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GLOBAL CURVE OF POSITIVE SOLUTIONS FOR ϕ− LAPLACIAN

DIRICHLET BVP WITH AT MOST ONE TURNING POINT

ABDELHAMID BENMEZAÏ, SALIMA MECHROUK AND SOTIRIS K. NTOUYAS

(Communicated by Philip Korman)

Abstract. Under suitable conditions we prove that the set of positive solutions to the ϕ−Laplacian
boundary value problem

−(ϕ(u′))′ = λ f (u) in (0,1); u(0) = u(1) = 0,

where λ > 0 is a real parameter, ϕ is an odd increasing homeomorphism of R and f ∈
C([0,+∞), [0,+∞)), consists on a curve ‖u‖→ λ(‖u‖).

1. Introduction

The study of existence of positive solutions to classes of semilinear boundary value
problems (bvp for short), known as positone problems, has been undertaken by several
authors over the last forty years (see for example [6], [13], [15], [27], [29], [32], and
references therein). Such a study was initiated by Keller and Cohen [25].

Positive solutions for ϕ−Laplacian equations with Dirichlet boundary conditions
were studied by Benmezai [7], Benmezai et al. [9], [10], de-Coster [12], Dang et al.
[14], Garcia-Huidobro et al. [17], Huang [22], Kaper et al. [24], Manásevich et al.
[30], Rynne [34] and Ubilla [35].

We investigate in this paper existence and exact number of positive solutions to
the second order bvp

− (ϕ(u′(x)))′ = λ f (u(x)), x ∈ (0,1), (1.1)

u(0) = u(1) = 0, (1.2)

λ > 0 is a real parameter, ϕ is an odd increasing homeomorphism of R and f : R
+ →

R
+ is continuous where R

+ = [0,+∞). In all this paper we assume that

f (u) > 0 for all u > 0.
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By a positive solution to problem (1.1)-(1.2), we mean a pair (λ ,u) ∈ (0,+∞)×
C1([0,1]) such that u � 0 in (0,1), u(x0) > 0 for some x0 ∈ (0,1), and (λ ,u) satisfies
(1.1)-(1.2).

Because of the autonomous character of our problem, the main tool of this paper
will be the time mapping approach. This method have been used in many papers where
several classes of problems related to second order differential equation are studied.
For example this method have been used in [16] and [33] to prove existence of periodic
solutions for some classes of second order differential eqautions. It has been also used
in [1], [8] [15] and [29] to study existence of solutions for semi-linear second order
BVPs and in [2], [3], [4] and [31] to study existence of solutions for second order
BVPs involving the one dimensional p−Laplacian.

Roughly speaking, this method This consists to calculate the time T (λ ,ρ) re-
quired by a solution of the initial value problem (ivp for short)

{−(ϕ(u′))′ = λ f (u),

u(1/2) = ρ , u′ (1/2) = 0

to reach the value 0, starting from an extremal value ρ . Clearly, positive solutions of
(1.1)− (1.2) are those of the above ivp satisfying T (λ ,ρ) = 1/2.

In the same spirit as that of the papers [2], [11], [27]-[29] and [34], under regularity
conditions on the functions ϕ and f , we obtain by means of the implicit function
theorem that the set of positive solutions to (1.1)-(1.2) is reduced to a continuous curve
λ : (0,+∞) → (0,+∞). Namely, for ρ > 0, the pair (λ (ρ),u) is a positive solution to
(1.1)-(1.2).

In all this paper, we understand by ‖ · ‖ the sup norm and for a continuously
differentiable function u defined on a compact interval, ‖u‖1 = ‖u‖+‖u′||.

2. Preliminaries

We begin this section by introducing some notations. Let ϕ and f be as mentioned
in the introduction.

• ψ denotes the inverse function of ϕ ,

• for all x ∈ R, Φ(x) =
∫ x
0 ϕ(s)ds, Ψ(x) =

∫ x
0 ψ(s)ds, W (x) = Ψ ◦ ϕ(x) =

xϕ(x)−Φ(x) ,

• Γ is the inverse function of the restriction of W to R
+ and

• for all x � 0, F (x) =
∫ x

0
f (s)ds .

Let

A+ =
{

u ∈C1([0,1]) : u > 0 in (0,1) and u is symmetrical about
1
2

}
.
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LEMMA 1. If (λ ,u) is a solution to (1.1) with u : (α,β ) → R then there exists a
real constant C such that

W (u′(x))+ λF(u(x)) = C, for all x ∈ (α,β ). (2.1)

Proof. Differentiating the function x →W (u′(x))+ λF(u(x)) over (0,1) we get

ψ(ϕ(u′(x)))(ϕ(u′(x)))′ + f (u(x))u′(x) = [((ϕ(u′(x)))′ + λ f (u(x)))]u′(x) = 0.

REMARK 1. In fact Lemma 1 holds even f is not positive on (0,+∞) .

Now, consider for λ > 0 and ρ > 0 the ivp{−(ϕ(u′))′ = λ f (u),

u(1/2) = ρ , u′ (1/2) = 0.
(2.2)

Setting υ = ϕ(u′) the ivp (2.2) is reduced to the first order ivp⎧⎪⎪⎨
⎪⎪⎩

u′ = ψ (υ) ,
υ ′ = −λ f (u),
u(1/2) = ρ ,
υ (1/2) = 0.

(2.3)

LEMMA 2. For all λ ,ρ > 0 there exists a unique T (λ ,ρ) > 0 such that the ivp
(2.2) admits a unique solution u defined on [1/2−T(λ ,ρ),1/2+T(λ ,ρ)]. Moreover
we have:

i) u(1/2−T(λ ,ρ))= u(1/2+T(λ ,ρ))= 0 and u(t)> 0 for all t ∈ (1/2−T(λ ,ρ),
1/2+T(λ ,ρ)),

ii) u′(t) > 0 for all t ∈ [1/2− T (λ ,ρ),1/2) , u′(t) < 0 for all t ∈ (1/2,1/2 +
T (λ ,ρ)] and ‖u‖ = u(1/2) = ρ ,

iii) u is symmetrical about 1/2 and

iv) for all t ∈ [1/2−T(λ ,ρ),1/2+T(λ ,ρ)], u(t) � p(t)ρ , where

p(t) = max

(
1− 1

T (λ ,ρ)
(1/2− t),1+

1
T (λ ,ρ)

(1/2− t)
)

.

Proof. Let u be a maximal solution of (2.2) defined on some interval, say (α,β ),
where α and β can be infinite. The positiveness of f implies that u′ is decreasing
on (α,β ) and u is positive and concave on (α,β ). More precisely, u′(t) > 0 for
all t ∈ (α,1/2) and u′(t) < 0 for all t ∈ (1/2,β ). Thus the limits limt→β u(t) and
limt→β u′(t) exit and are finite. Applying Theorem I.3.2 in [23] on the ivp (2.3) we get(
limt→β u(t), limt→β u′(t)

) ∈ ∂ (R+×R) = {0}×R, that is limt→β u(t) = 0. Similarly
we have limt→α u(t) = 0.



36 ABDELHAMID BENMEZAÏ, SALIMA MECHROUK AND SOTIRIS K. NTOUYAS

Now let us prove that −∞ < α < β < +∞. By the contrary suppose that β = +∞
(the case α > −∞ can be checked similarly) and set limt→+∞ u′(t) = l � 0. Then
it follows from (2.1) that l = −Γ(λF(ρ)) < 0. Thus, L’Hôpital’s rule leads to the
contradiction

0 = lim
x→→+∞

u(x)
x

= lim
x→+∞

u′(x) = l < 0.

Now let ϑ and ω be respectively the inverse functions of the restrictions of u to
(α,1/2) and (1/2,β ). We have

ϑ ′(u(t)) =
1

u′(t)
, for all t ∈ (α,1/2)

and

ω ′(u(t)) =
1

u′(t)
, for all t ∈ (1/2,β ).

Then from (2.1) follows

ϑ ′(u(t)) =
1

Γ(λ (F(ρ)−F(u(t)))
, for all t ∈ (α,1/2),

and

ω ′(u(t)) = − 1
Γ(λ (F(ρ)−F(u(t)))

, for all t ∈ (1/2,β ).

Integrating we get

x−α = ϑ(u(x))−ϑ(0) =
∫ u(x)

0
ϑ ′(u(t))du(t)

=
∫ u(x)

0

du(t)
Γ(λ (F(ρ)−F(u(t)))

, for all x ∈ [α,1/2],
(2.4)

and

β − x = ω(0)−ω(u(x)) =
∫ u(x)

0
−ω ′(u(t))du(t)

=
∫ u(x)

0

du(t)
Γ(λ (F(ρ)−F(u(t)))

, for all x ∈ [1/2,β ].
(2.5)

In particular for x = 1/2 we have

1
2
−α = β − 1

2
=

∫ ρ

0

ds
Γ(λ (F(ρ)−F(s))

which implies

α =
1
2
−T (λ ,ρ) and β =

1
2

+T (λ ,ρ)

where

T (λ ,ρ) =
∫ ρ

0

ds
Γ(λ (F(ρ)−F(s))

.
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At this stage, i) and ii) are proved and let us prove iii). For any x∈ [
1
2 −T (λ ,ρ) , 1

2

]
the symmetrical point to x relatively to 1/2 is y = 1− x ∈ [

1
2 , 1

2 +T (λ ,ρ)
]
. Taking

in consideration that α = 1
2 −T (λ ,ρ) and β = 1

2 +T (λ ,ρ) we deduce respectively
from (2.4) and (2.5) that

x−
(

1
2
−T (λ ,ρ)

)
= x+T (λ ,ρ)− 1

2
=

∫ u(x)

0

ds
Γ(λ (F(ρ)−F (s))

and

x+T (λ ,ρ)− 1
2

=
(

1
2

+T (λ ,ρ)
)
− (1− x) =

(
1
2

+T (λ ,ρ)
)
− y

=
∫ u(y)

0

ds
Γ(λ (F(ρ)−F (s))

=
∫ u(1−x)

0

ds
Γ(λ (F(ρ)−F (s))

.

Since x is arbitrary, we deduce from the above that:

for all x ∈ [ 1
2 −T (λ ,ρ) , 1

2

]
, u(x) = u(1− x).

At the end, iv) follows from the concavity of u and uniqueness of the solution to
(2.2) is due to the fact that ϑ and ω depends only on ρ , λ f and ϕ .

REMARK 2. Consider the map Π : (0,+∞)×(0,+∞)→ (0,+∞)×C1([0,1]) where
Π(λ ,ρ) = (λ ,u) ,

u(x) =
{

ϑ−1(x), if x ∈ [1/2−T(λ ,ρ),1/2],
ϑ−1(1− x), if x ∈ [1/2,1/2+T(λ ,ρ)],

and for γ ∈ [0,ρ ]

ϑ(γ) = 1/2−
∫ ρ

γ

ds
Γ(λ (F(ρ)−F (s))

.

In fact Lemma 2 says that, for λ ,ρ in (0,+∞), Π(λ ,ρ) satisfies (2.2).

REMARK 3. We understand from Lemma 2 and its proof that for any function
g ∈C (R+,R+) with g(u) > 0 for all u > 0 and all λ ,ρ in (0,+∞),

T (λ ,ρ) =
∫ u

0

ds
Γ(λ (G(ρ)−G(s))

< ∞,

where G(u) =
∫ u
0 g(t)dt.

LEMMA 3. For ρ > 0 fixed we have

lim
λ→0

T (λ ,ρ) = +∞ and lim
λ→+∞

T (λ ,ρ) = 0.



38 ABDELHAMID BENMEZAÏ, SALIMA MECHROUK AND SOTIRIS K. NTOUYAS

Proof. We have for ρ > 0 fixed,

ρ
Γ(λF(ρ))

� T (λ ,ρ)

� 1
2

ρ
Γ

(
λ

(
F (ρ)−F

(ρ
2

))) +
∫ 1

1/2

ρ
Γ(λ (F (ρ)−F (sρ)))

ds,

from which follows immediately that limλ→0 T (λ ,ρ) = +∞.
Let λ0 > 0 and κ = minx∈[ρ/2,ρ ] f (x). Then we have

ρ
Γ(λ (F (ρ)−F (sρ)))

� ρ
Γ(λ0κ (ρ − sρ))

and from Remark 3 for g ≡ κ, we have

∫ 1

1/2

ρ
Γ(λ0κ (ρ − sρ))

ds �
∫ ρ

0

dξ
Γ(λ0κ (ρ − ξ ))

< ∞.

Thus, by the dominated covergence theorem, we deduce that limλ→+∞ T (λ ,ρ) = 0.

LEMMA 4. If (λ ,u) is a positive solution to (1.1)-(1.2) , then u satisfies (2.2)
with ρ = ‖u‖ and u ∈ A+.

Proof. The positiveness of f implies that u′ is decreasing on [0,1] and u is con-
cave on [0,1] . More precisely, there exists a unique δ ∈ (0,1) such that u′(t) > 0 for
all t ∈ [0,δ ) and u′(t) < 0 for all t ∈ (δ ,1]. Thus arguing as in the proof of Lemma
2 we prove that δ = 1/2 and u is a solution to (2.2) with ρ = ‖u‖ . Thus we deduce
from iii) of Lemma 2 that u is symmetrical about 1/2.

LEMMA 5. Assume that

ϕ ∈C1 (R�{0}) and there exists c > 0 such that
x2ϕ ′(x)
W (x)

� c for all x > 0. (2.6)

Then T is differentiable with respect to λ and
∂T
∂λ

(λ ,ρ) < 0 for all λ ,ρ > 0.

Proof. We have

T (λ ,ρ) =
∫ 1

0
g(s,λ ,ρ)ds, where g(s,λ ,ρ) =

ρ
Γ(λ (F (ρ)−F (sρ)))

.

Thus

∂g
∂λ

(s,λ ,ρ) =
−ρ
λ

· λ (F (ρ)−F (sρ)) (Γ)′ (λ (F (ρ)−F (sρ)))
(Γ(λ (F (ρ)−F (sρ))))2

=
−ρ
λ

· W (Γ(λ (F (ρ)−F (sρ))))
(Γ(λ (F (ρ)−F (sρ))))3 ϕ ′ (Γ(λ (F (ρ)−F (sρ))))
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and ∣∣∣∣ ∂g
∂λ

(s,λ ,ρ)
∣∣∣∣ � 1

λc
g(s,λ ,ρ) .

For an arbitrary interval [α,β ] ⊂ (0,+∞) we have∫ 1

0

∣∣∣∣ ∂g
∂λ

(s,λ ,ρ)
∣∣∣∣ds �

∫ 1

0

1
αc

g(s,α,ρ)ds =
T (α,ρ)

αc
< ∞.

So,
∂T
∂λ

exists and
∂T
∂λ

(λ ,ρ) < 0 for all λ > 0 and ρ > 0.

3. Global curve of positive solutions

We deduce from Lemma 2, if u is a solution of (2.2) with T (λ ,ρ) = 1/2, then
(λ ,u) is a positive solution to (1.1)-(1.2). Reciprocally and from Lemma 4, if (λ ,u)
is a positive solution to (1.1)-(1.2), then u is a solution to (2.2) with ρ = ‖u‖ and
T (λ ,‖u‖) = 1/2. Let S ⊂ R×C1([0,1]) be the set of positive solutions to (1.1)-(1.2)
and D = {(λ ,ρ) ∈ (0,+∞)× (0,+∞) ,T (λ ,ρ) = 1/2} . The above means that the re-
striction of the map Π, defined in Remark 2, to D and S is one to one. Therefore, we
identify the set S to the set D.

THEOREM 1. Assume that

f ∈C1 (
R

+)
and ϕ ,ψ ∈C1 (R) . (3.1)

Then the set of positive solutions to (1.1)-(1.2) is reduced to a continuously differen-
tiable curve ρ → λ (ρ) defined on (0,+∞).

Proof. Note that u is a solution to (2.2) if and only if (u,u′) is a solution to{
u′ = ψ(v), v′ = −λ f (u),

u(1/2) = ρ , v(1/2) = 0.

Thus, since f ∈C1 (R+) and ψ ∈C1(R), u is continuously differentiable with respect
to all its variables.

Differentiating with the respect to λ in the equality

u(1/2+T(λ ,ρ),λ ,ρ) = 0,

we get

u′ (1/2+T(λ ,ρ),λ ,ρ)
∂T
∂λ

+
∂u
∂λ

(1/2+T (λ ,ρ) ,λ ,ρ) = 0. (3.2)

Let us prove that
∂u
∂λ

(1/2 + T (λ ,ρ),λ ,ρ) < 0. Set z(x,λ ,ρ) =
∂u
∂λ

(x,λ ,ρ).
Then z satisfies {−(ϕ ′ (u′)z′)′ = f (u)+ λ f ′ (u)z,

z(1/2) = 0, z′ (1/2) = 0.
(3.3)
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Multiplying the differential equation in (3.3) by u′ , and integrating over [1/2,x],
we obtain

ϕ ′(u′(x))z′(x)u′(x)+ λ f (u(x))z(x) = F(ρ)−F(u(x)). (3.4)

We deduce from (3.3) (ϕ ′(u′)z′)′ < 0 and z′ < 0 in a right neightborhood of 1/2,
hence if z(1/2+ T (λ ,ρ),λ ,ρ) � 0 then there exists some x∗ ∈ (1/2,T (λ ,ρ)) such
that z(x∗) = minx∈[1/2,1/2+T(λ ,ρ)] z(x) < 0 and z′(x∗) = 0. Inserting in (3.4) we arrive
to the contradiction

0 > λ f (u(x∗))z(x∗) = F(ρ)−F(u(x∗)) > 0.

Now, with

∂u
∂λ

(1/2+T(λ ,ρ),λ ,ρ) < 0 and u′(1/2+T(λ ,ρ),λ ,ρ) = −Γ(λF(ρ)) < 0,

we deduce from (3.2) that

∂T
∂λ

(λ ,ρ) < 0 for all λ > 0 and ρ > 0. (3.5)

As in the proof of Theorem 2, for each ρ > 0 there is a unique λ = λ (ρ) solution
to the equation T (λ ,ρ) = 1/2 and since the function (λ ,ρ)→ T (λ ,ρ) is continuously
differentiable on (0,+∞)× (0,+∞) and ∂T/∂λ < 0 the implicit function theorem
leads to assertion of Theorem 1.

REMARK 4. We can see from the above proof that z(x,λ ,ρ) = ∂u/∂λ (x,λ ,ρ) <
0 for all x ∈ (1/2,1/2+T(λ ,ρ)].

It is easy to see that Theorem 1 does not cover the case ϕ (x) = |x|p−2 x where
p ∈ (1,+∞) . The following result adapts to this case.

THEOREM 2. Assume that (2.6) holds. Then the set of positive solutions to (1.1)-
(1.2) is reduced to a continuous curve ρ → λ (ρ) defined on (0,+∞).

Proof. We deduce from Lemma 3 and Lemma 5 that all ρ > 0 there exists a unique

λ = λ (ρ) solution of the equation T (λ ,ρ) = 1/2. Moreover, since
∂T
∂λ

(λ ,ρ) < 0, we

deduce from the implicit function theorem that

D = {(λ (ρ),ρ), ρ > 0} and ρ → λ (ρ) is continuous. �

Now set

mσ = lim inf
ρ→0

ϕ (σρ)
ϕ (ρ)

, mσ = lim sup
ρ→0

ϕ (σρ)
ϕ (ρ)

,

Mσ = lim inf
ρ→+∞

ϕ (σρ)
ϕ (ρ)

, Mσ = lim sup
ρ→+∞

ϕ (σρ)
ϕ (ρ)

.
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PROPOSITION 1. Assume that (2.6) or (3.1) holds. We have:

i) if
lim
x→0

f (x)/ϕ (x) = 0 and 0 < mσ < ∞ for all σ > 1,

or
lim sup

x→0
f (x)/ϕ (x) < ∞ and mσ = ∞ for all σ > 1,

(3.6)

then lim
ρ→0

λ (ρ) = +∞.

ii) if

lim
x→0

f (x)/ϕ (x) = +∞ and mσ < ∞ for all σ > 1, mσ > 0 for all σ < 1, (3.7)

then lim
ρ→0

λ (ρ) = 0.

iii) if
lim

x→+∞
f (x)/ϕ (x) = 0 and Mσ > 0 for all σ > 1,

or
lim sup

x→+∞
f (x)/ϕ (x) < ∞ and Mσ = ∞ for all σ > 1,

(3.8)

then lim
ρ→+∞

λ (ρ) = +∞ .

iv) if

lim
x→+∞

f (x)/ϕ (x) = +∞ and Mσ < ∞ for all σ > 1, Mσ > 0 for all σ < 1, (3.9)

then lim
ρ→+∞

λ (ρ) = 0.

Proof. Let ρ > 0 and u be the unique solution of{−(ϕ(u′))′ = λ (ρ) f (u),

u(1/2) = ρ , u′ (1/2) = 0.

Integrating twice, we get

ρ =
∫ 1

1/2
ψ

(
λ (ρ)

∫ t

1/2
f (u(s))ds

)
dt. (3.10)

i) If limsupx→0 f (x)/ϕ (x) = l, then for arbitrary ε > 0, there exists δ > 0, such
that f (x) � (l + ε)ϕ (x) for all x ∈ [0,δ ] . Thus, for ρ ∈ (0,δ ) we have

ρ =
∫ 1

1/2
ψ

(
λ (ρ)

∫ t

1/2
f (u(s))ds

)
dt

�
∫ 1

1/2
ψ

(
λ (ρ)

∫ 1

1/2
(l + ε)ϕ(u(s))ds

)
dt
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� 1
2

ψ
(

λ (ρ)
2

(l + ε)ϕ(ρ)
)

,

which implies

λ (ρ) � 2ϕ (2ρ)
ϕ (ρ)(l + ε)

.

Letting ρ → 0, we get if m2 = +∞

lim
ρ→0

λ (ρ) = +∞,

and if m2 < ∞ and l = 0

lim inf
ρ→0

λ (ρ) � 2m2

ε
.

Since ε is arbitrary, this means that limρ→0 λ (ρ) = +∞.
ii) If limx→0 f (x)/ϕ (x) = +∞, then for arbitrary K > 0, there exists δ > 0, such

that f (x) � Kϕ (x) for all x ∈ [0,δ ] . Thus, for ρ ∈ (0,δ ) we have from (3.10) and iv)
of Lemma 2

ρ �
∫ 1

1/2
ψ

(
λ (ρ)

∫ t

1/2
Kϕ(u(s))ds

)
dt

�
∫ 1

3/4
ψ

(
λ (ρ)

∫ 3/4

1/2
Kϕ(u(s))ds

)
dt

�
∫ 1

3/4
ψ

(
λ (ρ)

∫ 3/4

1/2
Kϕ(2ρ(1− s))ds

)
dt

� 1
4

ψ
(

λ (ρ)
4

Kϕ
(ρ

2

))
,

which implies

λ (ρ) � 4ϕ (4ρ)
Kϕ (ρ/2)

.

Letting ρ → 0, we get

lim sup
ρ→0

λ (ρ) � 4m4

Km1/2
.

Since K is arbitrary, this means that limρ→0 λ (ρ) = 0.
iii) If limsupx→+∞ f (x)/ϕ (x) = l, then for arbitrary ε > 0, there exists Cε > 0,

such that f (x) � (l + ε)ϕ (x)+Cε for all x � 0. Thus, for ρ > 0 we have

ρ =
∫ 1

1/2
ψ

(
λ (ρ)

∫ t

1/2
f (u(s))ds

)
dt

�
∫ 1

1/2
ψ

(
λ (ρ)

∫ 1

1/2
((l + ε)ϕ(u(s))+Cε)ds

)
dt
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� 1
2

ψ
(

λ (ρ)
2

((l + ε)ϕ(ρ)+Cε)
)

which implies

λ (ρ) � 2ϕ (2ρ)
ϕ (ρ)

1

(l + ε)+ Cε
ϕ(ρ)

.

As in i), we conclude that limρ→+∞ λ (ρ) = +∞.
iv) If limx→+∞ f (x)/ϕ (x) = +∞, then for arbitrary K > 0, there exists B > 0,

such that f (x) � Kϕ (x) for all x � B. Thus, for ρ � 2B as in ii) we have

ρ �
∫ 1

3/4
ψ

(
λ (ρ)

∫ 3/4

1/2
f (u(s))ds

)
dt

�
∫ 1

3/4
ψ

(
λ (ρ)

∫ 3/4

1/2
Kϕ(u(s))ds

)
dt

�
∫ 1

3/4
ψ

(
λ (ρ)

∫ 3/4

1/2
Kϕ(2ρ(1− s))ds

)
dt

� 1
4

ψ
(

λ (ρ)
4

Kϕ
(ρ

2

))
,

which implies

λ (ρ) � 4ϕ (4ρ)
Kϕ (ρ/2)

.

Letting ρ → +∞, we get

lim sup
ρ→+∞

λ (ρ) � 4M4

KM1/2
.

Since K is arbitrary, this means that limρ→+∞ λ (ρ) = 0.

REMARK 5. Conditions on mσ , mσ , Mσ and Mσ has been assumed in many
papers where ϕ -Laplacian bvps are studied, see for example [9], [10], [14], [17], [18],
[19], [20] and [21]. A typical example of a function ϕ satifying 0 < mσ ,mσ ,Mσ ,Mσ <
∞ is ϕ (x) = |x|p−2 x+ |x|q−2 x with 1 < p < q.

PROPOSITION 2. Assume that (2.6) or (3.1) hold. Then we have:

i) if f (0) > 0, then lim
ρ→0

λ (ρ) = 0,

ii) if lim
x→0

F(x)/W (x) = 0, then lim
ρ→0

λ (ρ) = +∞ and

iii) if lim
x→+∞

F(x)/W (x) = 0, then lim
ρ→+∞

λ (ρ) = +∞.
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Proof. Let ρ > 0 and u be the unique solution to (2.2) whith λ = λ (ρ) and
choose η > 0 small enough. Since f (0) > 0,

δη = min
u∈[0,η]

f (u) > 0.

Thus, it follows from (3.10) that, if ρ ∈ [0,η ] then

ρ �
∫ 1

3/4
ψ

(
λ (ρ)

∫ 3/4

1/2
f (u(s))ds

)
dt

� 1
4

ψ
(

λ (ρ)δη

4

)
,

leading to

lim
ρ→0

λ (ρ) � lim
ρ→0

4ϕ (4ρ)
δη

= 0,

which proves i). We have from (2.1),

ρ =
∫ 1/2

0
u′(t)dt �

∫ 1/2

0
u′(0)dt � Γ(λ (ρ)F (ρ)) ,

which implies

λ (ρ) � W (ρ)
F (ρ)

=
(

F (ρ)
W (ρ)

)−1

,

leading to assertions ii) and iii) of the proposition.

REMARK 6. By L’Hôpital’s rule, if ϕ ∈C1 (R�{0}) and limx→0 f (x)/xϕ ′(x) =
0 (respectively limx→+∞ f (x)/xϕ ′(x) = 0) then limx→0 F(x)/W (x) = 0 (respectively
limx→+∞ F(x)/W (x) = 0).

We deduce immediately from Theorem 2, Proposition 1, Proposition 2 and Remark
6 the following corollaries.

COROLLARY 1. Assume that (2.6) or (3.1) holds. Then Problem (1.1)-(1.2)
admits at least one positive solution for all λ > 0, in each of the following situations
i)-vi):

i) lim
x→0

f (x)/xϕ ′ (x) = 0 and (3.9) holds.

ii) Hypothesies (3.6) and (3.9) hold.

iii) f (0) = 0, lim
x→+∞

f (x)/xϕ ′ (x) = 0 and (3.7) holds.

iv) f (0) = 0 , (3.7) and (3.8) hold.

v) f (0) > 0 and lim
x→+∞

f (x)/xϕ ′ (x) = 0 .
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vi) f (0) > 0 and (3.8) holds.

COROLLARY 2. Assume that (2.6) or (3.1) and the following condition

lim
x→0

f (x)
xϕ ′ (x)

= lim
x→+∞

f (x)
xϕ ′ (x)

= 0

hold. Then there exists λ + > 0 such that:

i) Problem (1.1)-(1.2) admits no positive solution if λ < λ +,

ii) Problem (1.1)-(1.2) admits at least one positive solution if λ = λ + and

iii) Problem (1.1)-(1.2) admits at least two positive solutions if λ > λ +.

COROLLARY 3. Assume that (2.6) , (3.6) and (3.8) or (3.1) , (3.6) and (3.8)
hold. Then there exists λ + > 0 such that:

i) Problem (1.1)-(1.2) admits no positive solution if λ < λ +,

ii) Problem (1.1)-(1.2) admits at least one positive solution if λ = λ + and

iii) Problem (1.1)-(1.2) admits at least two positive solutions if λ > λ +.

COROLLARY 4. Assume that (2.6) , (3.7) and (3.9) or (3.1) , (3.7) and (3.9)
hold. Then there exists λ + > 0 such that:

i) Problem (1.1)-(1.2) admits no positive solution if λ > λ +,

ii) Problem (1.1)-(1.2) admits at least one positive solution if λ = λ + and

iii) Problem (1.1)-(1.2) admits at least two positive solutions if λ < λ +.

REMARK 7. We can prove, as in the proof of uniqueness in [7], that, if ϕ(u)/u
and f (u)/u are respectively decreasing and increasing on (0,+∞) in the case i), or
ϕ(u)/u and f (u)/u are respectively increasing and decreasing on (0,+∞) in the case
ii), the positive solution obtained in Corollary 1 is unique.

Now, with more regularity on ϕ and f , we will prove that the curve ρ → λ (ρ)
admits at most one critical point. To this aim we assume in the following that f ∈
C2(R+) and ψ ∈C2(R). Note that in this case the unique solution u(·,λ ,ρ) of (2.2)
is twice continuously differentiable with respect to

(x,λ ,ρ) ∈ [1/2−T(λ ,ρ),1/2+T(λ ,ρ)]× (0,+∞)× (0,+∞)

and denote v =
∂u
∂ρ

and w =
∂ 2u
∂ρ2 . Then v and w satisfy respectively

{−(ϕ ′(u′)v′)′ = λ f ′(u)v,

v(1/2) = 1, v′(1/2) = 0,
(3.11)
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and ⎧⎨
⎩−

(
ϕ ′′ (u′) (v′)2 + ϕ ′ (u′)w′

)′
= λ f ′′ (u)v2 + λ f ′ (u)w,

w(1/2) = 0, w′ (1/2) = 0.
(3.12)

LEMMA 6. Assume that ψ ∈ C1 (R) . If u(·,λ ,ρ) is such that (λ ,u) is positive
solution to problem (1.1)-(1.2) then v has at most one zero in [1/2,1].

Proof. First note that if x0 ∈ [1/2,1] is such that v(x0) = 0 then v′ (x0) 
= 0.
Otherwise, if we set θ = ϕ ′ (u′)v′ then the pair (v,θ ) is solution to the ivp⎧⎨

⎩
v′ = (ϕ ′(u′))−1 θ , θ ′ = −λ f ′(u)v,

v(x0) = 0, θ (x0) = 0.

Note that (ϕ ′(u′))−1 = ψ ′(ϕ(u′)) and the right-hand side of the above system is
locally Lipschitzian. This makes v = 0, which contradicts to v(1/2) = 1.

Note that v admits a finite number of zeros, indeed if (xn)n�1 is a sequence of
zeros of v and x∗ = lim

n→∞
xn then

v(x∗) = lim
n→∞

v(xn) = 0 = v′ (x∗) = lim
n→∞

v(xn)− v(x∗)
x− xn

and for the pair (v,θ ) satisfies⎧⎨
⎩

v′ = (ϕ ′ (u′))−1 θ , θ ′ = −λ f ′ (u)v,

v(x∗) = 0, θ (x∗) = 0.

So, we get for the same reasons v = 0, which contradicts to v(1/2) = 1.
Now multiplying (3.11) by u′ and integrating over [1/2,x] , we get

ϕ ′(u′(x))v′ (x)u′ (x)+ λ f (u(x))v(x) = λ f (ρ) . (3.13)

Suppose that v admits more than one zero and let x1 < x2 be the two first consec-
utive zeros of v. Then we have

v′ (x1) < 0 and v′ (x2) > 0. (3.14)

Substituting x = x2 in (3.13) we get

ϕ ′(u′(x2))v′(x2)u′(x2) = λ f (ρ). (3.15)

Since ϕ ′(u′(x2)) > 0, u′(x2) < 0 and λ f (ρ) > 0, we deduce from (3.15) that
v′(x2) < 0 which contradicts (3.14). This completes the proof of the lemma.

LEMMA 7. Assume that f ∈C2 (R+) , ϕ ,ψ ∈C2 (R) and for all x > 0, f ′′ (x) > 0
and ϕ ′′ (x) � 0. Let u(·,λ ,ρ) be such that (λ ,u) is a positive solution to problem
(1.1)-(1.2) . If v(1) = 0, then w(1) < 0.
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Proof. Multiplying (3.11) by w and integrating on (1/2,1) we get

−ϕ ′ (u′ (1)
)
v′ (1)w(1)+

∫ 1

1/2
ϕ ′ (u′)v′w′ = λ

∫ 1

1/2
f ′ (u)vw. (3.16)

Similarly, multiplying (3.12) by v and integrating on (1/2,1) we get

−ϕ ′(u′(1))(v′(1))2v(1)−ϕ ′(u′(1))v(1)w′(1)

+
∫ 1

1/2
(ϕ ′′(u′)(v′)3 + ϕ ′(u′)v′w′)

= λ
∫ 1

1/2
f ′′(u)v3 + λ

∫ 1

1/2
f ′(u)vw. (3.17)

Subtracting (3.17) and (3.16) and taking in consideration v(1) = 0 we get

ϕ ′ (u′ (1)
)
v′ (1)w(1) = λ

∫ 1

1/2
f ′′ (u)v3 −

∫ 1

1/2
ϕ ′′ (u′)(

v′
)3

. (3.18)

Note that since v(1) = 0, Lemma 6 leads to v > 0 in [1/2,1) and v′ (1) < 0.
Thus, the convexity of ϕ and the oddness of ϕ ′′ leads to ϕ ′′ (u′) > 0 in (1/2,1] .

It remains to investigate the sign of v′. We deduce from (3.11)

−ϕ ′′ (u′)u′′v′ −ϕ ′ (u′)v′′ = λ f ′ (u)v, in (0,1). (3.19)

As v′(1/2) = 0, v(1) = 0 and v > 0 in [1/2,1) we have:
• either v′ � 0 in [1/2,1],
• or there exists x0 ∈ (1/2,1] such that v′(x0) > 0.
In fact the second situation does not occur, indeed if v′ changes its sign then it

will exist x1 and x2 belonging to (1/2,1) such that x1 < x2 and at both x1 and x2,
v reachs respectively a local minimum and a local maximum. In this case substituting
respectively x = x1 and x = x2 in (3.19) we get

−ϕ ′(u′(x1))v′′(x1) = λ f ′(u(x1))v(x1) � 0,

−ϕ ′(u′(x2))v′′(x2) = λ f ′(u(x2))v(x2) � 0,

so
f ′ (u(x1)) � 0 and f ′ (u(x2)) � 0.

But this is impossible because u(x1) > u(x2) and f ′ is increasing. Hence v′ � 0
in [1/2,1] .

Finally taking in consideration the fact that v � 0 and v′ � 0 in [1/2,1], f ′′(u) > 0
and ϕ ′′(u′) > 0 in [1/2,1], ϕ ′(u′(1)) > 0 and v′(1) < 0, we deduce from (3.18) that
w(1) < 0. This completes the proof.

LEMMA 8. Assume that f ∈C2(R+),ϕ ,ψ ∈C2(R) and for all x∈R
+, f ′′(x) < 0

and ϕ ′′(x) � 0. Let u(·,λ ,ρ) be such that (λ ,u) is a positive solution to problem
(1.1)-(1.2) . If v(1) = 0 then w(1) > 0.
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Proof. First we claim that f ′(x) � 0 for all x � 0. Indeed, if there exists some
x0 � 0 such that f ′(x0) < 0 then limx→+∞ f ′(x) = 0, otherwise, if limx→+∞ f ′(x) = l <
0 then limx→+∞ f (x)/x = l < 0 which contradicts the positiveness of f . In this case
there exists x > 0 such that f ′(x) = minx�0 f ′(x) and f ′′ (x) = 0, which contradicts the
positiveness of f ′′.

Now it is easy to see from (3.11) that if v(1) = 0 then v > 0 in [1/2,1) and v′ < 0
in (1/2,1]. Thus, as in the proof of Lemma 7 we deduce from (3.18) that w(1) > 0.

THEOREM 3. Assume that f ∈C2 (R+) , ϕ ,ψ ∈C2 (R) and one of the following
condition holds,

f ′′ (x) < 0 and ϕ ′′ (x) � 0 for all x > 0, (3.20)

f ′′ (x) > 0 and ϕ ′′ (x) � 0 for all x > 0. (3.21)

Then ρ → λ (ρ) admits on (0,+∞) at most one critical point.

Proof. We obtain the desired by proving that if λ ′ (ρ) = 0 for some ρ ∈ D then
λ ′′ (ρ) < 0 or λ ′′ (ρ) > 0. We have for all ρ > 0

u(1,λ (ρ),ρ) = 0. (3.22)

Differentiating in (3.22) with respect to ρ we get

∂u
∂λ

(1,λ (ρ) ,ρ)λ ′ (ρ)+ v(1,λ (ρ) ,ρ) = 0, (3.23)

and

∂ 2u
∂λ 2 (1,λ (ρ),ρ)(λ ′(ρ))2 +

∂u
∂λ

(1,λ (ρ),ρ)λ ′′(ρ)

+
∂v
∂λ

(1,λ (ρ),ρ)λ ′(ρ)+w(1,λ (ρ),ρ) = 0. (3.24)

Suppose that (3.21) holds (the other case can be checked similarly), then if for
some ρ0 > 0, λ ′ (ρ0) = 0 then we deduce from (3.23) that v(1,λ (ρ0) ,ρ0) = 0 and
it follows from Lemma 7, w(1,λ (ρ0) ,ρ0) < 0. Thus, we deduce from (3.24) and
Remark 4 that λ ′′ (ρ0) < 0. This completes the proof.

We deduce from Theorems 2, 1 and Proposition 2 the following corollaries.

COROLLARY 5. Assume that f ∈ C2(R+), ϕ ,ψ ∈ C2(R), (3.21) , (3.7) and
(3.9) hold. Then there exists λ + > 0 such that:

i) Problem (1.1)-(1.2) admits no positive solution if λ > λ +,

ii) Problem (1.1)-(1.2) admits exactly one positive solution if λ = λ + and

iii) Problem (1.1)-(1.2) admits exactly two positive solutions if λ < λ +.
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COROLLARY 6. Assume that f ∈C2(R+), ϕ ,ψ ∈C2(R), (3.8) and (3.20) hold.
Then there exists λ + � 0 such that:

i) Problem (1.1)-(1.2) admits no positive solution if λ � λ + and

ii) Problem (1.1)-(1.2) admits exactly one positive solution if λ > λ +.

COROLLARY 7. Assume that f ∈ C2 (R+) , ϕ ,ψ ∈ C2 (R) and (3.20) , hold. If
limx→+∞ ( f (x)/xϕ ′(x)) = 0 then there exists λ + � 0 such that

i) Problem (1.1)-(1.2) admits no positive solution if λ � λ + and

ii) Problem (1.1)-(1.2) admits exactly one positive solution if λ > λ +.

REMARK 8. It is clear that in corollaries 6 and 7, λ + = limρ→0 λ (ρ) and because

of the inequality λ (ρ) � W (ρ)
F(ρ) it can happens that λ + > 0.

REMARK 9. In corollaries 6 and 7 we can not assume that limx→0 ( f (x)/xϕ ′(x))=
0 or limx→0 ( f (x)/ϕ(x)) = 0 in order to obtain multiplicity results. This obstruction is
caused by the fact that ϕ ′(0) > 0 and ( f (x)/x) and (x/ϕ (x)) are decreasing functions
on (0,+∞) .

REMARK 10. In the case where ϕ(x) = x, many exact multiplicity results have
been obtained under a requirement on the convexity of the nonlinear term. See Theorem
3.2 in [29], Theorem 2 in [5], Theorem 1 and Theorem 2 in [11]. Moreover, note that
for λ = 1 Problem (1.1)-(1.2) admits at most one positive solution. This result has been
obtained by Korman and Li in [26].

4. Examples

EXAMPLE 1. Consider the bvp (1.1)-(1.2) with

ϕ (u) =
{

eu−1, for u � 0,
1− e−u, for u � 0,

and f (u) = eu.
We have ϕ ,ψ , f ∈C1 (R) and

f (0) > 0 and lim
x→+∞

f (x)
xϕ ′ (x)

= 0.

Thus, we deduce from iii) of Corollary 1 that for all λ > 0, the bvp (1.1)-(1.2) admits
at least one positive solution.

Note that in this example we have

lim
u→+∞

( f (u)/ϕ (u)) = 1 and

lim
ρ→+∞

(ϕ (σρ)/ϕ (ρ)) = +∞ for all σ > 1.
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EXAMPLE 2. Consider the bvp (1.1)-(1.2) with

ϕ (u) =
{

eu−1, for u � 0,
1− e−u, for u � 0,

and f (u) = u2.
See that

lim
u→0

f (u)
uϕ ′ (u)

= lim
u→+∞

f (u)
uϕ ′ (u)

= 0.

Thus, we deduce from Corollary 2 that there exists λ + > 0 such that:

i) Problem (1.1)-(1.2) admits no positive solution if λ < λ +,

ii) Problem (1.1)-(1.2) admits at least one positive solution if λ = λ + and

iii) Problem (1.1)-(1.2) admits at least two positive solutions if λ > λ +.

EXAMPLE 3. Consider the bvp (1.1)-(1.2) with

ϕ (u) = sinh(u) and f (u) =
√

1+u.

Since limρ→0 λ (ρ) = 0, we have from Corollary 7 that for all λ > 0 Problem
(1.1)-(1.2) admits exactly one positive solution.

EXAMPLE 4. Consider the bvp (1.1)-(1.2) with

ϕ (u) = u+
u√

1+u2
and f (u) = 1+u2.

We have from Corollary 5 that there exists λ + > 0 such that:

i) Problem (1.1)-(1.2) admits no positive solution if λ > λ +,

ii) Problem (1.1)-(1.2) admits exactly one positive solution if λ = λ + and

iii) Problem (1.1)-(1.2) admits exactly two positive solutions if λ < λ +.

EXAMPLE 5. Consider the bvp (1.1)-(1.2) with ϕ (u) = |u|p−2 u+ |u|q−2 u where
1 < p < q and f (u) = eu.

We have from Corollary 4 that there exists λ + > 0 such that:

i) Problem (1.1)-(1.2) admits no positive solution if λ > λ +,

ii) Problem (1.1)-(1.2) admits at least one positive solution if λ = λ + and

iii) Problem (1.1)-(1.2) admits at least two positive solutions if λ < λ +.

The case p = q has been considered in [2] where exactness result is obtained.

Acknowledgements. The authors thank the reviewers for their comments and sug-
gestions.
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