,u,H) is called a delta shock wave if it
is represented in the form

(ρ ,u,H)(t,x) =

⎧⎪⎪⎨
⎪⎪⎩

(ρl,ul ,Hl)(t,x) x < x(t),(
w(t)δ (x− x(t)),uδ (t),h(t)δ (x− x(t))

)
, x = x(t),

(ρr,ur,Hr)(t,x), x > x(t)

(3.2)

and satisfies Definition 3.1, where (ρl,ul,Hl) and (ρr,ur,Hr)(t,x) are piecewise smooth
bounded solutions of (1.1).

Setting dx/dt = uδ (t) since the concentrations in ρ and H need to travel at the
speed of delta shock wave (also [13, 22, 23], etc), then a delta shock wave must satisfy
the relation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= uδ (t),

dw(t)
dt

= −[ρ ]uδ (t)+ [ρu],

dw(t)uδ (t)
dt

= −[ρu]uδ(t)+ [ρu2],

d
(
w(t)u2

δ (t)/2+h(t)
)

dt
= −

[
ρu2/2+H

]
uδ (t)+

[(
ρu2/2+H

)
u
]
.

(3.3)

As a matter of fact, for any test function φ ∈C∞
0

(
[0,∞)×R

1
)
, from (3.1), using

Green’s formula and integrating by parts, we can calculate

0 =
∫ ∞

0

∫
R1

u2

2

(
φt +uφx

)
dρdt +

∫ ∞

0

∫
R1

(
φt +uφx

)
dHdt

=
∫ ∞

0

∫ x(t)

−∞

ρlu2
l

2

(
φt +ulφx

)
dxdt +

∫ ∞

0

∫ x(t)

−∞
Hl(φt +ulφx)dxdt

+
∫ ∞

0

∫ ∞

x(t)

ρru2
r

2

(
φt +urφx

)
dxdt +

∫ ∞

0

∫ ∞

x(t)
Hr

(
φt +urφx

)
dxdt

+
∫ ∞

0

w(t)u2
δ (t)

2

(
φ(t,x(t))+uδ (t)φx(t,x(t)

)
dt

+
∫ ∞

0
h(t)

(
φt(t,x(t))+uδ (t)φx(t,x(t)

)
dt

=
∫ ∞

0

∫ x(t)

−∞

((ρlu2
l

2
φ
)
t +

(ρlu2
l

2
ulφ

)
x

)
dxdt +

∫ ∞

0

∫ x(t)

−∞

(
(Hlφ)t +(Hlulφ)x

)
dxdt
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−
∫ ∞

0

∫ x(t)

−∞

((ρlu2
l

2

)
t +

(ρlu2
l

2
ul

)
x

)
φdxdt

−
∫ ∞

0

∫ x(t)

−∞

(
(Hl)t +(Hlul)t

)
φdxdt

+
∫ ∞

0

∫ ∞

x(t)

((ρru2
r

2
φ
)
t +

(ρru2
r

2
ulφ

)
x

)
dxdt

+
∫ ∞

0

∫ ∞

x(t)

(
(Hrφ)t +(Hrurφ)x

)
dxdt

−
∫ ∞

0

∫ ∞

x(t)

((ρru2
r

2

)
t +

(ρru2
r

2
ur

)
x

)
φdxdt−

∫ ∞

0

∫ ∞

x(t)

(
(Hr)t +(Hrur)t

)
φdxdt

+
∫ ∞

0

w(t)u2
δ (t)

2
dφ(t,x(t))

dt
dt +

∫ ∞

0
h(t)

dφ(t,x(t))
dt

dt

=
∫ ∞

0

{
−

[
ρu2/2+H

]
uδ (t)+

[(
ρu2/2+H

)
u
]

−
d
(
w(t)u2

δ (t)/2+h(t)
)

dt

}
φ(t,x(t))dt,

which implies the fourth identity in (3.3). In the same way as above, we can check that
the second and third identities hold. Thus the proof is complete.

Relations (3.3) is called the generalized Rankine-Hugoniot relation. It reflects the
exact relationship among the limit states on two sides, location, propagation speed,
weights and the assignments of u on delta shock waves.

In addition, to guarantee uniqueness, the delta shock wave should satisfy

ur < uδ (t) < ul. (3.4)

Condition (3.4) is called the entropy condition, which is an overcompressive one and
means that all characteristics on both sides of delta shock wave are incoming.

Now we in particular apply the generalized Rankine-Hugoniot relation to solving
Riemann problem (1.1) and (1.3) for the case u− > u+ . At this moment, the Riemann
problem is reduced to solving (3.3) with initial data

t = 0 : x(0) = 0, w(0) = 0, h(0) = 0 (3.5)

under entropy condition (3.4) which is

u+ < uδ (t) < u−. (3.6)

From (3.3) and (3.5), it follows that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w(t) = −[ρ ]x(t)+ [ρu]t,

w(t)uδ (t) = −[ρu]x(t)+ [ρu2]t,

w(t)u2
δ (t)

2 +h(t) = −[ρu2

2 +H]x(t)+
[
(ρu2

2 +H)u
]
t.

(3.7)
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Multiplying the first equation in (3.7) by uδ (t) and then subtracting it from the second
one, we obtain

[ρ ]x(t)uδ (t)− [ρu]uδ(t)t− [ρu]x(t)+ [ρu2]t = 0, (3.8)

that is,

d
( [ρ ]

2 x2(t)− [ρu]x(t)t + [ρu2]
2 t2

)
dt

= 0, (3.9)

which provides
[ρ ]
2

x2(t)− [ρu]x(t)t +
[ρu2]

2
t2 = 0. (3.10)

From (3.10), one can find uδ (t) := uδ is a constant and x(t) = uδ t . Then Eq.(3.10) can
be rewritten into

[ρ ]u2
δ −2[ρu]uδ +[ρu2] = 0, (3.11)

which is just a quadratic equation with respect to uδ .
When [ρ ] = ρ−−ρ+ �= 0, by virtue of the discriminant

Δ = 4[ρu]2−4[ρ ][ρu2] = 4ρ−ρ+(u−−u+)2 � 0,

we find two solutions

uδ =
√ρ−u− +

√ρ+u+√ρ− +
√ρ+

(3.12)

and

uδ =
√ρ−u−−√ρ+u+√ρ−−√ρ+

. (3.13)

Next, with the help of the entropy condition (3.6), we will choose the admissible solu-
tion from (3.12) and (3.13). For solution (3.12), we have

uδ −u− = −
√ρ+√ρ− +

√ρ+
(u−−u+) < 0 (3.14)

and

uδ −u+ =
√ρ−√ρ− +

√ρ+
(u−−u+) > 0, (3.15)

which imply the entropy condition (3.6) is valid. For solution (3.13), when [ρ ] = ρ−−
ρ+ > 0,

uδ −u− =
√ρ+√ρ−−√ρ+

(u−−u+) > 0, (3.16)

and when [ρ ] = ρ−−ρ+ < 0,

uδ −u+ =
√ρ−√ρ−−√ρ+

(u−−u+) < 0. (3.17)
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These show that the solution (3.13) does not satisfy the entropy condition (3.6). Thus
from (3.7), we can calculate

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) =
√ρ−u− +

√ρ+u+√ρ− +
√ρ+

t,

w(t) =
√ρ−ρ+(u−−u+)t,

uδ =
√ρ−u− +

√ρ+u+√ρ− +
√ρ+

,

h(t) = ρ−ρ+(u−−u+)2+2(
√ρ−+

√ρ+)(H−
√ρ++H+

√ρ−)
2(
√ρ−+

√ρ+)2 (u−−u+)t.

(3.18)

When [ρ ] = ρ− −ρ+ = 0, the situation is very simple. One can easily calculate
the solution ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x(t) =
u− +u+

2
t,

w(t) = ρ−(u−−u+)t

uδ = u−+u+
2 ,

h(t) = ρ−(u−−u+)2+4(H−+H+)
8 (u−−u+)t,

(3.19)

which obviously satisfies (3.6).

THEOREM 3.1. Let u− > u+ . Then Riemann problem (1.1) and (1.3) admits
one and only one entropy measure solution of the form

(ρ ,u,H)(t,x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρ−,u−,H−), x < uδ t,(
w(t)δ (x−uδ t),uδ ,h(t)δ (x−uδ t)

)
, x = uδ t,

(ρ+,u+,H+), x > uδ t,

(3.20)

where w(t) , uδ and h(t) are shown by (3.18) when [ρ ] �= 0 or (3.19) when [ρ ] = 0 .

4. Numerical simulations for Riemann solutions

In this section, we simulate the obtained Riemann solutions by employing the
Nessyahu-Tadmor scheme [14] with 300× 300 cells and CFL = 0.475. For the case
u− � u+ , we take ρ− = 1.0,u− = 0.2,H− = 2.48 and ρ+ = 2.0,u+ = 2.0,H+ = 4.0.
The numerical results are presented in Fig.2. For the case u− > u+ , we take ρ− =
1.0,u− = 0.2,H− = 2.48 and ρ+ = 2.0,u+ = 0.1,H+ = 7.99. The numerical results
are shown in Fig.3.
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Fig.2. Numerical results for the case u− � u+ at t = 0.5
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It can be clearly observed that the vacuum develops in Fig.2 while a delta shock
wave in Fig.3. All the numerical results are in complete agreement with the theoretical
analysis.
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