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POSITIVE PSEUDO–SYMMETRIC SOLUTIONS FOR A

NONLOCAL p–LAPLACIAN BOUNDARY VALUE PROBLEM

L. X. TRUONG, P. D. PHUNG AND B. T. QUAN

(Communicated by Johnny Henderson)

Abstract. This paper is devoted to the study of the following nonlocal p -Laplacian functional
differential equation

−(φp(x′(t))
)′ = λ f (t,x(t),x′ (t))(∫ 1

0 f (s,x(s),x′ (s))ds
)n , 0 < t < 1,

subject to multi point boundary conditions. We obtain some results on the existence of at least
one (when n ∈ Z

+ ) or triple (when n = 0) pseudo-symmetric positive solutions by using fixed-
point theory in cone.

1. Introduction

Multi point boundary-value problems for second-order ordinary differential equa-
tions have many important and interesting applications, for details, please see [2, 4, 5,
6, 7, 8, 14, 15, 16] and the references therein.

In [3], Avery and Hederson introduced the definition of pseudo-symmetric func-
tion and discussed the existence of three positive pseudo-symmetric solutions for the
problem {

(φp(x′(t)))′ +a(t) f (t,x(t)) = 0, t ∈ (0,1),

u(0) = 0, u(1) = u(η),
(1.1)

where φp (z) = |z|p−2 z , p > 1 and η ∈ (0,1) . Next, by using the monotone iterative
technique, Ma and Ge [11] proved the existence of positive pseudo-symmetric solutions
for the problem (1.1) . This technique is also used successfully by Sun and Ge [12] for
the following problem with nonlinear term involving derivative{

(φp(x′(t)))′ +a(t) f (t,x(t),x′(t)) = 0, t ∈ (0,1),

u(0) = 0, u(1) = u(η).
(1.2)
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These results were considered more fully in [13].
The purpose of this work, motivated by the references [3, 11, 12, 13, 17], is to

consider the existence of pseudo-symmetric positive solutions of the following nonlocal
p-Laplacian boundary value problem

− (φp(x′(t))
)′ = λ f (t,x(t),x′ (t))(∫ 1

0 f (s,x(s),x′ (s))ds
)n , 0 < t < 1, (1.3)

together with the boundary conditions

x(0) = α0x
′(0)+

m

∑
i=1

αix
′ (ηi) , (1.4)

and
βx(ηm)− γx′(ηm) = βx(1)+ γx′(1), (1.5)

where m � 1, 0 < η1 < η2 < · · · < ηm < 1; α0 > 0, αi � 0, ∀i = 1,2, · · ·,m and
β ,γ � 0, β 2 + γ2 �= 0. The equations of the form (1.3) occur in many application
models, see [1] and references therein. In the special case of n = 0, we obtain that
there exist at least triple positive pseudo-symmetric solutions to problem (1.3)-(1.5) .
When n is a non-negative integer number, the result on existence of at least one positive
pseudo-symmetric solution is proved by using Guo-Krasnoselskii’s fixed point theorem.
The main difficulty arises from the presence of the nonlocal term. In our opinion, the
monotone iterative technique is not suitable to be used.

2. Hypothesis and statement of results

Throughout, E ≡ C1 ([0,1] ;R) is the Banach space of all continuous function x
from [0,1] into R endowed with the sup-norm

‖x‖1 = max

{
max
0�t�1

|x(t)| , max
0�t�1

∣∣x′ (t)∣∣} , x ∈ E.

We recall that (see [3]) a function x ∈ E is said to be pseudo-symmetric about ηm on
[0,1] if x is symmetric over the interval [ηm,1] , that is,

x(t) = x(1+ ηm− t) , ∀t ∈ [ηm,1] .

By P we denote the cone in E defined by

P=

⎧⎨⎩x ∈ E :

⎧⎨⎩
x(0) = α0x′(0)+ ∑m

i=1 αix′ (ηi) ,

x is nonnegative, concave and pseudo-symmetric aboutηm on [0,1]

⎫⎬⎭ .

In order to convenience to presentation later, we give here some notations needed

- σ∗ = (1+ ηm)/2
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- μ = max{1,σ∗ + ∑m
i=0∑m

i=0αi}
- μ = ηm + ∑m

i=0∑m
i=0αi

- μ0 = (ηmα0)/(μσ∗)

- m̂( f ,r) = min{ f (t,z,w) : (t,z,w) ∈ [0,1]× [μ0r,r]× [−r,r]}
- m( f ,r) = min{ f (t,z,w) : (t,z,w) ∈ [0,1]× [0,r]× [−r,r]}
- M ( f ,r) = max{ f (t,z,w) : (t,z,w) ∈ [0,1]× [0,r]× [−r,r]}
- Ωr = {x ∈ P : ‖x‖1 < r} , ∂Ωr = {x ∈ P : ‖x‖1 = r}
- If δ is a nonnegative continuous concave function on P and r,R (r < R) are two

positive constants, we set

Ω(δ ,r,R) = {x ∈ P : δ (x) � r and ‖x‖1 � R} .

Hypothesis

In the sequel, we alway use the following hypothesis

(H1) n ∈ Z
+,m ∈ Z

+ \ {0} , 0 < η1 < η2 < · · · < ηm < 1; α0 > 0, αi � 0, ∀i =
1,2, · · ·,m and

β ,γ � 0,β 2 + γ2 �= 0,

(H2) f : [0,1]× [0,+∞)×R→ R is continuous function which satisfies the condtions:

(i) f (t,z,w) > 0, for all (t,z,w) ∈ [0,1]× [0,+∞)×R ,

(ii) for every (z,w) ∈ [0,+∞)×R , the function f (·,z,w) is pseudo-symmetric about
ηm on [0,1] which means that f (t,z,w) = f (1+ηm− t,z,−w) for all (t,z,w) ∈
[ηm,1]× [0,+∞)×R .

Main results

We can now state the main results of this paper. First, in the case of n = 0 we
obtain the following theorem.

THEOREM 1. (Triple solutions) Let (H1) ,(H2) hold. Let n = 0 . Suppose there
exist positive constants a,b,c with a < b < b

μ0
< c and the positive constants A0,B0,C0

such that

φp

(
μσ∗

μηm

)
σ∗

σ∗ −ηm
< min

{
A0

B0
,
C0

B0

}
.

If the function f satisfies the following growth conditions

(A1) f (t,z,w) � φp (c)/C0 for (t,z,w) ∈ [0,1]× [0,c]× [−c,c] ;
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(A2) f (t,z,w) < φp (a)/A0 for (t,z,w) ∈ [0,1]× [0,a]× [−a,a] ;

(A3) f (t,z,w) > φp (b)/B0 for (t,z,w) ∈ [ηm,1]× [b,b/μ0]× [−b/μ0,b/μ0] ,

then, for each λ satisfies

B0

σ∗ −ηm
φp

(
σ∗

μηm

)
� λ � φp

(
1
μ

)
1

σ∗ min{A0,C0} , (2.1)

the boundary value problem (1.3) - (1.5) has at least three positive pseudo-symmetric
solutions x1,x2,x3 satisfying

‖x1‖1 � a, b < min
t∈[ηm,1]

x2 (t) , a < ‖x3‖1 with min
t∈[ηm,1]

x3 (t) < b.

In general, for non-negative integer values of n , we establish an existence result
of at least one pseudo-symmetric positive solution.

THEOREM 2. (one solution) Let (H1) and (H2) hold. Assume that there are pos-
itive constants a,A,b,B such that

(a) A
B

(
m̂( f ,a)
M( f ,b)

)n
> σ∗

(σ∗−ηm)(1−ηm)n .φp

(
μ
μ

)
,

(b) f (t,z,w) � φp(a)
A , for all (t,z,w) ∈ [0,1]× [0,a]× [−a,a] ,

(c) f (t,z,w) � φp(b)
B , for all (t,z,w) ∈ [0,1]× [μ0b,b]× [−b,b] .

Then, for every λ satisfies

λmin :=
B [M ( f ,b)]n

σ∗ −ηm
φp

(
1
μ

)
� λ � A [m̂( f ,a)]n (1−ηm)n

σ∗ φp

(
1
μ

)
:= λmax,

the problem (1.3)-(1.5) has at least one positive pseudo-symetric solution.

3. Preliminaries results

We start this section with some useful lemmas.

LEMMA 1. (see [3]) For all x ∈ P, the following statements are true:

(i) maxt∈[0,1] x(t) = x(σ∗) ,

(ii) x(t) � x(σ∗)
σ∗ min{t,1+ ηm− t} , t ∈ [0,1] ,

(iii) x(t) � ηm
σ∗ x(σ∗) , t ∈ [ηm,1] .

LEMMA 2. For all x ∈ P, the following statements are true:
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(i) maxt∈[0,1] |x′ (t)| = x′ (0)

(ii) ‖x‖1 � μx′ (0)

(iii) x(t) � μ0 ‖x‖1 , t ∈ [ηm,1]

here we recall that

μ = max{1,σ∗ + ∑m
i=0αi} and μ0 =

ηmα0

μσ∗ .

Proof. (i) By the definition of cone P , it is clear that x′ (t) is decreasing function
on [0,1] . Further, it follows from (i) of the Lemma 1 that x′ (σ∗) has to be zero. So

x′ (t) � 0,∀t ∈ [0,σ∗] and x′ (t) � 0,∀t ∈ [σ∗,1] ,

which implies
max
t∈[0,1]

∣∣x′ (t)∣∣= max
{∣∣x′ (0)

∣∣ , ∣∣x′ (1)
∣∣} .

On the other hand, because x is pseudo-symmetric about ηm we have

x′ (0) � x′ (ηm) = −x′ (1) .

Therefore maxt∈[0,1] |x′ (t)| = |x′ (0)| = x′ (0) .
(ii) For x ∈ P , we have

x(σ∗) = x(0)+
∫ σ∗

0
x′ (s)ds

= α0x
′(0)+

m

∑
i=1

αix
′ (ηi)+

∫ σ∗

0
x′ (s)ds (3.1)

which follows

x(t) � x(σ∗) � α0
∣∣x′(0)

∣∣+ m

∑
i=1

αi
∣∣x′ (ηi)

∣∣+∫ σ∗

0

∣∣x′ (s)∣∣ds

� (σ∗ + ∑m
i=0αi) max

0�t�1

∣∣x′ (t)∣∣ , t ∈ [0,1] .

Hence

‖x‖1 = max

{
max
t∈[0,1]

|x(t)| , max
t∈[0,1]

∣∣x′ (t)∣∣}� μ
∣∣x′ (0)

∣∣ .
(iii) It follows from (3.1) and [Lemma 1, (ii)] that, for t ∈ [ηm,1] ,

x(t) � ηm

σ∗ x(σ∗) � ηmα0

σ∗ x′ (0) � ηmα0

μσ∗ ‖x‖1 .

This ends our proofs.

Now we consider an existence result for auxiliary linear problem.
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LEMMA 3. Let h : [0,1]→R be a continuous, nonnegative and pseudo-symmetric
about ηm function, h(t) �≡ 0 on any subinterval of [0,1] . Then the boundary value
problem ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−(φp (x′ (t)))′ = h(t) , 0 < t < 1,

x(0) = α0x′(0)+ ∑m
i=1 αix′ (ηi) ,

βx(ηm)− γx′(ηm) = βx(1)+ γx′(1),

(3.2)

has a unique positive pseudo - symmetric solution u which is given by the integral
representation formula

x(t) = Ah(t) :=

⎧⎪⎨⎪⎩
Λ+
∫ t
0 φq

(∫ σ∗
s h(r)dr

)
ds,0 � t � σ∗,

Λ̃+
∫ 1
t φq (

∫ s
σ∗ h(r)dr)ds,σ∗ � t � 1,

(3.3)

where

Λ = α0φq

(∫ σ∗

0
h(r)dr

)
+

m

∑
i=1

αiφq

(∫ σ∗

ηi

h(r)dr

)
and

Λ̃ = Λ+
∫ ηm

0
φq

(∫ σ∗

s
h(r)dr

)
ds.

Proof. First, it’s not difficult to check that the function x(t) given by (3.3) is a
solution of the problem (3.2) . Conversely, let x ∈ E be a solution of (3.2) . Then, by
h is nonnegative, we deduce from (3.2)1 that(

φp
(
x′ (t)
))′ � 0, ∀t ∈ (0,1) .

So x′ (t) is monotonically decreasing on [0,1] . We shall show that there exists σ ∈
(ηm,1) such that x′ (σ) = 0 by using the boundary condition (3.2)3 . Indeed we con-
sider the following cases.

Case 1 (γ = 0): In this case our affirmation is evident by x(1) = x(ηm)

Case 2 (β = 0): The boundary condition (3.2)3 becomes x′ (1)+ x′ (ηm) = 0 which
implies

x′ (1) .x′ (ηm) < 0.

Hence by x′ (t) is continuous on [ηm,1] we deduce that there exists σ ∈ (ηm,1) such
that x′ (σ) = 0.

Case 3 (β ,γ �= 0): Assume by contradiction that x′ (t) > 0 , for all t ∈ (ηm,1) . This
follows that x(t) is strictly increasing on [ηm,1] . Hence

βx(ηm)− γx′(ηm) < βx(1)− γx′(1) < βx(1)+ γx′(1),
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and we get a contradiction due to (1.5). Similarly, if x′ (t) < 0 , for all t ∈ (ηm,1) then
x(t) is strictly decreasing on [ηm,1] which leads to an other contradiction:

βx(ηm)− γx′(ηm) > βx(1)+ γx′(ηm) > βx(1)+ γx′(1).

Next by integrating the equation (3.2) on [s,σ ] we get

φp
(
x′ (s)
)

= φp
(
x′ (σ)

)
+
∫ σ

s
h(r)dr,

which implies

x(t) = x(0)+
∫ t

0
x′ (s)ds

= α0x
′(0)+

m

∑
i=1

αix
′ (ηi)+

∫ t

0
φq

(∫ σ

s
h(r)dr

)
ds

= α0φq

(∫ σ

0
h(r)dr

)
+

m

∑
i=1

αiφq

(∫ σ

ηi

h(r)dr

)
+
∫ t

0
φq

(∫ σ

s
h(r)dr

)
ds,

for all t ∈ [0,1] . On the other hand, as βx(ηm)− γx′(ηm) = βx(1)+ γx′(1) , σ has to
be a solution of the following equation

Ψ1 (σ) = Ψ2 (σ) , (3.4)

where

Ψ1 (σ) = β
∫ 1

ηm

φq

(∫ σ

s
h(r)dr

)
ds,

Ψ2 (σ) = γ
[

φq

(∫ 1

σ
h(r)dr

)
−φq

(∫ σ

ηm

h(r)dr

)]
.

By h is pseudo-symmetric about ηm and β 2 + γ2 �= 0, we can verify that σ∗ = 1+ηm
2

is the unique solution of (3.4) . So
σ = σ∗

and we conclude that if t ∈ [0,σ∗] then

x(t) = α0φq

(∫ σ∗

0
h(r)dr

)
+

m

∑
i=1

αiφq

(∫ σ∗

ηi

h(r)dr

)
+
∫ t

0
φq

(∫ σ∗

s
h(r)dr

)
ds

= Λ+
∫ t

0
φq

(∫ σ∗

s
h(r)dr

)
ds,

and if t ∈ [σ∗,1] then

x(t) = Λ+
∫ ηm

0
φq

(∫ σ∗

s
h(r)dr

)
ds

+
∫ 1

t
φq

(∫ s

σ∗
h(r)dr

)
ds+

∫ 1

ηm

φq

(∫ σ∗

s
h(r)dr

)
ds
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= Λ+
∫ ηm

0
φq

(∫ σ∗

s
h(r)dr

)
ds+

∫ 1

t
φq

(∫ s

σ∗
h(r)dr

)
ds

thanks to the relation ∫ 1

ηm

φq

(∫ σ∗

s
h(r)dr

)
ds = 0

which is a consequence of pseudo-symmetric about ηm property of the function h .
Finally, if x1 and x2 are solutions of problem (3.2) then, by using the above

arguments, we have x1(t) = x2(t) = Ah(t),∀t ∈ [0,1] . This shows the uniqueness of
solutions. The proof of this lemma is complete.

LEMMA 4. A : P → P defined by (3.3) is a completely continuous operator.

Proof. It follows from lemma 3 that Ah ∈ P , for all h ∈ P . On the other hand,
a standard argument by using Arzelà - Ascoli theorem allows us to conclude that A is
completely continuous.

Now, for each x ∈ P , we denote

F(x)(t) = λ f (t,x(t),x′ (t))
(∫ 1

0
f (s,x(s),x′ (t))ds

)−n

, t ∈ [0,1]. (3.5)

From the assumption (H2), we deduce that the operator F : P →C ([0,1];R) is contin-
uous. Moreover F(x) is positive on [0,1] , and pseudo-symmetric about ηm . So the
operator

T ≡ A◦F : P → P

is also completely continuous by using lemma 4. It is also note that each nonzero
fixed point of the operator T is a positive pseudo-symmetric solution of the problem
(1.3)-(1.5).

Finally, in order to prove our main results we need to use the following fixed point
theorems

THEOREM 3. (Leggett-Williams, see [10]) Let K be a cone in the Banach space
(E,‖ · ‖) , c > 0 be a constant and define the set

Kc = {x ∈ K : ‖x‖ < c}.
Let T : Kc → Kc be a completely continuous map. Suppose there exists a concave
nonegative functional δ defined on K and there are numbers a,b,c with 0 < a < b <
d � c such that

(a) {x ∈ S (δ ,b,d) : δ (x) > b} �= /0 and δ (Tx) > b, for x ∈ S (δ ,b,d) , where

S (δ ,r,R) = {x ∈ P : δ (x) � r and ‖x‖ � R} ,

(b) ‖Tx‖ < a, for ‖x‖ � a and
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(c) δ (Tx) > b, for x ∈ S (δ ,b,c) with ‖Tx‖ > d.

Then T has at least three fixed points, x1,x2 and x3 satisfying

‖x1‖ < a, b < δ (x2) and ‖x3‖ > a, with δ (x3) < b.

THEOREM 4. (Guo-Krasnoselskii, see [9]) Let E be a Banach space and let K ⊂
E be a cone in E . Assume that Ω1,Ω2 are open with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let

T : K∩(Ω2\Ω1
)−→ K

be a completely continuous operator such that either

(i) ‖Tx‖ � ‖x‖ , x ∈ K∩∂Ω1 , and ‖Tx‖ � ‖x‖ , x ∈ K∩∂ Ω2 , or

(ii) ‖Tx‖ � ‖x‖ , x ∈ K∩∂Ω1 , and ‖Tx‖ � ‖x‖ , x ∈ K∩∂Ω2 .

Then T has a fixed point in K∩(Ω2\Ω1
)
.

4. Proofs and corollaries of main Theorems

First we will discuss the criterion for existence at least three positive pseudo-
symmetric solutions of problem (1.3)-(1.5) by using Theorem 3.

Proof. [Proof of Theorem 1] We shall apply Theorem 3. For this we define the
nonnegative continuous concave function on P by

δ (x) = min
t∈[ηm,1]

x(t) .

Obviously, δ (x) � ‖x‖ , for all x ∈ P . Let λ satisfy (2.1) .

� First we prove that T : Ωc → Ωc . In fact, for x ∈ Ωc , we have 0 � x(t) � c and
|x′ (t)| � c , for all t ∈ [0,1] . So it follows from condition (A1) that

Fx(t) = λ f (t,x(t),x′ (t)) � λ φp (c)
C0

,

for all t ∈ [0,1] . Using the lemma 2 and the definition of T we deduce

‖Tx‖1 � μ
∣∣(Tx)′ (0)

∣∣� μφq

(∫ σ∗

0
F (x)(τ)dτ

)
� μφq (λ )φq

(
σ∗

C0

)
c � c.

Hence Tx ∈ Ωc . By an analogous argument as above, it follows that ‖Tx‖1 < a, for
‖x‖1 � a , i.e. the condition (b) of theorem 3 is satisfied.
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� To fulfill condition (a) of theorem 3, we consider the function

x0 (t) =

⎧⎪⎨⎪⎩
κ (t + ∑m

i=0 αi) , t ∈ [0,ηm] ,

κ
(

μ + 1−ηm
4

)
− κ

1−ηm
(t−σ∗)2 , t ∈ [ηm,1] ,

where κ is a constant satisfying

b
μ

< κ <
b

μ0 max
{

1,μ + 1−ηm
4

} .

We can check that x0 is a member of

Ω
(

δ ,b,
b
μ0

)
=
{

x ∈ P : δ (x) � b and ‖x‖1 � b
μ0

}
without difficulty. Further

δ (x0) = min
t∈[ηm,1]

x0 (t) = κμ > b.

This shows that the set {x ∈ Ω(δ ,b,b/μ0) : δ (x) > b} is non-empty. Next, let x ∈
Ω(δ ,b,b/μ0) . Then

Tx(σ∗) � α0φq

(∫ σ∗

ηm

F (x) (τ)dτ
)

+
m

∑
i=1

αiφq

(∫ σ∗

ηm

F (x) (τ)dτ
)

+
∫ ηm

0
φq

(∫ σ∗

ηm

F (x) (τ)dτ
)

ds, (4.1)

where

F (x)(t) = λ f (t,x(t),x′ (t)) >
λ φp (b)

B0
,∀t ∈ [ηm,σ∗] . (4.2)

Combining (4.1)− (4.2) and (iii) of Lemma 1, we get

δ (Tx) = min{Tx(t) : t ∈ [ηm,1]} � ηm

σ∗ Tx(σ∗)

>
μηm

σ∗ φq (λ )φq

(
σ∗ −ηm

B0

)
b � b, ∀x ∈ Ω(δ ,b,b/μ0) .

� Finally, we exhibit condition (c) of theorem 3 is also satisfied. To this end, let
x ∈ Ω(δ ,b,c) with ‖Tx‖1 > b/μ0 . An application of (iii) in Lemma 2 yields

δ (Tx) = min{Tx(t) : t ∈ [ηm,1]} � μ0 ‖Tx‖1 > b.

The proof is finished by an application of theorem 3.
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EXAMPLE 1. Consider the following problem{−(|x′ (t)|x′ (t))′ = λ f (t,x(t),x′ (t)), 0 < t < 1,

x(0) = x′ (0) , 2x
(

1
3

)− x′
(

1
3

)
= 2x(1)+ x′ (1) ,

where

f (t,z,w) =
[
1+ sin

(
3π
4

t

)]
ρ (z,w) , for all (t,z,w) ∈ [0,1]×R

+×R,

with

ρ (z,w) =

⎧⎪⎪⎨⎪⎪⎩
1
40z2 + 1

40+cos2 w
, (z,w) ∈ [0,1]× [−10,10] ,(√

30−1/8
)
(z−1)+1/40+ 1

40+cos2 w
, (z,w) ∈ [1,6/5]× [−10,10] ,

√
z+ 1

40+cos2 w
, (z,w) ∈ [6/5,10]× [−10,10] .

In this case we have

p = 3, n = 0, m = 1, α0 = 1, α1 = 0,η1 =
1
3
,

and so

σ∗ =
2
3
, μ =

5
3
, μ =

4
3
, μ0 =

3
10

.

Take a = 1, b = 6/5,c = 10 and A0 = 48/5,B0 = 19/25,C0 = 200/13. Then we have
a < b < b/μ0 < c and

• σ∗φp (μσ∗/μηm) (σ∗ −ηm) = 25/2 < min{A0/B0,C0/B0} ≈ 12.632

• f (t,z,w) � 6.3746 < 6.5 = φp (c)/C0 , for (t,z,w) ∈ [0,1]× [0,10]× [−10,10],

• f (t,z,w) < 0.1 < φp (a)/A0 = 5/48, for (t,z,w) ∈ [0,1]× [0,1]× [−1,1] ,

• f (t,z,w) � 1.9117 > φp (b)/B0 ≈ 1.8947, for (t,z,w) ∈ [1/3,1]× [6/5,4]×
[−4,4] .

This shows that the conditions of Theorem 1 hold and we can conclude that, for every
λ ∈ [5.13,5.184], our problem has at least three positive pseudo-symmetric solutions
x1,x2,x3 such that

‖x1‖1 � 1,δ (x2) >
6
5
,δ (x3) <

6
5
,‖x3‖1 > 1.

Proof. [Proof of Theorem 2] Let λ ∈ (λmin,λmax) . It is clear that Ωa , Ωb are
open bounded subsets of E and

0 ∈ Ωa,Ωb and
(
Ωb ⊂ Ωa or Ωa ⊂ Ωb

)
.
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For x ∈ P∩∂Ωa , we have⎧⎨⎩
0 � x(t) � maxt∈[0,1] |x(t)| � ‖x‖1 = a,

|x′ (t)| � maxt∈[0,1] |x′ (t)| � ‖x‖1 = a,

for all t ∈ [0,1] . Further x(t) � μ0 ‖x‖1 = μ0a, ∀t ∈ [ηm,1] . It follows from (3.5) and
the assumption (b) of Theorem 2 that

F (x)(t) =
λ f (t,x(t),x′ (t))(∫ 1

0 f (s,x(s),x′ (s))ds
)n � λ f (t,x(t),x′ (t))(∫ 1

ηm
f (s,x(s),x′ (s))ds

)n

� λ φp (a)
A [m̂( f ,a)]n (1−ηm)n ,∀t ∈ [0,1] .

By the definition of operator T and the lemma 2

‖Tx‖1 � μ (Tx)′ (0) � μφq

(∫ σ∗

0
F (x)(τ)dτ

)
� aμφq (λ )φq

(
σ∗

A [m̂( f ,a)]n (1−ηm)n

)
� a = ‖x‖1

Now, let x ∈ P∩∂Ωb . By Lemma 2 we have⎧⎨⎩
μ0b � μ0 ‖x‖1 � x(t) � ‖x‖1 = b,

|x′ (t)| � ‖x‖1 = b,

for all t ∈ [ηm,1] . This implies from the assumption (c) that

F (x) (t) =
λ f (t,x(t),x′ (t))(∫ 1

0 f (s,x(s),x′ (s))ds
)n � λ φp (b)

B [M ( f ,b)]n
,∀t ∈ [ηm,1] .

So using lemma 1 it follows

‖Tx‖1 � max
t∈[0,1]

|Tx(t)| = Tx(σ∗)

� α0φq

(∫ σ∗

ηm

F (x) (τ)dτ
)

+
m

∑
i=1

αiφq

(∫ σ∗

ηm

F (x) (τ)dτ
)

+
∫ ηm

0
φq

(∫ σ∗

ηm

F (x) (τ)dτ
)

ds

� bμφq (λ )φq

(
σ∗ −ηm

B [M ( f ,b)]n

)
� b = ‖x‖1 .

Applying theorem 4 we deduce that the operator T has a fixed point in Ωa\Ωb or
Ωb\Ωa . So our result is completely proved.
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COROLLARY 1. Let (H1) holds. Assume that

� a,b,A,B are four positive constants satisfy a > (ζ0b)/ζ1 and

ζ0
a
b

<
A
B

< ζ1
a2

b2 ,

where

ζ1 ∈ (0,1) and ζ0 =

√
σ∗

(σ∗ −ηm) (1−ηm)
.φp

(
μ
μ

)
,

� θ : [0,1]→ R
∗ is continuous, pseudo-symmetric about ηm on [0,1] and satisfies

0 < ζ1 = min
t∈[0,1]

θ (t) < max
t∈[0,1]

θ (t) = θ < 1,

� ϕ : [0,a]→ R
∗ is a continuous function such that

min
z∈[μ0b,a]

ϕ (z) � b2

Bζ1
, max

z∈[0,a]
ϕ (z) � a2

A
.

Set

f (t,z,w) = θ (t)ϕ (z)+
a2
(
1−θ

)
A

(
1− sin2 πw

a

)
.

Then, for every λ satisfying the condition

BM ( f ,b)
σ∗ −ηm

φp

(
1
μ

)
� λ � Am̂( f ,a) (1−ηm)

σ∗ φp

(
1
μ

)
,

the boundary value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−(|x′ (t)|x′ (t))′ = λ f(t,x(t),x′(t))∫ 1

0 f (t,x(t),x′(t))dt
, 0 < t < 1,

x(0) = α0x′(0)+ ∑m
i=1 αix′ (ηi) ,

βx(ηm)− γx′(ηm) = βx(1)+ γx′(1),

has at least one positive pseudo-symmetric solution.

Proof. It is clear that f is continuous on [0,1]× (0,+∞)×R and satisfies the
condition (H2). On the other hand we have

M ( f ,b) � θ .
a2

A
+

a2
(
1−θ

)
A

� a2

A
,

and

m̂a ( f ,a) � ζ1. min
z∈[μ0b,a]

ϕ (z) � b2

B
.
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So, we can obtain the following estimates

Am̂( f ,a)
BMb ( f ,b)

� A2b2

B2a2 > ζ 2 =
σ∗

(σ∗ −ηm)(1−ηm)
.φp

(
μ
μ

)
,

f (t,z,w) � a2

A
,∀(t,z,w) ∈ [0,1]× [0,a]× [−a,a] ,

f (t,z,w) � b2

B
,∀(t,z,w) ∈ [0,1]× [μ0b,b]× [−b,b] ,

which means that the conditions of Theorem 2 are satisfied. Therefore, our conclude is
proved.

EXAMPLE 2. Let

- η1 = 1/4, η2 = 2/3, α0 = 2, α1 = 1
2 , α2 = 1,ζ1 = 5/18

- a = 30,b = 2,A = 122,B = 2

- f (t,z,w) =
[

35
36 −
(
t− 5

6

)2]( 1
250 z+ 36

5

)
+ 25

122

(
1− sin2 πw

15

)
In this case we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ∗ = (1+ ηm)/2 = 5/6, ∑m
i=0αi = 7/2,

μ = max{1,σ∗ + ∑m
i=0αi} = 13/3,

μ = ηm + ∑m
i=0αi = 25/6,

μ0 = ηmα0
μσ∗ = 24/65,

ζ0 =
√

σ∗
(σ∗−ηm)(1−ηm) .φp

(
μ
μ

)
= 26

25

√
15.

On the other hand

M ( f ,b) = max{ f (t,z,w) : (t,z,w) ∈ [0,1]× [0,2]× [−2,2]} =
395977
54900

,

and

m̂ ( f ,a) = min

{
f (t,z,w) : (t,z,w) ∈ [0,1]×

[
144
13

,30

]
× [−30,30]

}
=

654
325

.

It is not difficulty to check that the conditions of corollary 1 are satisfied. Conse-
quently the following boundary value problem

−(∣∣x′ (t)∣∣x′ (t))′ = λ f (t,x(t) ,x′ (t))∫ 1
0 f (t,x(t) ,x′ (t))dt

, 0 < t < 1,
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x(0) = 2x′ (0)+
1
2
x′
(

1
4

)
+ x′
(

2
3

)
,

x

(
2
3

)
−2x′

(
2
3

)
= x(1)+2x′ (1) ,

has at least one positive pseudo-symmetric solution for every λ satisfying

4.9854≈ 4751724
953125

� λ � 1436184
274625

≈ 5.2296.
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