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COMPOSITION CONDITIONS FOR

TWO–DIMENSIONAL POLYNOMIAL SYSTEMS

M.A.M. ALWASH

(Communicated by Vesna Županović)

Abstract. Several papers published recently about the center composition condition of Abel dif-
ferential equations and two-dimensional polynomial systems with homogeneous nonlinearities.
We give necessary and sufficient conditions for the existence of composition centers for general
two-dimensional polynomial systems.

1. Introduction

Consider the system

ẋ =
dx
dt

= −y+
n

∑
2

p j(x,y),

ẏ =
dy
dt

= x+
n

∑
2

q j(x,y)
(1)

where, p j and q j are homogeneous polynomials in x and y of degree j . Recall that
the center problem is to characterize the coefficients that imply the origin is a center. In
polar coordinates, the system becomes

dr
dθ

=
∑n

2 r j f j+1(θ )
1+ ∑n

2 r j−1g j+1(θ )
(2)

with
f j+1(θ ) = cosθ p j(cosθ ,sinθ )+ sinθ q j(cosθ ,sinθ )
g j+1(θ ) = cosθ q j(cosθ ,sinθ )− sinθ p j(cosθ ,sinθ ).

In the case of homogeneous nonlinearities, the system can be transformed to Abel dif-
ferential equation

dR
dθ

= A(θ )R3 +B(θ )R2, (3)

where,
R = rn−1(1+ rn−1g(θ ))−1,
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and
A(θ ) = −(n−1) f (θ )g(θ ),B(θ ) = (n−1) f (θ )−g′(θ ).

The origin is a center for the two-dimensional system if and only if all solutions of the
Abel equation starting near the origin are periodic with period 2π . In this case, we say
that R = 0 is a center for the Abel equation. The origin is a center when the coefficients
satisfy the following condition

A(θ ) = u′(θ )A1(u(θ )), B(θ ) = u′(θ )B1(u(θ )), (4)

where u is a periodic function of period 2π , A1,B1 are continuous functions. This
condition is called the composition condition. However, it was shown in [3] that the
converse is not true; there are centers in which the coefficients are trigonometric poly-
nomials and do not satisfy the composition condition. For the case of polynomial coef-
ficients, the problem is still unsolved. The problem is considered in several articles and
in particular its relations with the moments of polynomials and universal centers; see,
for example, [2], [5], [6], [7], [8], [10], and [14]. In a recent paper [9], Cima, Gasull,
and Manosas characterize all the centers in which the coefficients satisfy the composi-
tion condition for Abel differential equaltion. It came to our attention that a paper of
Al’muhamedov [1] published in 1949 contains a characterization of composition cen-
ters for general polynomial systems and the results are not restricted to systems with
homogeneous nonlinearities. A counterexample is presented in Section 3 to show that
the result about the relation between stable centers and composition centers is not true.
We give a similar result in this paper. In Section 2, we prove the results related to the
composition condition. Section 3 contains the counterexample and the result related to
stable centers. We use the same approach of [1]; the first four theorems are essentially
given in [1]. We present complete and clear proofs to the results. Finally, we relate the
stable centers to the result in [9].

2. Composition conditions

To distinguish a center from a focus, we look for a closed curve defined by the
equation

ρ + ρ2u1(θ )+ ρ3u2(θ )+ · · · = ε, (5)

where, u j are trigonometric polynomials and ε is a sufficiently small positive number.

If dr
dθ − dρ

dθ has a constant sign at r = ρ , then the origin is a focus. Therefore, the origin

is a center if and only if dr
dθ − dρ

dθ = 0 at r = ρ . Now, we compute dr
dθ − dρ

dθ at r = ρ .

dr
dθ

− dρ
dθ

=
∑n

2 r j f j+1

1+ ∑n
2 r j−1g j+1

− ∑∞
1 r j+1u′j

∑∞
1 ( j +1)r ju j

.

The condition dr
dθ − dρ

dθ = 0,r = ρ implies that

u′k = fk+2 +
k

∑
2

[(k− j +2) f j+1uk− j+1−g j+1u
′
k− j+1].
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Therefore, the functions uk are trigonometric polynomials if and only if the integrals
of the right hand side in this recursive formula vanish for all k � 1. This proves the
following result.

THEOREM 1. The origin is a center for the system (1) if and only if

∫ 2π

0
[ fk+2 +

k

∑
2

((k− j +2) f j+1uk− j+1−g j+1u
′
k− j+1)]dθ = 0,k � 1.

The recursive formula in Theorem 1 is linear and the number of terms does not increase
when k increases. The values of the integrals are the Poincare-Liapunov constants and
were obtained in [4] using Liapunov functions. Theorem 1 is given in [1] with a mistake
in the sign. The following corollary follows directly from Theorem 1.

COROLLARY 1. If ( fm+1,gm+1) is the first non-zero pair, then

u′k = 0,1 � k � m−2,

u′k = fk+2,m−1 � k � 2m−3.

Now, we write the polynomials in (2) in the form

fk(θ ) =
nk

∑
j=0

(ak je
i jθ +bk je

−i jθ ),

gk(θ ) =
nk

∑
j=0

(ck je
i jθ +dk je

−i jθ ).
(6)

With this form, integration and manipulating trigonometric polynomials become much
easier. The integral of an exponential function is one term, and the integral of

cosk θ sinn−k θ

has n terms. In particular, the center conditions in Theorem 1 are simply the constant
terms in the integrand. Since fk is a homogeneous polynomial in cosθ and sinθ of
degree k , ak j = bk j = 0 when k and j do not have the same parity.

The composition condition for the system (2) is given by

DEFINITION 1. The Composition Condition is satisfied if there exists a trigono-
metric polynomial λ (θ ) such that

fk(θ ) = λ ′(θ )∑ pk jλ j(θ ), gk(θ ) = ∑qk jλ j(θ ), (7)

for 3 � k � n+1.

The second result is that the composition condition implies that the origin is a center.

THEOREM 2. If the coefficients in equation (2) satisfy the composition condition
then the origin is a center.
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It follows, inductively, that u j(θ ) are polynomials in λ (θ ) . Therefore, the conditions
in Theorem 1 are satisfied. When the coefficients satisfy the composition condition, the
center is called a composition center.

The next result is a generalization of Theorem 2.

THEOREM 3. Consider the differential equation

dr
dθ

= −F(r,θ )
G(r,θ )

,

where

F(r,θ ) = ∑q jlλ ′μ jλ l +(1+∑ pkmμkλ m)
∂ μ
∂θ

,

G(r,θ ) = (1+∑ pkmμkλ m)
∂ μ
∂ r

.

The function λ (θ ) is a trigonometric polynomial and

μ = rh +∑rh+kμk(θ ),h > 0.

The equation has a center at the origin.

Proof. With the transformation r �→ μ , the equation becomes

dμ
dθ

=
∂ μ
∂ r

dr
dθ

+
∂ μ
∂θ

=
∂ μ
∂ r

(
−F
G

)+
∂ μ
∂θ

.

Substituting the values of F and G and simplifying the fractions give

dμ
dθ

= − ∑q jlλ ′λ jμ l

1+ ∑ pkmλ kμm .

This is a differential equation in which the coefficients satisfy the composition condi-
tions. Now the result follows from Theorem 2. �
Theorem 3 is given in [1] without a proof. The following theorem follows from Theo-
rem 1 and Hilbert’s basis theorem.

THEOREM 4. The problem of distinguishing a focus from a center may always be
solved by verifying a finite number of conditions.

It is not clear how to relate the following result of [1] to polynomial systems. We give
an alternative statement with a proof.

THEOREM 5. Consider the differential equation

dr
dθ

=
r2 f (θ )

1+ rg(θ )
,

where f (θ ) and g(θ ) are trigonometric polynomials of degree n. By adding terms of
higher degree to the functions f and g the origin may always be made into a center,
and for this one requires not more than (2n+1)n terms in each of them provided that
f (θ ) does not contain a constant term.
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We present the following version.

THEOREM 5’. Consider the differential equation

dr
dθ

=
rn f (θ )

1+ rn−1g(θ )

where f (θ ) and g(θ ) are trigonometric polynomials of degree n+1. If f (θ ) does not
contain a constant term, then the differential equation

dr
dθ

=
rn( f (θ )+g′(θ )+ k′(θ ))

1+ rn−1(g(θ )+ f (θ )+ k(θ ))

has a composition center at the origin for any trigonometric polynomial k(θ ) . In the
last equation f is the indefinite integral of f .

Proof. Since f does not contain a constant term, λ = g + f + k is a periodic
function. The result follows from Theorem 2 with λ = g+ f + k . It should be men-
tioned that in the case of homogeneous nonlinearities, the change of variables r �→ rn−1

reduces the equation to the form

dr
dθ

=
r2 f (θ )

1+ rg(θ )
.

This explains why n = 2 in Theorem 5. �

3. Stable centers

In this section, we consider cases in which a center remains a center under certain
changes of some or all of the coefficients in the forms (6). Such centers are called stable
with respect to these coefficients. For example, the composition center is stable with
respect to the coefficients pk j,qk j in the form (7). The next result relates composition
centers and stable centers.

THEOREM 6. Consider the system

dr
dθ

= ∑n
2 rk−1 fk(θ )

1+ ∑n
2 rk−2gk(θ )

,

with

fk(θ ) =
nk

∑
j=0

εk j fk j(θ ), fk j(θ ) = ak je
i jθ +bk je

−i jθ ,

gk(θ ) =
nk

∑
j=0

δk jgk j(θ ), gk j(θ ) = ck je
i jθ +dk je

−i jθ .

Assume that there exists k such that fk1 is not identically zero. The system has a center
at the origin, for all εk j and δk j , if and only if the coefficients are of the form

fk j = pk j(λ
j
1 ei jθ −λ j

2e−i jθ ), gk j = qk j(λ
j
1 ei jθ + λ j

2e−i jθ ).
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This center is a composition center. Moreover, all solutions are symmetric about a line
through the origin.

To prove Theorem 6, we need the following lemmas.

LEMMA 1. If the equation

dr
dθ

=
rn f (θ )

1+ εrn−1g(θ )

has a center at the origin for all small values of ε , then
∫ 2π

0
f (θ )g(θ )( f (θ ))mdθ = 0, f (θ ) =

∫ θ

0
f (u)du,

for all non-negative integers m.

Proof. As we mentioned in the proof of Theorem 5’, we may assume that n = 2.
Let r(ε,θ ,c) be the solution that satisfies the initial condition r(ε,0,c) = c . We start
with the equation

−
( 1

r(ε,θ ,c)

)′
=

f (θ )
1+ εr(ε,θ ,c)g(θ )

.

We integrate both sides over the interval [0,2π ] . Since the origin is a center, we have
∫ 2π

0

f (θ )
1+ εr(ε,θ ,c)g(θ )

dθ = 0.

Now, we differentiate with respect to ε and then substitute ε = 0.
∫ 2π

0
f (θ )g(θ )r(0,θ ,c)dθ = 0.

Integrating the differential equation when ε = 0 gives

r(0,θ ,c) =
c

1− c f (θ )
.

Therefore, ∫ 2π

0
f (θ )g(θ )

∞

∑
0

(c f (θ ))kdθ = 0.

The result follows from the coefficients of the power series in c . �

LEMMA 2. If the equation

dr
dθ

=
εrn f (θ )

1+ rn−1g(θ )

has a center at the origin for all small values of ε , then
∫ 2π

0
f (θ )(g(θ ))mdθ = 0,

for all non-negative integers m.
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Proof. Again, we may assume that n = 2. Let r(ε,θ ,c) be the solution that satis-
fies the initial condition r(ε,0,c) = c . We start with the equation

−
( 1

r(ε,θ ,c)

)′
=

ε f (θ )
1+ r(ε,θ ,c)g(θ )

.

We integrate both sides over the interval [0,2π ] . Since the origin is a center, we have

∫ 2π

0

ε f (θ )
1+ r(ε,θ ,c)g(θ )

dθ = 0.

Now, we differentiate with respect to ε and then substitute ε = 0.

∫ 2π

0

f (θ )
1+g(θ )r(0,θ ,c)

dθ = 0.

Integrating the differential equation when ε = 0 gives

r(0,θ ,c) = c.

Therefore, ∫ 2π

0

f (θ )
1+ cg(θ )

dθ = 0.

The result follows from the coefficients of the power series in c . �

LEMMA 3. Consider the differential equation

dr
dθ

= h(θ )rm + ε f (θ )rn,2 < m,2 < n,m �= n.

If the equation has a center at the origin for all small ε , then

∫ 2π

0
f (θ )(h(θ ))ldθ = 0,

for all non-negative integers l .

Proof. Let r(ε,θ ,c) be the solution that satisfies the initial conditions r(ε,0,c) =
c . The method of proof is similar to that in Lemma 1. We start with

dr
rm = (h(θ )+ εrn−m f (θ ))dθ .

Now, we integrate over the interval [0,2π ] and use r(ε,0,c) = r(ε,2π ,c) . This implies
that ∫ 2π

0
[h(θ )+ εrn−m f (θ )]dθ = 0.
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Now, we differentiate with respect to ε and then substitute ε = 0.
∫ 2π

0
rn−m(ε,0,c) f (θ )dθ = 0.

But, r(0,θ ,c) = [(1−m)h+c1−m]
1

1−m . Substitute this solution in the previous equation
to obtain ∫ 2π

0

[
f (θ )

(
cm−1

1− (m−1)cm−1h(θ )

) n−m
m−1

]
dθ = 0.

Now the result follows from the expansion of this function as a power series around
c = 0. �

LEMMA 4. The polynomial

αn + αn−1β + αn−2β 2 + · · ·+ α2β n−2 + αβ n−1 + β n

with αβ = c can be written as a linear combination of the polynomials c j−1(α +β )n− j

where j is an even non-negative integer.

Proof. The the pair of terms αn + β n are obtained from (α + β )n ; the remain-
der of the terms are added to the other terms. Since, the coefficients in the binomial
expansion are symmetric, the next pair is a constant multiple of αn−1β + αβ n−1 =
c(αn−2 +β n−2) . Therefore, this pair is obtained from (α +β )n−2 . We continue in this
procedure to write all the terms in the required linear combination. �

LEMMA 5. The terms in fk has the form aei jθ + ae−i jθ , where a is the complex
conjugate of a. Moreover, if fk has a pair of terms aeiθ + ae−iθ then gk has a pair of
terms iaeiθ − iae−iθ .

Proof. Assume that fk(θ ) = aei jθ +be−i jθ . Since fk is a real function, we have

aei jθ +be−i jθ = ae−i jθ + bei jθ .

Therefore, a = b and b = a . This proves the first statement. Now, let a = a1 + a2i
where a1,a2 are real numbers. This implies that

aeiθ + ae−iθ = 2a1 cosθ −2a2 sinθ ,

iaeiθ − iae−iθ = 2a2 cosθ −2a1 sinθ .

Therefore, the functions pk and qk in the system (1) are given by pk = −2a1,qk =
−2a2 . Hence, the corresponding terms in gk has the form 2a2 cosθ −2a1 sinθ . �

Proof. ( Theorem 6.)
If the condition on the coefficients is satisfied then

fk(θ ) =
nk

∑
0

pk j(λ
j
1 ei jθ −λ j

2e−i jθ ) = pk j(λ1e
iθ −λ2e

−iθ )
nk

∑
0

[(λ1e
iθ )nk−l(λ2e

−iθ )l ].



COMPOSITION CONDITIONS 9

By Lemma 3, the last sum is a linear combination in the factors (λ1eiθ + λ2e−iθ )l . In
applying Lemma 3, we have c = λ1eiθ λ2e−iθ = λ1λ2 which does not depend on θ .
Therefore,

fk(θ ) = (λ1e
iθ −λ2e

−iθ )P(λ1e
iθ + λ2e

−iθ ),

where P is a polynomial function. Now, the composition condition is satisfied with
λ = λ1eiθ + λ2e−iθ .

Now, we prove the necessary part. The idea of proof is choosing different values
of εk j and δk j . Each choice determines a pair of coefficients. We choose εk j = δk j = 0,
except one pair. That is, we take

fk(θ ) = εk j(ak je
i jθ +bk je

−i jθ ),gk(θ ) = δk j(ck je
i jθ −dk je

−i jθ ),(ak j,bk j) �= (0,0).

By assumption, the origin is a center for values of εk j and δk j . The second center
condition in Lemma 1 implies that

∫ 2π

0
fk(θ )gk(θ )dθ = 2εk jδk jπ(ak jdk j −bk jck j) = 0.

Substituting dk j = bk jck j
ak j

, or ck j = ak jdk j
bk j

gives

gk j(θ ) =
δk jck j

ak j
(ak je

i jθ +bk je
−i jθ ),

if ak j �= 0, and

gk j(θ ) =
δk jdk j

bk j
(ak je

i jθ +bk je
−i jθ ),

if bk j �= 0. This shows that any pair of functions, with the same j and k , in the coeffi-
cients are of the form given in the statement.
We choose a pair ak1 �= 0,bk1 �= 0 and call λ1 = ak1,λ2 = bk1 . If there are more than
one pair then we choose the one with smallest k ; we call this integer K . We define
λ (θ ) = λ1eiθ + λ2e−iθ . Lemma 5 implies that if fk1 �= 0 then gk1 �= 0.
Now, we take

fK(θ ) = λ1e
i jθ −λ2e

−i jθ ,gK(θ ) = cK je
iθ +bK je

−iθ ,

in the equation
dr
dθ

=
εK jrK−1 fK(θ )
1+ rK−2gK(θ )

.

The center condition in Lemma 2 implies that
∫ 2π

0
fK(θ )(gK(θ ))mdθ = 0,

for all non-negative integers m . We take m = j . The center condition becomes λ j
1dK j−

λ j
2 cK j = 0. This implies that

gK(θ ) =
δK jdK j

λ j
2

(λ j
1 ei jθ + λ j

2e−i jθ ).
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In the case that the terms have different k ’s, we take

dr
dθ

= εK j fK(θ )rK−1 + fk(θ )rk−1,

with
fK(θ ) = λ1e

iθ −λ2e
−iθ , fk(θ ) = ak je

i jθ −bk je
−i jθ ,k > K.

The conditions in Lemma 3 imply that
∫ 2π

0
fk(θ )( f K(θ ))mdθ = 0.

In this case, we take m = j . The center condition becomes a j
KJbk j j − b j

KJak j j = 0.
Therefore,

fk(θ ) =
−bk jεKJ

λ j
2

(λ j
1 ei jθ −λ j

2e−i jθ ).

Therefore, the composition conditions are satisfied with λ = λ1eiθ + λ2e−iθ .
It follows from the above steps that r(θ ) is a function of λ = λ1eiθ + λ2e−iθ . If

α is the angle defined by λ1eiα = λ2e−iα then λ (α − θ ) = λ (α + θ ) . Therefore the
solution r(θ ) is symmetric about the line θ = α . �
It should be mentioned that Theorem 6 characterizes all composition centers of symme-
try type. Theorem 6 is presented in [1] without the condition that fk has a pair of terms
of the form aeiθ +be−iθ . The following theorem gives a class of systems to show that
the result is not true without this extra condition.

THEOREM 7. The equation

dr
dθ

= rn f (θ ),

where

f (θ ) = ε1(ae jiθ + ae− jiθ )+ ε2(be( j+2)iθ + be−( j+2)iθ )+ ε3(ce( j+4)iθ + ce−( j+4)iθ ).

has a center at the origin for all ε1,ε2,ε3 and fixed coefficients a,b,c. Moreover, if
either c = a and b2 is not a real number, or c �= a and b2 is a real number, then terms
of f (θ ) do not satisfy the conclusion of Theorem 6.

Proof. The origin is a center because
∫ 2π
0 f (θ )dθ = 0. Now, assume that there

exists λ1 such that
a = Aλ j

1 ,b = Bλ j+2
1 ,c = Cλ j+4

1 ,

for some real constants A,B,C . This implies that

λ 2
1 =

Ab
Ba

=
Bc
Cb

.

Therefore, ACb2 = B2ac . This contradicts the conditions on a,b, and c . �
The following interesting result is given recently in [9]. The result characterize all
composition centers of Abel differential equation.



COMPOSITION CONDITIONS 11

THEOREM 8. [9] The Abel differential equation

dr
dθ

= A(θ )r3 +B(θ )r2

with trigonometric polynomials coefficients has a composition center at the origin if
and only if

dr
dθ

= (ε1A(θ )+ ε2B(θ ))r3 +(ε3A(θ )+ ε4B(θ ))r2

has a center at the origin for all εk,k = 1,2,3,4 .

The following particular case of Theorem 6 gives a similar result for general two-
dimensional polynomial systems.

COROLLARY 2. Consider the differential equation

dr
dθ

= r2 f1(θ )+ r3 f2(θ )+ · · ·+ rn fn−1(θ ),

with

fk(θ ) =
nk

∑
j=0

εk j fk j(θ ), fk j(θ ) = ak je
i jθ +bk je

−i jθ .

If the origin is a center for all εk and there exists K such that fK1 �= 0 , then the
composition condition is satisfied with λ = fK1 , and r = 0 is a composition center.

REMARK 1. The conditions for composition centers in Corollary 9 can not be
satisfied by a two-dimensional polynomial system (1). It follows from Lemma 5 that
gk1 �= 0 when fk1 �= 0. This is the only result in this paper that deals with equation (2)
and not with equation (1).
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