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OSCILLATION CRITERIA FOR NEUTRAL PARTIAL
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Abstract. Some new oscillation criteria are established for second order neutral partial functional
differential equations of the form

∂
∂ t

[
p(t)

∂
∂ t

(
u(x,t)+

l

∑
i=1

λi(t)u(x,t − τi)
)]

= a(t)Δu(x,t)+
s

∑
k=1

ak(t)Δu(x,t −ρk(t))−q(x,t)u(x,t)

−
m

∑
j=1

qj(x,t) f j(u(x,t −σ j)),(x,t) ∈ Ω× [0,∞) ≡ G,

by integral average, where Ω is a bounded domain in R
N with a piecewise smooth boundary

∂Ω and Δ is the Laplacian in the Euclidean N -space R
N .

1. Introduction

Recently, the oscillation problem for the partial functional differential equation has
been studied by many authors. We refer the reader to [2,5,8] for parabolic equations
and to [1,3,4,6,9] for hyperbolic equations.

In this paper, we study the oscillation of the solutions of neutral partial functional
differential equation of the form

∂
∂ t

[
p(t)

∂
∂ t

(
u(x, t)+

l

∑
i=1

λi(t)u(x,t− τi)
)]

= a(t)Δu(x,t)+
s

∑
k=1

ak(t)Δu(x,t−ρk(t))−q(x,t)u(x,t)

−
m

∑
j=1

q j(x,t) f j(u(x,t −σ j)),(x,t) ∈ Ω× [0,∞)≡ G,
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where Ω is a bounded domain in R
N with a piecewise smooth boundary ∂Ω , and

Δu(x,t) =
N

∑
r=1

∂ 2u(x,t)
∂x2

r
.

In [7], Li and Cui have observed some oscillation properties of (1.1) under the
following assumption

lim
t→∞

∫ t

t0

ds
p(s)

= ∞,

in this paper, we will further the investigation and offer some new oscillation criteria
of (1.1). Referencing the related work of [10], we will also study the oscillation and
asymptotic behavior of (1.1) under the assumption

lim
t→∞

∫ t

t0

ds
p(s)

< ∞.

We assume throughout this paper that the following conditions hold:

(A1) p(t) ∈C1([0,∞); [0,∞)) , R(t) =
∫ t
t0

ds
p(s)

,t0 > 0;

(A2) λi ∈C2([0,∞); [0,∞)) , 0 � ∑l
i=1 λi(t) � 1, τi are nonnegative constants, i ∈ Il =

{1,2, · · · , l};
(A3) q,q j ∈ C(G,(0,∞)) , q(t) = minx∈Ω q(x,t) , q j(t) = minx∈Ω q j(x,t) , j ∈ Im =
{1,2, · · · ,m};
(A4) a,ak,ρk ∈C([0,∞); [0,∞)) , limt→∞(t−ρk(t)) = ∞ , σ j are nonnegative constants,
j ∈ Im,k ∈ Is = {1,2, · · · ,s};
(A5) f j ∈C(R,R) are convex in [0,∞) , u f j(u) > 0 and

f j(u)
u

� α j for u �= 0, α j are

positive constants, j ∈ Im .
We consider two kinds of boundary conditions,

∂u(x,t)
∂γ

+g(x,t)u(x,t) = 0,(x,t) ∈ ∂Ω× [0,∞), (1.1)

where γ is the unit exterior normal vector to ∂Ω and g(x,t) is a nonnegative continuous
function on ∂Ω× [0,∞), and

u(x,t) = 0,(x,t) ∈ ∂Ω× [0,∞). (1.2)

As usual, a solution u(x,t) of the problem (1.1), (1.2) (or (1.1), (1.3)) is called
oscillatory in the domain G = Ω× [0,∞) if for any positive number μ there exists a
point (x0, t0) ∈ Ω× [μ ,∞) such that u(x0,t0) = 0 holds.

In the following two sections, by using a generalized Riccati transformation, we
obtain some sufficient conditions for the oscillation of the problem (1.1), (1.2) as well
as for (1.1), (1.3). We note that conditions for the oscillation of the solutions for p(t) =
1,λi(t) = 0, f j(u) = u have been obtained in the works of Cui et al.[4].
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2. Oscillation of the problems (1.1) and (1.2)

First, we consider the case when limt→∞ R(t) = ∞.

THEOREM 2.1. If there exists a j0 ∈ Im such that

∫ ∞{
R(t−σ j0)

[
α j0q j0(t)

(
1−

l

∑
i=1

λi(t −σ j0)
)

+q(t)
(
1−

l

∑
i=1

λi(t)
)]

− 1
4p(t−σ j0)R(t −σ j0)

}
dt = ∞, (2.1)

then every solution u(x,t) of the problem (1.1) , (1.2) is oscillatory in G.

Proof. Assume to the contrary that there is a nonoscillatory solution u(x,t) of
the problem (1.1) , (1.2) in Ω× [t0,∞) for some t0 > 0. Without loss of generality
we assume that u(x, t) > 0,u(x,t − τi) > 0,u(x,t −ρk(t)) > 0 and u(x,t −σ j) > 0 in
Ω× [t1,∞), t1 � t0, i ∈ Il,k ∈ Is, j ∈ Im.

Integrating (1.1) with respect to x over the domain Ω , we have

d
dt

[
p(t)

d
dt

(∫
Ω

u(x,t)dx+
l

∑
i=1

λi(t)
∫

Ω
u(x,t− τi)dx

)]

= a(t)
∫

Ω
Δu(x,t)dx+

s

∑
k=1

ak(t)
∫

Ω
Δu(x,t−ρk(t))dx−

∫
Ω

q(x, t)u(x,t)dx

−
m

∑
j=1

∫
Ω

q j(x,t) f j(u(x,t −σ j))dx, t � t1. (2.2)

From Green’s formula and boundary condition (1.2), it follows that

∫
Ω

Δu(x, t)dx =
∫

∂Ω

∂u(x,t)
∂γ

dS = −
∫

∂Ω
g(x, t)u(x,t)dS � 0, t � t1, (2.3)

and for t � t1 , k ∈ Is ,∫
Ω

Δu(x,t−ρk(t))dx =
∫

∂Ω

∂u(x,t −ρk(t))
∂γ

dS

= −
∫

∂Ω
g(x,t−ρk(t))u(x,t −ρk(t))dS

� 0, (2.4)

where dS is the surface element on ∂Ω . Moreover, from (A3),(A5) and Jensen’s
inequality, it follows that∫

Ω
q(x,t)u(x,t)dx � q(t)

∫
Ω

u(x,t)dx, t � t1, (2.5)
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and

∫
Ω

q j(x, t) f j(u(x, t −σ j))dx � q j(t)
∫

Ω
f j(u(x,t −σ j))dx

� q j(t)
∫

Ω
dx · f j

(∫
Ω

u(x,t−σ j)dx

(∫
Ω

dx

)−1
)

, t � t1. (2.6)

Let

V (t) =
1
|Ω|

∫
Ω

u(x,t)dx, t � t1, (2.7)

where |Ω| = ∫
Ω dx .

In view of (2.3)-(2.7), (2.2) yields

d
dt

[
p(t)

d
dt

(
V (t)+

l

∑
i=1

λi(t)V (t − τi)
)]

+q(t)V(t)

+
m

∑
j=1

q j(t) f j(V (t−σ j)) � 0, t � t1. (2.8)

Let Z(t) = V (t)+ ∑l
i=1 λi(t)V (t − τi), we have Z(t) > 0 and [p(t)Z′(t)]′ � 0 for

t � t1 . Hence p(t)Z′(t) is a decreasing function in the interval [t1,∞) . We can claim
that p(t)Z′(t) > 0 for t � t1 . In fact, if there exist a T > t1 such that p(T )Z′(T ) < 0,
this implies that

Z′(t) � p(T )Z′(T )
p(t)

for t � T,

and

Z(t)−Z(T ) � p(T )Z′(T )
∫ t

T

ds
p(s)

, t � T.

Therefore lim
t→∞

Z(t) = −∞, which contradicts the fact that Z(t) > 0.

From (2.8), for the j0 in (2.1) we obtain

[p(t)Z′(t)]′ +q(t)V(t)+ α j0q j0(t)V (t−σ j0) � 0, t � t1. (2.9)

or

[p(t)Z′(t)]′ +q(t)

[
Z(t)−

l

∑
i=1

λi(t)V (t− τi)

]

+ α j0q j0(t)

[
Z(t −σ j0)−

l

∑
i=1

λi(t−σ j0)V (t − τi−σ j0)

]
� 0, t � t1.

Since Z(t) � V (t) , Z(t) is increasing, it follows that
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[p(t)Z′(t)]′ +q(t)
[
1−

l

∑
i=1

λi(t)
]
Z(t)

+ α j0q j0(t)
[
1−

l

∑
i=1

λi(t −σ j0)
]
Z(t−σ j0) � 0, t � t1.

That is

[p(t)Z′(t)]′ +q(t)
[
1−

l

∑
i=1

λi(t)
]
Z(t −σ j0)

+ α j0q j0(t)
[
1−

l

∑
i=1

λi(t−σ j0)
]
Z(t−σ j0) � 0, t � t1.

Define

w(t) = R(t−σ j0)
p(t)Z′(t)
Z(t −σ j0)

, (2.10)

then w(t) > 0, and

w′(t) = R′(t −σ j0)
p(t)Z′(t)
Z(t −σ j0)

+R(t−σ j0)
[p(t)Z′(t)]′Z(t−σ j0)− p(t)Z′(t)Z′(t −σ j0)

Z2(t−σ j0)

� w(t)
p(t −σ j0)R(t−σ j0)

−R(t−σ j0)
{

α j0q j0(t)
[
1−

l

∑
i=1

λi(t −σ j0)
]

+q(t)
[
1−

l

∑
i=1

λi(t)
]}

− R(t−σ j0)p(t)Z′(t)Z′(t−σ j0)
Z2(t−σ j0)

.

Using the fact that p(t)Z′(t) is decreasing, we have

Z′(t−σ j0) � p(t)Z′(t)
p(t −σ j0)

, t � t1.

Thus,

w′(t) � w(t)
p(t−σ j0)R(t −σ j0)

−R(t−σ j0)
{

α j0q j0(t)
[
1−

l

∑
i=1

λi(t−σ j0)
]

+q(t)
[
1−

l

∑
i=1

λi(t)
]}

− R(t −σ j0)[p(t)Z′(t)]2

p(t−σ j0)Z2(t −σ j0)

=
w(t)

p(t−σ j0)R(t −σ j0)
−R(t−σ j0)

{
α j0q j0(t)

[
1−

l

∑
i=1

λi(t−σ j0)
]

+q(t)
[
1−

l

∑
i=1

λi(t)
]}

− w2(t)
p(t −σ j0)R(t −σ j0)
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=

1
4
−
(
w(t)− 1

2

)2

p(t−σ j0)R(t −σ j0)
−R(t−σ j0)

{
α j0q j0(t)

[
1−

l

∑
i=1

λi(t−σ j0)
]

+q(t)
[
1−

l

∑
i=1

λi(t)
]}

� 1
4p(t−σ j0)R(t−σ j0)

−R(t−σ j0)
{

α j0q j0(t)
[
1−

l

∑
i=1

λi(t −σ j0)
]

+q(t)
[
1−

l

∑
i=1

λi(t)
]}

.

Integrating the above inequality from some T0 to t (T0 � t1) , we have

w(t) � w(T0)−
∫ t

T0

{
R(s−σ j0)

[
α j0q j0(s)

(
1−

l

∑
i=1

λi(s−σ j0)
)

+q(s)
(

1−
l

∑
i=1

λi(s)
)]

− 1
4p(s−σ j0)R(s−σ j0)

}
ds. (2.11)

Letting t → ∞ in (2.11), from (2.1) we get contradiction. This completes the proof of
Theorem 2.1.

COROLLARY 2.1. If the inequality (2.8) has no eventually positive solutions,
then every solution u(x,t) of the problem (1.1) , (1.2) is oscillatory in G.

COROLLARY 2.2. Assume that for t1 � t0,

liminf
t→∞

1
lnR(t−σ j0)

∫ t

t1
R(s−σ j0)

[
α j0q j0(s)

(
1−

l

∑
i=1

λi(s−σ j0)
)

+q(s)
(

1−
l

∑
i=1

λi(s)
)]

ds >
1
4
, (2.12)

then every solution u(x,t) of the problem (1.1) , (1.2) is oscillatory in G.

Proof. It is not hard to verify that (2.12) yields the existence ε > 0 such that for
all large t,

1
lnR(t−σ j0)

∫ t

t1
R(s−σ j0)

[
α j0q j0(s)

(
1−

l

∑
i=1

λi(s−σ j0)
)

+q(s)
(

1−
l

∑
i=1

λi(s)
)]

ds � 1
4

+ ε,

which follows that
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∫ t

t1
R(s−σ j0)

[
α j0q j0(s)

(
1−

l

∑
i=1

λi(s−σ j0)
)

+q(s)
(

1−
l

∑
i=1

λi(s)
)]

ds � 1
4

lnR(t−σ j0)+ ε lnR(t−σ j0),

so we have

∫ t

t1

{
R(s−σ j0)

[
α j0q j0(s)

(
1−

l

∑
i=1

λi(s−σ j0)
)

+q(s)
(

1−
l

∑
i=1

λi(s)
)]

− 1
4p(s−σ j0)R(s−σ j0)

}
ds � 1

4
lnR(t1 −σ j0)+ ε lnR(t −σ j0). (2.13)

Now, it is obvious that (2.13) implies (2.1) and this completes the proof of corollary 2.

COROLLARY 2.3. Assume that

liminf
t→∞

R2(t−σ j0)
[

α j0q j0(t)
(

1−
l

∑
i=1

λi(t−σ j0)
)

+q(t)
(

1−
l

∑
i=1

λi(t)
)]

p(t−σ j0) >
1
4
, (2.14)

then every solution u(x,t) of the problem (1.1) , (1.2) is oscillatory in G.

Proof. It is easy to see that (2.14) yields the existence of an ε > 0 such that for all
large t,

R2(t −σ j0)
[

α j0q j0(t)
(

1−
l

∑
i=1

λi(t −σ j0)
)

+q(t)
(

1−
l

∑
i=1

λi(t)
)]

p(t−σ j0) � 1
4

+ ε,

that is

R(t−σ j0)
[

α j0q j0(t)
(

1−
l

∑
i=1

λi(t −σ j0)
)

+q(t)
(

1−
l

∑
i=1

λi(t)
)]

� 1
4p(t−σ j0)R(t−σ j0)

+
ε

p(t−σ j0)R(t−σ j0)
,

so we have

R(t−σ j0)
[

α j0q j0(t)
(

1−
l

∑
i=1

λi(t −σ j0)
)

+q(t)
(

1−
l

∑
i=1

λi(t)
)]
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− 1
4p(t−σ j0)R(t−σ j0)

� ε
p(t−σ j0)R(t −σ j0)

. (2.15)

It is obvious that (2.1) holds and corollary 3 is evident by Theorem 1.
Now, let’s consider the case when

lim
t→∞

R(t) = lim
t→∞

∫ t

t0

ds
p(s)

< ∞. (2.16)

THEOREM 2.2. Assume that (2.1) and (2.16) hold, suppose that there exists a
continuously differentiable ρ(t) such that ρ(t) > 0, ρ ′(t) � 0, we also suppose that
λ ′

i (t) � 0 for t � t0, i ∈ Il, limt→∞ ∑l
i=1 λi(t) = A. If for some j0 ∈ Im,

∫ ∞ 1
ρ(t)p(t)

(∫ t
ρ(s)(q(s)+ α j0q j0(s))ds

)
dt = ∞, (2.17)

then every solution u(x,t) of the problem (1.1) , (1.2) is oscillates or

lim
t→∞

∫
Ω

u(x,t)dx = 0.

Proof. Suppose that u(x,t) is a nonoscillatory solution of the problem (1.1), (1.2).
Without loss of generality we assume that u(x,t) is an eventually positive solution of
the problem (1.1), (1.2). Then Z(t)=V(t)+∑l

i=1 λi(t)V (t−τi)> 0, from [p(t)Z′(t)]′ �
0, it is easy to conclude that there exist two possible cases of the sign of Z′(t) :

Case (1): Suppose Z′(t) > 0 for sufficiently large t , then we are back to the case
of Theorem 1. Thus the proof of Theorem 1 goes through, and we get contradiction by
(2.1).

Case (2): Suppose Z′(t) � 0 for sufficiently large t . From the following conditions

λ ′
i (t) � 0,Z′(t) = V ′(t)+

l

∑
i=1

λ ′
i (t)V (t− τi)+

l

∑
i=1

λi(t)V ′(t − τi),

we have V ′(t) � 0, and hence there exists limt→∞ Z(t) = a � 0. Now we claim that
a = 0. Otherwise, limt→∞ Z(t) = a > 0, so limt→∞V (t) = a/(1+A) > 0, there exists
a constant M > 0 such that V (t) � M,V (t − σ j0) � M for the j0 in (2.17) and all
t � t1 � t0. From (2.9) we get

[p(t)Z′(t)]′ � −q(t)V(t)−α j0q j0(t)V (t −σ j0)
� −Mq(t)−α j0Mqj0(t) = −M(q(t)+ α j0q j0(t)), t � t1. (2.18)

Define Q(t) = ρ(t)p(t)Z′(t), then Q(t) � 0, from (2.18) we get

Q′(t) = ρ(t)[p(t)Z′(t)]′ + ρ ′(t)p(t)Z′(t) � ρ(t)[p(t)Z′(t)]′

� −Mρ(t)(q(t)+ α j0q j0(t)).



OSCILLATION OF PARTIAL FDE’S 77

Integrating it from t1 to t , we get

Q(t) � Q(t1)−M
∫ t

t1
ρ(s)(q(s)+ α j0q j0(s))ds � −M

∫ t

t1
ρ(s)(q(s)+ α j0q j0(s))ds,

that is

ρ(t)p(t)Z′(t) � −M
∫ t

t1
ρ(s)(q(s)+ α j0q j0(s))ds,

so that

Z′(t) � − M
ρ(t)p(t)

∫ t

t1
ρ(s)(q(s)+ α j0q j0(s))ds.

Integrating the above inequality from t1 to t , we obtain

Z(t) � Z(t1)−M
∫ t

t1

1
ρ(s)p(s)

(∫ s

t1
ρ(ξ )(q(ξ )+ α j0q j0(ξ ))dξ

)
ds.

We can easily obtain a contradiction. So that limt→∞ Z(t) = 0, then limt→∞ V (t) =
0. This completes the proof of Theorem 2.

COROLLARY 2.4. If (2.12) , (2.16) and (2.17) hold, then every solution u(x,t)
of the problem (1.1) , (1.2) is oscillates or limt→∞

∫
Ω u(x,t)dx = 0 .

COROLLARY 2.5. If (2.14) , (2.16) and (2.17) hold, then every solution u(x,t)
of the problem (1.1) , (1.2) is oscillates or limt→∞

∫
Ω u(x,t)dx = 0 .

3. Oscillation of the problems (1.1) and (1.3)

The following fact will be used. The smallest eigenvalue β0 of the Dirichlet prob-
lem {

Δw(x)+ βw(x) = 0 in Ω,

w(x) = 0 on ∂Ω,
(3.1)

is positive and the corresponding eigenfunction ϕ(x) is positive in Ω .

THEOREM 3.1. If all conditions of Theorem 2.1 hold, then every solution u(x,t)
of the problem (1.1) , (1.3) oscillates in G.

Proof. To the contrary, if there is a nonoscillatory solution u(x, t) of the problem
(1.1), (1.3) in Ω× [t0,∞) for some t0 > 0, without loss of generality, we assume that
u(x,t) > 0, u(x, t− τi) > 0, u(x,t−ρk(t)) > 0 and u(x,t−σ j) > 0 in Ω× [t1,∞), t1 �
t0, i ∈ Il, k ∈ Is, j ∈ Im.

Multiplying both side of (1.1) by ϕ(x) > 0 and integrating it with respect to x
over the domain Ω , for t � t1 we have

d
dt

[
p(t)

d
dt

(∫
Ω

u(x,t)ϕ(x)dx+
l

∑
i=1

λi(t)
∫

Ω
u(x,t− τi)ϕ(x)dx

)]
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= a(t)
∫

Ω
Δu(x,t)ϕ(x)dx+

s

∑
k=1

ak(t)
∫

Ω
Δu(x,t−ρk(t))ϕ(x)dx

−
∫

Ω
q(x,t)u(x,t)ϕ(x)dx−

m

∑
j=1

∫
Ω

q j(x,t) f j(u(x,t−σ j))ϕ(x)dx.

From Green’s formula and boundary condition (1.3), it follows that∫
Ω

Δu(x, t)ϕ(x)dx =
∫

Ω
u(x,t)Δϕ(x)dx = −β0

∫
Ω

u(x,t)ϕ(x)dx � 0, t � t1,

and for t � t1 , k ∈ Is ,∫
Ω

Δu(x, t−ρk(t))ϕ(x)dx =
∫

Ω
u(x,t−ρk(t))Δϕ(x)dx

= −β0

∫
Ω

u(x,t−ρk(t))ϕ(x)dx � 0. (3.2)

From (A3),(A5) and Jensen’s inequality, it follows that∫
Ω

q(x,t)u(x,t)ϕ(x)dx � q(t)
∫

Ω
u(x,t)ϕ(x)dx, t � t1, (3.3)

and
∫

Ω
q j(x, t) f j(u(x, t −σ j))ϕ(x)dx � q j(t)

∫
Ω

f j(u(x,t−σ j))ϕ(x)dx

� q j(t)
∫

Ω
ϕ(x)dx · f j

(∫
Ω

u(x,t−σ j)ϕ(x)dx

(∫
Ω

ϕ(x)dx

)−1
)

, t � t1. (3.4)

Set

V (t) =
∫

Ω
u(x,t)ϕ(x)dx

(∫
Ω

ϕ(x)dx

)−1

, t � t1.

Combining (3.2)-(3.7) we obtain

d
dt

[
p(t)

d
dt

(
V (t)+

l

∑
i=1

λi(t)V (t − τi)
)]

+q(t)V(t)

+
m

∑
j=1

q j(t) f j(V (t−σ j)) � 0, t � t1. (3.5)

Since the remainder of the proof is similar to that of Theorem 1, we omit it.

COROLLARY 3.1. If the inequality (3.7) has no eventually positive solutions,
then every solution u(x,t) of the problem (1.1) , (1.3) is oscillatory in G.

The following conclusions can be proved analogously.
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COROLLARY 3.2. Let the conditions of Corollary 2.2 hold, then every solution
u(x,t) of the problem (1.1) , (1.3) oscillates in G.

COROLLARY 3.3. Let the conditions of Corollary 2.3 hold, then every solution
u(x,t) of the problem (1.1) , (1.3) oscillates.

THEOREM 3.2. Let the conditions of Theorem 2.2 hold, then every solution u(x,t)
of the problem (1.1) , (1.3) oscillates or limt→∞

∫
Ω u(x,t)ϕ(x)dx = 0 in G, where ϕ(x)

is as in (3.1) .

COROLLARY 3.4. If (2.12) , (2.16) and (2.17) hold, then every solution u(x,t)
of the problem (1.1) , (1.3) is oscillates or limt→∞

∫
Ω u(x,t)ϕ(x)dx = 0 , where ϕ(x) is

as in (3.1) .

COROLLARY 3.5. If (2.14) , (2.16) and (2.17) hold, then every solution u(x,t)
of the problem (1.1) , (1.3) is oscillates or limt→∞

∫
Ω u(x,t)ϕ(x)dx = 0 , where ϕ(x) is

as in (3.1) .

4. Examples

EXAMPLE 4.1. Consider the equation

∂
∂ t

[
1

t + π
∂
∂ t

(
u(x,t)+

1
t + π

u(x,t−2π)
)]

=
(

1
t + π

+
1

(t + π)2 −
3

(t + π)4

)
Δu(x,t)

+
(

3
(t + π)3 +

1
(t + π)2

)
Δu(x,t− 3π

2
)+
(

1
2t3 ln t

+
1
t3

)
Δu(x,t−π)

−
(

1
2t3 ln t

+
2
t3

)
u(x,t)− 1

t3
u(x,t−π), (x,t) ∈ (0,π)× [0,∞) (4.1)

with the boundary condition

u(0,t) = u(π ,t) = 0, t � 0. (4.2)

Here,

N = 1, p(t) =
1

t + π
, l = 1, λ1(t) =

1
t + π

, τ1 = 2π ,

a(t) =
1

t + π
+

1
(t + π)2 −

3
(t + π)4 , s = 2,

a1(t) =
3

(t + π)3 +
1

(t + π)2 , ρ1(t) =
3π
2

,

a2(t) =
1

2t3 ln t
+

1
t3

, ρ2(t) = π ,
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q(x, t) =
1

2t3 ln t
+

2
t3

, m = 1,

q1(x,t) =
1
t3

, σ1 = π , f1(u) = u,

it is easy to see that

q j0(t) = q1(t) =
1
t3

, α j0 = 1,

λ1(t−σ j0) = λ1(t −π) =
1
t
,

q(t) = q(x,t) =
1

2t3 ln t
+

2
t3

,

p(t−σ j0) =
1
t
,

R(t) =
∫ t

t0

ds
p(s)

=
t2

2
+ πt,

then we have

liminf
t→∞

R2(t−σ j0)
[

α j0q j0(t)
(
1−

l

∑
i=1

λi(t −σ j0)
)

+
(
1−

l

∑
i=1

λi(t)
)]

p(t−σ j0) =
3
4

>
1
4
,

which shows that all conditions of Corollary 8 are verified. Thus every solutions of
problem (4.1), (4.2) oscillates in (0,π)× [0,∞). In fact, u(x,t) = sin(x)cos(t) is such
a solution.

EXAMPLE 4.2. Consider the equation

∂
∂ t

[
(t + π)2 ∂

∂ t

(
u(x,t)+

(
1− 1

(t + π)4

)
u(x,t−2π)

)]

=
(

1− 1
t2

+3t +
4

(t + π)2

)
Δu(x,t)

+
(

12
(t + π)4 +

2
(t + π)3 +4(t + π)

)
Δu(x,t− 3π

2
)

+
(

2t +
1

(t + π)2

)
Δu(x,t−π)−

(
π2t2

3
− 1

t2
+

2
t3

+1

)
u(x, t)

−
(

π2t2

3
+

1
t3

+ t +
3

(t + π)2

)
u(x,t−π), (x,t) ∈ (0,π)× [0,∞), (4.3)

with the boundary condition

ux(0,t) = ux(π ,t) = 0,t � 0. (4.4)
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Here,

N = 1, p(t) = (t + π)2, l = 1, λ1(t) = 1− 1
(t + π)4 , τ1 = 2π ,

and

a(t) = 1− 1
t2

+3t +
4

(t + π)2 , s = 2,

a1(t) =
12

(t + π)4 +
2

(t + π)3 +4(t + π),

a2(t) = 2t +
1

(t + π)2 ,

q(x,t) =
π2t2

3
− 1

t2
+

2
t3

+1, and f1(u) = u.

It is easy to see that

q j0(t) = q1(t) = q1(x,t) =
π2t2

3
+

1
t3

+ t +
3

(t + π)2 , α j0 = 1,

λ1(t −σ j0) = λ1(t −π) =
1
t
,

q(t) = q(x,t) =
π2t2

3
− 1

t2
+

2
t3

+1,

p(t−σ j0) = p(t−π) = (t + π)2,

R(t) =
∫ t

0

ds
p(s)

=
∫ t

0

ds
(s+ π)2 =

1
π
− 1

t + π
,

let ρ(s) = 1, then

liminf
t→∞

R2(t−σ j0)
[

α j0q j0(t)
(
1−

l

∑
i=1

λi(t −σ j0)
)

+q(t)
(
1−

l

∑
i=1

λi(t)
)]

p(t−σ j0) =
2
3

>
1
4
,

and ∫ ∞ [ 1
p(t)

∫ t

1
(q(s)+q1(s))ds

]
dt = ∞,

which shows that all conditions of Corollary 5 are verified. Thus every solution of
problem (4.3), (4.4) oscillates or limt→∞

∫
Ω u(x,t)dx = 0 in (0,π)× [0,∞) . However,

the main results of [7] fail to the problem (4.3), (4.4) because limt→∞ R(t) < ∞ .
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