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INFINITELY MANY SOLUTIONS FOR KIRCHHOFF TYPE PROBLEMS

YIWEI YE

(Communicated by Chun-Lei Tang)

Abstract. This paper is devoted to the study of infinitely many solutions for a class of Kirchhoff
type problems on a bounded domain. Based on the Fountain Theorem of Bartsch, we obtain the
multiplicity results, which unify and sharply improve the recent results of He and Zou [X. He,
W. Zou, Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin.
(Engl. Ser.) 26 (2010) 387-394].

1. Introduction and main results

Consider the following Kirchhoff type problem:⎧⎪⎨
⎪⎩
−

(
a+b

∫
Ω
|∇u|2dx

)
Δu = f (x,u) in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in R
N (N = 1,2,3), a,b > 0 and the nonlinearity

f ∈C(Ω×R,R) satisfies the subcritical conditions:
( f1 ) there exists a1 > 0 such that

| f (x, t)| � a1(1+ |t|p−1) for some 4 < p < 2∗ =

{
6, n = 3,

+∞, n = 1,2.

Let X := H1
0 (Ω) be the usual Sobolev space endowed with the norm ‖u‖ =(∫

Ω |∇u|2dx
)1/2

. Since Ω is a bounded domain, X ↪→ Lr(Ω) continuously for r ∈
[1,2∗] , compactly for r ∈ [1,2∗) , and then there exists τr > 0 such that

|u|r � τr‖u‖, ∀u ∈ X , (1.2)

where | · |r denotes the usual Lr -norm. The condition ( f1) implies that the functional
ϕ : X → R ,

ϕ(u) =
a
2
‖u‖2 +

b
4
‖u‖4−

∫
Ω

F(x,u)dx (1.3)
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is well defined and of C1 class, and

〈ϕ ′(u),v〉 = (a+b‖u‖2)
∫

Ω
∇u ·∇vdx−

∫
Ω

f (x,u)vdx, ∀u,v ∈ X .

The weak solutions of problem (1.1) are precisely the critical points of ϕ .
The existence and multiplicity of solutions of problem (1.1) have been extensively

studied by many researchers via variational methods, see [1-9] and references therein.
Perera and Zhang [10] obtain nontrivial solutions of problem (1.1) with asymptotically
4-linear terms using Yang index. In [14], they revisit problem (1.1) and establish the
existence of a positive, a negative, and a sign-changing solution of problem (1.1) by
means of invariant sets of descent flow. Similar results can also be found in Mao and
Zhang [9]. Sun and Tang [11] prove the existence of a mountain pass type positive
solution of problem (1.1) under the conditions that f (x,t) is asymptotically linear near
zero and superlinear at infinity. Moreover, infinitely many nontrivial solutions are es-
tablished in [11] via the fountain theorem of Bartsch and the symmetric mountain pass
lemma due to Kajikiya [6].

Recently, under the Ambrosetti-Rabinowitz’s 4-superlinear condition (see ( f ′2 ) be-
low), and no Ambrosetti-Rabinowitz’s 4-superlinear condition, He and Zou [4] obtain
the following two theorems via the fountain theorem and the variant fountain theorem.

THEOREM A. (see [4, Theorem 3]) Assume that f (x,t) satisfies ( f1) and:
( f ′2) there exist μ > 4 and L > 0 such that

0 < μF(x,t) � t f (x,t), ∀x ∈ Ω, |t| � L;

( f3) f (x,−t) = − f (x,t) for all (x,t) ∈ Ω×R .
Then problem (1.1) has infinitely many solutions (uk) such that ϕ(uk)→+∞ as k→∞ .

THEOREM B. (see [4, Theorem 4]) The conclusion of Theorem A holds, if f (x,t)
satisfies ( f1) , ( f3) and:

( f ′′2 ) f (x, t)t � 0 for t > 0 ; lim|t|→∞
F(x,t)

t4
= +∞ uniformly for x ∈ Ω; and f (x,t) =

o(|t|) as |t| → 0 uniformly in x ∈ Ω;
( f ′4)

1
4 f (x, t)t −F(x,t) → +∞ as |t| → ∞ uniformly in x ∈ Ω;

( f ′5) f (x, t)/t3 is an increasing function of t � 0 .

In this work, with the aid of the classical Fountain Theorem of Bartsch, we can
prove the same results under more general conditions, which unify and sharply improve
Theorems A and B.

THEOREM 1.1. Assume that f (x,t) satisfies ( f1) , ( f3) and:

( f2) lim
|t|→∞

F(x, t)
t4

= +∞ uniformly for x ∈ Ω;

( f4) there exists L > 0 such that

t f (x,t)−4F(x,t) � 0, ∀x ∈ Ω, |t| � L.

Then problem (1.1) has infinitely many solutions (uk) such that ϕ(uk)→+∞ as k→∞ .
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REMARK 1.1. Theorem 1.1 unifies and improves Theorems A and B. It follows
from ( f ′2) that, for x ∈ Ω , |t| � L and s ∈ [L/|t|,1] ,

d
ds

(
F(x,st)

sμ

)
=

f (x,st)st − μF(x,st)
sμ+1 � 0,

which implies that

F(x,t) � |t|μ
Lμ F(x,Lt/|t|) � |t|μ

Lμ inf
x∈Ω,|t|=L

F(x,t)

for all x ∈ Ω and |t| � L . Noticing that μ > 4 and inf
x∈Ω,|t|=L

F(x,t) > 0, the above

inequality yields that

F(x, t)
t4

� |t|μ−4

Lμ inf
x∈Ω,|t|=L

F(x,t) → +∞ as |t| → ∞,

and then
t f (x,t)−4F(x,t) � (μ −4)F(x,t) � 0

for |t| sufficiently large. Therefore, ( f ′2) implies ( f2) and ( f4) , that is, Theorem
1.1 generalizes Theorem A. On the other hand, the conditions f (x,t)t � 0 for t > 0,
f (x,t) = o(|t|) as |t| → 0 uniformly in x ∈ Ω , and f (x,t)/t3 is an increasing function
of t � 0 in Theorem B are completely removed, and the uniformly coercivity condition
( f ′4) is replaced by the locally nonnegative condition ( f4) . Hence Theorem 1.1 extends
Theorem B. There are functionals f (x,t) satisfying our Theorem 1.1 and not satisfying
Theorems A and B. For example, let

f (x,t) =

{
4t3 ln |t|+ t3, |t| > 1,

−t3|t|+2t3, |t| � 1.

A simple computation shows that

F(x,t) =

⎧⎨
⎩

t4 ln |t|+3/10, |t| > 1,

− 1
5 |t|5 + 1

2 t4, |t| � 1,

and

t f (x,t)−4F(x,t) = t4− 6
5
, ∀x ∈ Ω, |t| � 1.

Thus it is easy to check that f satisfies all the conditions of Theorem 1.1. But is does
not satisfy the corresponding assumptions of Theorems A and B, because

t f (x,t)− μF(x,t) = (4− μ)t4 ln |t|+ t4− 3
10

μ

= t4
[
(4− μ) ln |t|+1− 3μ

10t4

]
→−∞ as |t| → ∞

for any μ > 4, and f (x,t)/t3 is nonincreasing in t for t ∈ (0,1) .
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THEOREM 1.2. The conclusion of Theorem 1.1 holds if we replace ( f4) with:
( f5) there exists r > 0 such that for all x ∈ Ω ,

f (x,t)
t3

is increasing in t � r.

REMARK 1.2. Theorem 1.2 also generalizes Theorem B, since the global mono-
tonicity condition ( f ′5) is replaced by the local one ( f5) and we remove the condi-
tions f (x, t) � 0 for t > 0, f (x,t) = o(|t|) as |t| → 0 uniformly in x , and 1

4 f (x,t)t −
F(x,t) → +∞ as |t| → ∞ uniformly in x . Furthermore, Theorem 1.2 can be viewed
as a useful complement of Sun and Tang [11, Theorem 3], in which a sequence of
high energy solutions are obtained under ( f1) , ( f2) , ( f3) and the following condition
introduced by Jeanjean [5]:
( f ′′5 ) there exists θ � 1 such that θF (x,t) � F (x,st) for all (x, t) ∈ Ω×R and
s ∈ [0,1] , where F (x,t) := f (x,t)t −4F(x,t) .
Although ( f ′′5 ) is weaker than the assumption ( f ′5) , both ( f ′5) and ( f ′′5 ) are global
conditions on f (x, t) , and therefore are not satisfactory. In Theorem 1.2 we consider
the local condition ( f5) near infinity, which is a quite generic assumption.

2. Proofs of the theorems

We shall apply the Fountain Theorem (see [12, Theorem 3.6]) to find the critical
points of ϕ . For the readers’ convenience, we state it here.

Let X be a reflexive and separable Banach space, then there are (en)n∈N ⊂ X and
(e∗n)n∈N ⊂ X∗ (the dual space of X ) such that

X = span{en : n ∈ N}, X∗ = span{e∗n : n ∈ N},

and 〈en,em〉 = 1 if n = m , and 〈en,em〉 = 0 if n �= m . Let Xj =span
{
e j

}
, then X =⊕

j�1 Xj . Now we define

Yk =
k⊕

j=1

Xj and Zk =
⊕
j�k

Xj. (2.1)

Then we have the following Fountain Theorem.

PROPOSITION 2.1. (Fountain Theorem) Assume that function ϕ ∈C1(X ,R) sat-
isfies ϕ(−u) = ϕ(u) . For almost every k ∈ N , there exist ρk > rk > 0 such that
(i) bk := inf

u∈Zk,‖u‖=rk
ϕ(u) → +∞ as k → ∞;

(ii) ak := max
u∈Yk,‖u‖=ρk

ϕ(u) � 0 ;

(iii) ϕ satisfies the Cerami condition (C), that is, (un) has a convergent subsequence
in X whenever {ϕ(un)} is bounded and ‖ϕ ′(u)‖(1+‖un‖) → 0 as n → ∞ .
Then ϕ has a sequence of critical points (uk) such that ϕ(uk) → +∞ .
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REMARK 2.1. In [12], the Fountain Theorem is established under the Palais-
Smale (PS) condition. Since the Deformation Theorem is still valid under the Cerami
condition, we see that like many critical point theorems, the Fountain Theorem holds
true under the Cerami condition.

LEMMA 2.1. Assume that ( f1) , ( f2) and ( f4) hold; then the functional ϕ de-
fined in (1.3) satisfies the Cerami condition (C).

Proof. Let (un) be a Cerami sequence of ϕ . Since the embedding of H1
0 (Ω) ↪→

Lr(Ω) (1 � r < 2∗) is compact, it suffices to show that (un) is bounded. If (un) is
unbounded, up to a subsequence, we can assume that, for some c1 ∈ R ,

ϕ(un) → c1, ‖ϕ ′(un)‖(1+‖un‖) → 0 and ‖un‖→ ∞ (2.2)

as n → ∞ . We consider wn = un/‖un‖ . Going if necessary to a subsequence, we may
assume that

wn ⇀ w in X ,

wn → w in Lr(Ω) (1 � r < 2∗), (2.3)

wn(x) → w(x) a.e. x ∈ Ω.

We first consider the case w = 0. It follows from ( f1) that

|F(t,x)| �
∫ 1

0
| f (x,st)||t|ds �

∫ 1

0
a1(|t|+ sp−1|t|p)ds � a1|t|+ a1

p
|t|p (2.4)

for all (x, t) ∈ Ω×R . Hence we have, for x ∈ Ω and |t| � L ,

|t f (x,t)−4F(x,t)| � 5a1(|t|+ |t|p) � c2|t|,

where c2 = 5a1(1+Lp−1) . This, together with ( f4) , shows that

t f (x,t)−4F(x,t) � −c2|t|, ∀(x,t) ∈ Ω×R.

Therefore,

1
‖un‖2

(
ϕ(un)− 1

4
〈ϕ ′(un),un〉

)
=

a
4

+
1

‖un‖2

∫
Ω

(
1
4

f (x,un)un−F(x,un)
)

dx

� a
4
− c2

4‖un‖
∫

Ω
|wn|dx,

which implies that

0 � a
4

by (2.2) and (2.3). This is a contradiction.
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For the second case w �= 0, the set Ω1 = {x ∈ Ω : w(x) �= 0} has positive Lebesgue
measure. For x ∈ Ω1 , we have |un(x)| → ∞ as n → ∞ , so that, using ( f2) ,

F(x,un(x))
|un(x)|4 |wn(x)|4 → +∞ as n → ∞,

and then, via Fatou’s Lemma (see [13]),

∫
w �=0

F(x,un)
|un|4 |wn|4dx → +∞ as n → ∞. (2.5)

On the other hand, by ( f2) , there exists L1 > 0 such that

F(x,t) � 0, ∀x ∈ Ω, |t| � L1. (2.6)

From (2.4), one has

|F(x,t)| � c3|t|, ∀x ∈ Ω, |t| � L1,

where c3 = a1 +a1L
p−1
1 /p . Combining this with (2.6), one has

F(x,t) � −c3|t|, ∀(x,t) ∈ Ω×R.

Hence we obtain, using (1.2),

∫
w=0

F(x,un)
‖un‖4 dx � −c3

∫
w=0 |un|dx
‖un‖4 � −c3|un|1

‖un‖4 � −c3τ1‖un‖
‖un‖4 ,

which implies that

liminf
n→∞

∫
w=0

F(x,un)
‖un‖4 dx � 0. (2.7)

Note
a
2
‖un‖2 +

b
4
‖un‖4 = ϕ(un)+

∫
Ω

F(x,un)dx, ∀n.

Dividing both sides by ‖un‖4 and letting n → ∞ , we deduce via (2.7), (2.5) and the
first limit of (2.2) that

b
4

= lim
n→∞

∫
Ω

F(x,un)
‖un‖4 dx = lim

n→∞

(∫
w=0

+
∫

w �=0

)
F(x,un)
|un|4 |wn|4dx = +∞.

This is impossible.
In any case, we deduce a contradiction. Hence (un) is bounded. �

Similar to the proof of [7, Lemma 2.3], we have the following lemma.
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LEMMA 2.2. If ( f5) holds, then for any x ∈ Ω , F (x,t) is increasing in t � L
and decreasing in t � −L, where F (x,t) is the same as in ( f ′′5 ) . In particular, there
exists a constant c4 > 0 such that

F (x,s) � F (x,t)+ c4 (2.8)

for all x ∈ Ω and |s| � |t| .

LEMMA 2.3. Assume that ( f1) , ( f2) and ( f5) hold; then the functional ϕ de-
fined in (1.3) satisfies the (C) condition.

Proof. Like in the proof of Lemma 2.1, it suffices to consider the case w = 0 and
w �= 0.

If w = 0, inspired by [5], we choose a sequence (sn) ⊂ R such that

ϕ(snun) = max
s∈[0,1]

ϕ(sun).

For any m > 0, letting vn =
√

2mwn , one has

vn → 0 in Lr(Ω) (1 � r < 2∗) and vn(x) → 0 a.e. x ∈ Ω (2.9)

by (2.3). Since

|F(x,un)| � a1|vn|+ a1

p
|vn|p ∈ L1(Ω),

using Lebesgue dominated convergence theorem and the second limit of (2.9), we have

lim
n→∞

∫
Ω

F(x,vn)dx =
∫

Ω
F(x,0)dx = 0.

Now, for n sufficiently large,
√

2m‖un‖−1 ∈ (0,1) , we obtain

ϕ(snun) � ϕ(vn)

� a
2
‖vn‖2−

∫
Ω

F(x,vn)dx

� am−
∫

Ω
F(x,vn)dx,

which implies that liminfn→∞ ϕ(snun) � am . By the arbitrariness of m , we have

lim
n→∞

ϕ(snun) = +∞. (2.10)

Since ϕ(0) = 0 and ϕ(un) → c1 (n → ∞) , we see that for n large enough, sn ∈ (0,1) ,
and

a
∫

Ω
|∇(snun)|2dx+b

(∫
Ω
|∇(snun)|2dx

)2

−
∫

Ω
f (x,snun)snundx
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= 〈ϕ ′(snun),snun〉 = sn
d
ds

∣∣∣∣
s=sn

ϕ(sun) = 0.

Therefore, using (2.10) and (2.8),

a
4

∫
Ω
|∇un|2dx+

∫
Ω

(
1
4

f (x,un)un−F(x,un)
)

dx

� a
4

∫
Ω
|∇(snun)|2dx+

∫
Ω

(
1
4

f (x,snun)snun−F(x,snun)
)

dx− c4

4
|Ω|

� a
2

∫
Ω
|∇(snun)|2dx+

b
4

(∫
Ω
|∇(snun)|2dx

)2

−
∫

Ω
F(x,snun)dx− c4

4
|Ω|

= ϕ(snun)− c4

4
|Ω|

→ +∞.

However, (2.2) implies that

a
4

∫
Ω
|∇un|2dx+

∫
Ω

(
1
4

f (x,un)un−F(x,un)
)

dx = ϕ(un)− 1
4
〈ϕ ′(un),un〉

→ c1,

a contradiction.
If w �= 0, the proof is identical to that of Lemma 2.1.
Thus (un) is bounded. �
PROOF OF THEOREM 1.1 For the Hilbert space X = H1

0 (Ω) , denoted by 0 < λ1 <
λ2 < · · · the distinct Dirichlet eigenvalues of −Δ on H1

0 (Ω) , and by e1 , e2 , e3 , · · · the
eigenfunctions corresponding to the eigenvalues. Then define Yk and Zk as in (2.1),
where Xj =span(e j) . According to Lemma 2.1 and the oddness of f , we know that ϕ
satisfies the (C) condition and ϕ(−u) = ϕ(u) . It remains to verify the conditions (i)
and (ii) of Proposition 2.1.

Verification of (i) . For 1 � r < 2∗ , taking

βk := sup
u∈Zk,‖u‖=1

|u|r,

one has βk → 0 as k → ∞ (see [12, Lemma 3.8]). Set

rk :=
( bp

16a1β p
k

)1/(p−4)
.

Since p > 4, we get
rk → +∞ as k → ∞.

So choosing k large enough such that rk �
(

16a1τ1
b

)1/3
, we obtain, for u ∈ Zk with

‖u‖ = rk ,

ϕ(u) =
a
2
‖u‖2 +

b
4
‖u‖4−

∫
Ω

F(x,u)dx
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� b
4
‖u‖4−a1|u|1− a1

p
|u|pp

� b
4
‖u‖4−a1τ1‖u‖− a1

p
β p

k ‖u‖p

� br4
k

8

by (2.4) and (1.2), which yields that

inf
u∈Zk,‖u‖=rk

ϕ(u) � br4
k

8
→ +∞ as k → ∞.

Verification of (ii) . Since on the finite-dimensional space Yk all norms are equiv-
alent, there exists Ck > 0 such that

Ck|u|4 � ‖u‖, ∀u ∈ Yk. (2.11)

From ( f2) we deduce that, there exists δk > 0 such that

F(x,t) � C4
k bt4, ∀x ∈ Ω, |t| � δk.

By (2.4), one has

|F(x,t)| �
(

a1 +
a1

p
δ p−1

k

)
|t|, ∀x ∈ Ω, |t| � δk,

which implies that

F(x,t) � C4
k bt4− c5|t|, ∀(x,t) ∈ Ω×R,

where c5 = C4
k bδ 3

k +a1 +a1δ p−1
k /p . Combining this with (2.11) and (1.2), we obtain

ϕ(u) � a
2
‖u‖2 +

b
4
‖u‖4−C4

k b|u|44 + c5|u|1

� a
2
‖u‖2 +

b
4
‖u‖4−b‖u‖4 + c5τ1‖u‖

� a
2
‖u‖2 + c5τ1‖u‖− 3b

4
‖u‖4 (2.12)

for all u ∈ Yk . So choosing

ρk > max

{(
2a
b

)1/2

,

(
4c5τ1

b

)1/3

,rk

}
,

inequality (2.12) implies that

max
u∈Yk,‖u‖=ρk

ϕ(u) � −bρ4
k

4
< 0.
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Consequently, by Proposition 2.1, ϕ possesses a sequence of critical points (uk) such
that ϕ(uk) → +∞ as k → ∞ . �

PROOF OF THEOREM 1.2 By virtue of Lemma 2.3 and assumption ( f3) , we see
that ϕ satisfies the (C) condition and is even in u . Like in the proof of Theorem
1.1, assumptions ( f1) and ( f2) indicate that ϕ satisfies the conditions (i) and (ii) of
Proposition 2.1. Hence Theorem 1.2 holds. �
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