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SYSTEMS OF ELLIPTIC EQUATIONS INVOLVING MULTIPLE

INVERSE–SQUARE POTENTIALS AND CRITICAL EXPONENTS

DONGSHENG KANG AND XIAOFENG SHEN

(Communicated by Chun-Lei Tang)

Abstract. In this paper, a system of elliptic equations is investigated, which involves multiple
critical Sobolev exponents and singular points. The best Sobelev constant related to the system
is studied, which is verified to be independent of the location of singular points. By a variant
of the concentration compactness principle and the mountain-pass argument, the existence of
positive solutions to the system is proved. At last, the existence of sign-changing solutions to the
system is also established on the basis of the mountain-pass-type positive solutions.

1. Introduction

In this paper, we study the following system of elliptic equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δu−
k

∑
i=1

λiu
|x−ai|2 =

σ α
2∗

|u|α−2|v|β u+ |u|2∗−2u+ σ1u+ σ2v,

−Δv−
k

∑
i=1

μiv
|x−bi|2 =

σβ
2∗

|u|α |v|β−2v+ |v|2∗−2v+ σ2u+ σ3v,

u,v ∈ H1
0 (Ω),

(1.1)

where Ω ⊂ R
N (N � 3) is a bounded domain with the smooth boundary ∂Ω such that

ai, bi ∈ Ω, λi,μi < λ :=
(N−2

2

)2
,1 � i � k,

σ � 0, σ1,σ2,σ3 ∈ R, α,β > 1, α + β = 2∗ :=
2N

N−2
,

H1
0 (Ω) =: H denotes the completion of C∞

0 (Ω) with respect to

(∫
Ω
|∇ · |2 dx

)1/2
,

λ is the best Hardy constant and 2∗ is the critical Sobolev exponent.
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Define the functional of (1.1) on the product space H1
0 (Ω)×H1

0 (Ω) =: H×H by

J(u,v) :=
1
2

∫
Ω

(
|∇u|2 + |∇v|2−

k

∑
i=1

( λiu2

|x−ai|2 +
μiv2

|x−bi|2
))

dx

− 1
2∗

∫
Ω

(|u|2∗ + |v|2∗ + σ |u|α |v|β )dx− 1
2

∫
Ω

(
σ1u

2 +2σ2uv+ σ3v
2)dx.

Then J ∈C1(H ×H,R) and (u0,v0) ∈ H×H is said to be a solution of (1.1) if

(u0,v0) �= (0,0), 〈J′(u0,v0),(ϕ ,φ)〉 = 0, ∀(ϕ ,φ) ∈ H ×H,

where J′(u0,v0) denotes the Fréchet derivative of J at (u0,v0). A solution of (1.1) is
equivalent to a nonzero critical point of J , and standard elliptic argument shows that

u0,v0 ∈C2(Ω\ {ai,bi,1 � i � k})∩C1(Ω\ {ai,bi,1 � i � k}). (1.2)

By (1.2), the singularities of u0 and v0 may occur at the points ai and bi(1 � i � k).
To study (1.1) , the following Hardy inequality is used ([13]):

∫
RN

|u|2
|x−a|2 dx � 1

λ

∫
RN

|∇u|2 dx , ∀ u ∈C∞
0 (RN), a ∈ R

N . (1.3)

Let D1,2(RN) =: D be the completion of C∞
0 (RN) with respect to (

∫
RN |∇ · |2 dx)1/2 .

Then the following best constant is well defined by (1.3):

S(λ ) := inf
u∈D1,2(RN )\{0}

∫
RN

(|∇u|2−λ u2

|x−a|2
)
dx(∫

RN |u|2∗dx
) 2

2∗
, λ < λ , a ∈ R

N . (1.4)

For all λ ∈ [0,λ), S(λ ) is achieved by the extremal functions ([23]):

Va
λ ,ε(x) := ε−

N−2
2 Uλ

(
ε−1|x−a|) , ∀λ ∈ [0,λ), ε > 0, (1.5)

where

Uλ (x) =
(4N(λ −λ )

N−2

)√
λ

2
(
|x|

√
λ−

√
λ−λ√

λ + |x|
√

λ+
√

λ−λ√
λ

)−√λ
.

Similarly, for all λ , μ ∈ (−∞,λ ), σ ∈ [0,∞) and a,b∈ R
N , by the Hardy, Young

and Sobolev inequalities, the following best constants are well defined on the space
D := (D1,2(RN)\ {0})2 :

Sσ ,α ,β (λ ,μ) := inf
(u,v)∈D

∫
RN

(
|∇u|2 + |∇v|2− λu2

|x−a|2 −
μv2

|x−b|2
)
dx

(∫
RN

(|u|2∗ + |v|2∗ + σ |u|α |v|β )dx
) 2

2∗
, (1.6)
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Sσ ,α ,β (λ ,μ) := inf
(u,v)∈D

∫
RN

(
|∇u|2 + |∇v|2− λu2 + μv2

|x|2
)
dx

(∫
RN

(|u|2∗ + |v|2∗ + σ |u|α |v|β)dx
) 2

2∗
. (1.7)

The relations between two constants are verified in Theorem 1 of this paper.
In recent years, much attention has been paid to the singular problems involving

the Hardy inequality and critical exponents, and many important conclusions have been
established (e.g. [1], [6], [7], [9], [10], [12], [16], [18], [23] and the references therein).
On the other hand, the elliptic systems involving the Hardy inequality have been also
studied, several results can be found (e.g. [2], [4], [14], [15], [17], [21]), and many chal-
lenging topics remain open. Therefore it is necessary for us to investigate the related
singular systems deeply.

To continue, we define

Q1(u,v) :=
∫

Ω

(
|∇u|2 + |∇v|2−

k

∑
i=1

( λiu2

|x−ai|2 +
μiv2

|x−bi|2
))

dx, (1.8)

Q2(u,v) := (u,v)A(u,v)T = σ1u
2 +2σ2uv+ σ3v

2, A :=
(

σ1 σ2

σ2 σ3

)
, (1.9)

Λ1 := inf
(u,v)∈H×H\{(0,0)}

Q1(u,v)∫
Ω(u2 + v2)dx

.

Some assumptions are needed in this paper:

(H1) N � 3, k � 2, σ � 0, λ1 � λ2 � · · · � λk < λ , μ1 � μ2 � · · · � μk < λ ,
ai,bi ∈ Ω, ai �= a j, bi �= b j, i, j ∈ {1,2, · · · ,k}, i �= j, α,β > 1, α +β = 2∗,

∑
1�i�k,λi>0

λi < λ , ∑
1�i�k,μi>0

μi < λ .

(H2) σi > 0, i = 1,2,3, σ1σ3 −σ2
2 > 0, 0 < θ1 � θ2 < Λ1, where θ1 and θ2

are the eigenvalues of the matrix A .

Under (H1) and (H2) , Q1(u,v) and Q2(u,v) are positive definite. Furthermore,

θ1(u2 + v2) � Q2(u,v) � θ2(u2 + v2), ∀u,v ∈ H.

Define

f (τ) :=
1+ τ2

(1+ στβ + τα+β )
2

α+β
, τ � 0, (1.10)

f (τmin) := min
τ�0

f (τ) > 0, (1.11)

where τmin � 0 is the unique minimal point of f (τ), τ � 0. When σ = 0, we have
τmin = 0 and f (τmin) = 1.

The main results of this paper are summarized in the following theorems. To the
best of our knowledge, the conclusions are new.
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THEOREM 1. Suppose that λ ,μ < λ , a,b ∈ R
N , σ � 0, α,β > 1,α + β = 2∗.

Then the best constant Sσ ,α ,β (λ ,μ) defined in (1.6) is independent of the singular
points a and b in the sense that,

(i) Sσ ,α ,β (λ ,μ) = Sσ ,α ,β (λ ,μ), ∀a,b ∈ R
N , ∀λ ,μ ∈ [0,λ);

(ii) Sσ ,α ,β (λ ,μ) = Sσ ,α ,β (λ ,0), ∀a,b ∈ R
N ,a �= b, ∀λ ∈ [0,λ ), μ ∈ (−∞,0],

Sσ ,α ,β (λ ,μ) = Sσ ,α ,β (0,μ), ∀a,b ∈ R
N ,a �= b, ∀λ ∈ (−∞,0], μ ∈ [0,λ );

(iii) Sσ ,α ,β (λ ,μ) = Sσ ,α ,β (λ ,μ), ∀a = b ∈ R
N , ∀λ ,μ ∈ (−∞,λ );

(iv) Sσ ,α ,β (λ ,μ) = Sσ ,α ,β (0,0), ∀a,b ∈ R
N , ∀λ ,μ ∈ (−∞,0].

Theorem 1 reveals that Sσ ,α ,β (λ ,μ) depends closely on λ and μ , and is inde-
pendent of the singular points a and b . The result is crucial when establishing a local
(PS)c condition of the functional J by the concentration compactness arguments.

THEOREM 2. Suppose that (H1) and (H2) hold, N � 4, 0 � λk = μk � λ −1,
ak = bk and C1 > 0, where

C1 := σ1 +2σ2τmin + σ3(τmin)2 +
k−1

∑
i=1

( λi

|ai−ak|2 +
(τmin)2μi

|bi−bk|2
)
.

Then the problem (1.1) has a positive solution.

Theorem 2 is verified by the Mountain-Pass theorem and reveals that, the existence
of mountain-pass-type positive solutions to (1.1) depends mainly on the location and
strength of the singular points ai,bi, i = 1,2, · · · ,k. The condition ak = bk and λk =
μk ∈ [0,λ) means that, to ensure the existence results, the singularities of ak and bk

must be exactly the same. Note that the condition C1 > 0 can be satisfied easily, and
the location and strength of the singular points ai,bi, i = 1,2, · · · ,k−1, can be chosen
arbitrarily under the condition C1 > 0.

THEOREM 3. Suppose that (H1) and (H2) hold, N � 7, 0 � λk = μk � λ −4,
σ = 0, ak = bk and C1 > 0. Furthermore, assume that either C2 > 0 or C3 > 0, where

C2 := σ1 +
k−1

∑
i=1

λi

|ai −ak|2 , C3 := σ3 +
k−1

∑
i=1

μi

|bi−bk|2 .

Then the problem (1.1) has a pair of sign-changing solutions.

Theorem 3 shows that, the existence of sign-changing solutions to (1.1) can be en-
sured when σ = 0, i.e., when the strongly-coupled terms |u|α−2|v|β u and |u|α |v|β−2v
disappear in (1.1). If σ > 0 and the strongly-coupled terms appear in (1.1), the sign-
changing solutions of (1.1) could not be ensured (e.g. [21]).

When k = 1 in (1.1), the existence of both positive and sign-changing solutions
has been established in [15] under the condition a1 = b1, λ1 = μ1 . However, when
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k � 2 and there are multiple singular points in (1.1), some new questions appear, such
as the independence of Sσ ,α ,β (λ ,μ) with respect to the singular points a and b, and
the variant of concentration compactness principle for elliptic systems. In this paper,
we overcome all these difficulties and establish the existence results. Our ideas and
technics are new and can be applied to the related elliptic systems.

This paper is organized as follows: Theorem 1 and some preliminary results are
verified in Section 2, Theorem 2 is proved in Section 3 and Theorem 3 is established
in Section 4. In the following argument, ‖u‖ = (

∫
Ω |∇u|2 dx)1/2 denotes the norm of

the space H, ‖(u,v)‖H×H = (‖u‖2 +‖v‖2)1/2 is the norm of the space H ×H, O(εt )
denotes the quantity satisfying |O(εt )|/εt �C , o(εt) means |o(εt)|/εt → 0 as ε → 0
and o(1) is a generic infinitesimal value. In particular, the quantity O1(εt ) means that
there exist the constants C1,C2 > 0 such that C1εt � O1(εt) � C2εt as ε small. We
always denote positive constants as C and omit dx in integrals for convenience.

2. Palais-Smale condition and the best constant

We first verify that the best constant Sσ ,α ,β (λ ,μ) defined in (1.6) is independent
of the singular points a and b, and establish Theorem 1.

PROOF OF THEOREM 1. We need to consider several cases.

(i) λ � 0, μ � 0, a,b ∈ R
N .

For all w ∈ D1,2(RN) such that w � 0 a.e. in R
N , let w∗(x) be the Schwarz

symmetrization of w , i.e.

w∗(x) = inf{t > 0 : |{y ∈ R
N ,w(y) > t}| � ωN |x|N}.

Suppose that a,b ∈ R
N ,u,v ∈ D1,2(RN) such that u,v � 0 a.e. in R

N . From Corollary
21.7 and Theorem 21.8 in [26] it follows that∫

RN
|u|α |v|β �

∫
RN

|u∗(x)|α |v∗(x)|β ,

∫
RN

|u|2∗ =
∫

RN
|u∗(x)|2∗ ,

∫
RN

|v|2∗ =
∫

RN
|v∗(x)|2∗ ,

∫
RN

u2

|x−a|2 �
∫

RN
|u∗(x)|2

(( 1
|x−a|

)∗)2
=
∫

RN

|u∗(x)|2
|x|2 ,

∫
RN

v2

|x−a|2 �
∫

RN
|v∗(x)|2

(( 1
|x−a|

)∗)2
=
∫

RN

|v∗(x)|2
|x|2 ,

where we have used the fact that
(

1
|x−ξ |

)∗ = 1
|x| for all ξ ∈ R

N . From the Pólya-Szegö
inequality it follows that

∫
RN

|∇u∗|2 �
∫

RN
|∇u|2 ,

∫
RN

|∇v∗|2 �
∫

RN
|∇v|2 .



98 DONGSHENG KANG AND XIAOFENG SHEN

Therefore, for all u,v ∈ D1,2(RN) such that u,v � 0 a.e. in R
N , we have that

∫
RN

(
|∇u|2 + |∇v|2− λu2

|x−a|2 −
μv2

|x−b|2
)

(∫
RN

(|u|2∗ + |v|2∗ + σ |u|α |v|β )
) 2

2∗

�

∫
RN

(
|∇u∗|2 + |∇v∗|2− λ |u∗|2 + μ |v∗|2

|x|2
)

(∫
RN

(|u∗|2∗ + |v∗|2∗ + σ |u∗|α |v∗|β )
) 2

2∗
� Sσ ,α ,β (λ ,μ). (2.1)

Note that the Rayleigh quotient above remains unchanged when replacing u and v with
|u| and |v| respectively. Then

Sσ ,α ,β (λ ,μ) = inf
(u,v)∈D ,u,v�0

∫
RN

(
|∇u|2 + |∇v|2− λu2

|x−a|2 −
μv2

|x−b|2
)

(∫
RN

(
u2∗ + v2∗ + σuαvβ )) 2

2∗
,

which together with (2.1) implies that

Sσ ,α ,β (λ ,μ) � Sσ ,α ,β (λ ,μ). (2.2)

For all u,v ∈C∞
0 (RN), the rescaled functions

uρ(x) := ρ
2−N

2 u(x/ρ) and vρ(x) := ρ
2−N

2 v(x/ρ)

satisfy

∫
RN

(
|∇uρ(x)|2 + |∇vρ(x)|2 − λuρ(x)2

|x−a|2 − μvρ(x)2

|x−b|2
)

(∫
RN

(|uρ(x)|2∗ + |vρ(x)|2∗ + σ |uρ(x)|α |vρ(x)|β )) 2
2∗

=

∫
RN

(
|∇u(x)|2 + |∇v(x)|2− λu(x)2

|x− a
ρ |2

− μv(x)2

|x− b
ρ |2
)

(∫
RN

(|u(x)|2∗ + |v(x)|2∗ + σ |u(x)|α |v(x)|β )) 2
2∗

,

=

∫
RN

(
|∇u(x)|2 + |∇v(x)|2− λu(x)2

|x|2 − μv(x)2

|x|2
)

(∫
RN

(|u(x)|2∗ + |v(x)|2∗ + σ |u(x)|α |v(x)|β )) 2
2∗

+o(1), as ρ → ∞.
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Taking ρ → ∞ and together with the density of C∞
0 (RN) in D1,2(RN) , we have that∫

RN

(
|∇u|2 + |∇v|2− λu2 + μv2

|x|2
)

(∫
RN

(|u|2∗ + |v|2∗ + σ |u|α |v|β)) 2
2∗

� Sσ ,α ,β (λ ,μ), ∀u,v ∈ D1,2(RN),

which implies that
Sσ ,α ,β (λ ,μ) � Sσ ,α ,β (λ ,μ). (2.3)

From (2.2) and (2.3) it follows that

Sσ ,α ,β (λ ,μ) = Sσ ,α ,β (λ ,μ). (2.4)

(ii) λ � 0, μ < 0, a �= b.

Arguing as above, for all u,v ∈ D1,2(RN) such that u,v � 0 a.e. in R
N , we have

∫
RN

(
|∇u|2 + |∇v|2− λu2

|x−a|2 −
μv2

|x−b|2
)

(∫
RN

(|u|2∗ + |v|2∗ + σ |u|α |v|β )
) 2

2∗

�

∫
RN

(
|∇u∗|2 + |∇v∗|2 −λ

|u∗|2
|x|2

)
(∫

RN
(|u∗|2∗ + |v∗|2∗ + σ |u∗|α |v∗|β )

) 2
2∗

� Sσ ,α ,β (λ ,0),

which implies that
Sσ ,α ,β (λ ,μ) � Sσ ,α ,β (λ ,0). (2.5)

Arguing as in case (i), for all u,v ∈C∞
0 (RN), the rescaled functions

uρ(x) := ρ
2−N

2 u(x/ρ) and vρ(x) := ρ
2−N

2 v(x/ρ)

satisfy ∫
RN

(
|∇uρ(x−a)|2 + |∇vρ(x−a)|2− λuρ(x−a)2

|x−a|2 − μvρ(x−a)2

|x−b|2
)

(∫
RN

(|uρ(x−a)|2∗ + |vρ(x−a)|2∗ + σ |uρ(x−a)|α |vρ(x−a)|β)) 2
2∗

=

∫
RN

(
|∇u(x)|2 + |∇v(x)|2− λu(x)2

|x|2 − μv(x)2

|x+ a−b
ρ |2

)
(∫

RN

(|u(x)|2∗ + |v(x)|2∗ + σ |u(x)|α |v(x)|β)) 2
2∗

=

∫
RN

(
|∇u(x)|2 + |∇v(x)|2−λ

u(x)2

|x|2
)

(∫
RN

(|u|2∗ + |v|2∗ + σ |u|α |v|β)) 2
2∗

+o(1), as ρ → 0.
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Taking ρ → 0 and by the density of C∞
0 (RN) in D1,2(RN) , we have

∫
RN

(
|∇u|2 + |∇v|2−λ

u2

|x|2
)

(∫
RN

(|u|2∗ + |v|2∗ + σ |u|α |v|β)) 2
2∗

� Sσ ,α ,β (λ ,μ), ∀u,v ∈ D1,2(RN),

which implies that
Sσ ,α ,β (λ ,0) � Sσ ,α ,β (λ ,μ). (2.6)

Then from (2.5) and (2.6) it follows that

Sσ ,α ,β (λ ,μ) = Sσ ,α ,β (λ ,0). (2.7)

Similarly, if λ < 0, μ � 0, a �= b, arguing as above we have that

Sσ ,α ,β (λ ,μ) = Sσ ,α ,β (0,μ). (2.8)

(iii) λ ,μ ∈ (−∞,λ ), a = b ∈ R
N .

For all u,v ∈ D1,2(RN), set u(x) = u(x+a) and v(x) = v(x+a). Then

∫
RN

(
|∇u|2 + |∇v|2− λu2 + μv2

|x−a|2
)

(∫
RN

(|u|2∗ + |v|2∗ + σ |u|α |v|β )
) 2

2∗

=

∫
RN

(
|∇u|2 + |∇v|2 − λ u2 + μ v2

|x|2
)

(∫
RN

(|u|2∗ + |v|2∗ + σ |u|α |v |β )
) 2

2∗
� Sσ ,α ,β (λ ,μ),

which implies that Sσ ,α ,β (λ ,μ) � Sσ ,α ,β (λ ,μ). Similarly,

Sσ ,α ,β (λ ,μ) � Sσ ,α ,β (λ ,μ).

Then
Sσ ,α ,β (λ ,μ) = Sσ ,α ,β (λ ,μ). (2.9)

(iv) λ ,μ ∈ (−∞,0], a,b ∈ R
N .

In this case, the argument is similar with that of case (ii), and the first part is almost
the same. In the second part, we only need to use the rescaling functions uρ(x− c) and
vρ(x− c) such that c ∈ R

N \ {a,b}. Then we have that

Sσ ,α ,β (λ ,μ) = Sσ ,α ,β (0,0). (2.10)

The proof is complete according to (2.4) and (2.7)-(2.10). �
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LEMMA 1. (see [15, Theorem 1.1]) Suppose that (H1) holds. Then

(i) Sσ ,α ,β (λ ,λ ) = f (τmin)S(λ ), S0,α ,β (λ ) = S(λ ), ∀λ ∈ (0,λ ).

(ii) Sσ ,α ,β (λ ,λ ) = Sσ ,α ,β (0) = f (τmin)S(0), S0,α ,β (λ ,λ ) = S(0), ∀λ ∈ (−∞,0].

LEMMA 2. Suppose that (H1) and (H2) hold. Then the functional J satisfies
the (PS)c condition for all c < c∗ = 1

N S N/2, where

S := min

{
Sσ ,α ,β (0,0), Sσ ,α ,β (λi,0), Sσ ,α ,β (0,μi),

Sσ ,α ,β (λi,μi), i = 1,2, · · · ,k

}
. (2.11)

Proof. Suppose that the sequence {(un,vn)} ⊂ H ×H satisfies

J(un,vn) → c < c∗, J′(un,vn) → 0 in (H ×H)−1,

where (H ×H)−1 is the dual space of H×H. It is standard to show that {(un,vn)} is
bounded in H×H. Up to a subsequence and for some (u,v) ∈ H ×H we have

(un,vn) ⇀ (u,v) weakly in H ×H, (un,vn) → (u,v) a.e. in Ω,

(un,vn) → (u,v) strongly in Lq1(Ω)×Lq2(Ω), ∀q1,q2 ∈ [1,2∗).

By a result of [17], which is a direct application of Lions’ concentration compactness
principle ([19], [20]) to systems of elliptic equations, and up to a subsequence (still
denoted by {(un,vn)} ), there exists an at most countable set J , a set of points x j ∈
Ω\{ai,bi, i = 1,2, · · · ,k}, real numbers ρx j , νx j , j ∈J , and ρai , νai , γai , ρ̃bi , ν̃bi , γ̃bi ,
i = 1,2, · · · ,k, such that the following convergences hold in the sense of measures:

|∇un|2 + |∇vn|2 ⇀ dρ � |∇u|2 + |∇v|2 +
k

∑
i=1

(ρaiδai + ρ̃biδbi)+ ∑
j∈J

ρx j δx j ,

⎧⎪⎨
⎪⎩

|un|2∗ + |vn|2∗ + σ |un|α |vn|β

⇀ dν = |u|2∗ + |v|2∗ + σ |u|α |v|β +
k

∑
i=1

(νaiδai + ν̃biδbi)+ ∑
j∈J

νx j δx j ,

⎧⎪⎪⎨
⎪⎪⎩

λi
u2

n

|x−ai|2 ⇀ dγai = λi
u2

|x−ai|2 + γaiδai , i = 1,2, · · · ,k,

μi
v2
n

|x−bi|2 ⇀ dγ̃bi = μi
v2

|x−bi|2 + γ̃biδbi , i = 1,2, · · · ,k,

where δx is the Dirac mass at x.

(i) We first consider the concentration at x j ∈ R
N\{ai, bi,1 � i � k}, j ∈ J .
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For ε > 0 small enough, take φ j
ε ∈ C∞

0 (Bε(x j)) such that φ j
ε = 1 in Bε/2(x j) ,

0 � φ j
ε � 1 and |∇φ j

ε | � 4
ε in Bε(x j) . Then

〈J′(un,vn),(unφ j
ε ,vnφ j

ε )〉
=
∫

Ω
(|∇un|2 + |∇vn|2)φ j

ε −
∫

Ω

k

∑
i=1

( λiu2
n

|x−ai|2 +
μiv2

n

|x−bi|2
)

φ j
ε

+
∫

Ω

(
un∇un + vn∇vn

)
∇φ j

ε −
∫

Ω

(
σ1u

2
n +2σ2unvn + σ3v

2
n

)
φ j

ε

−
∫

Ω

(|un|2∗ + |vn|2∗ + σ |un|α |vn|β
)
φ j

ε .

Standard argument shows that

lim
ε→0

lim
n→∞

∫
Ω
(un∇un + vn∇vn)∇φ j

ε = 0, (2.12)

lim
ε→0

lim
n→∞

∫
Ω
(|∇un|2 + |∇vn|2)φ j

ε = lim
ε→0

∫
Ω

φ j
ε dρ � ρx j , (2.13)

lim
ε→0

lim
n→∞

∫
Ω
(|un|2∗ |+ |vn|2∗ + σ |un|α |vn|β )φ j

ε = lim
ε→0

∫
Ω

φ j
ε dν = νx j , (2.14)

⎧⎪⎨
⎪⎩

lim
ε→0

lim
n→∞

∫
Ω

( λiu2
n

|x−ai|2 +
μiv2

n

|x−bi|2
)

φ j
ε

= lim
ε→0

lim
n→∞

O1

(∫
Ω
(u2

n + v2
n)φ

j
ε

)
= 0, 1 � i � k,

(2.15)

lim
ε→0

lim
n→∞

∫
Ω
(σ1u

2
n +2σ2unvn + σ3v

2
n)φ

j
ε = 0. (2.16)

From (2.12)-(2.16) it follows that

0 = lim
ε→0

lim
n→∞

〈J′(un,vn),(unφ j
ε ,vnφ j

ε )〉 � ρx j −νx j . (2.17)

The Sobolev inequality implies that

Sσ ,α ,β (0,0)(νx j )
2
2∗ � ρx j , ∀ j ∈ J . (2.18)

By (2.17) and (2.18), we deduce that

νx j = 0 or νx j � (Sσ ,α ,β (0,0))N/2, ∀ j ∈ J , (2.19)

which implies that the set J is finite.

(ii) Next we consider the concentration at the points ai and bi (1 � i � k) .

If ai = bi, for ε > 0 small enough, take ϕ i
ε(x) ∈C∞

0 (Bε(ai)) such that ϕ i
ε(x) = 1

in Bε/2(ai), 0 � ϕ i
ε (x) � 1 and |∇ϕ i

ε | � 4
ε in Bε(ai). Then arguing as in (i) we have{

0 = lim
ε→0

lim
n→∞

〈J′(un,vn),(unϕ i
ε ,vnϕ i

ε )〉
� ρai + ρ̃ai − (γai + γ̃ai)− (νai + ν̃ai).

(2.20)
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By (1.6) we have

Sσ ,α ,β (λi,μi)(νai + ν̃ai)
2
2∗ � ρai + ρ̃ai − (γai + γ̃ai). (2.21)

From (2.20) and (2.21) it follows that

νai = ν̃ai = 0 or νai + ν̃ai � (Sσ ,α ,β (λi,μi))N/2. (2.22)

If ai �= bi , since J is finite and {x j} j∈J ⊂ Ω\{ai,bi,1 � i � k}, we can take
ε > 0 small such that bi,x j /∈ Bε(ai), 1 � i � k, j ∈ J . Choose ϕai(x) ∈C∞

0 (Bε (ai))
such that ϕai(x) = 1 in Bε/2(ai), 0 � ϕai(x) � 1 and |∇ϕai | � 4

ε in Bε(ai). Then

0 = lim
ε→0

lim
n→∞

〈J′(un,vn),(unϕ i
ε ,vnϕ i

ε)〉 � ρai − γai −νai . (2.23)

By (1.6) we have

Sσ ,α ,β (λi,0)(νai)
2
2∗ � ρai − γai , 1 � i � k. (2.24)

From (2.23) and (2.24) it follows that

νai = 0 or νai � (Sσ ,α ,β (λi,0))N/2. (2.25)

Similarly, at the point bi(bi �= ai) , we deduce that

ν̃bi = 0 or ν̃bi � (Sσ ,α ,β (0,μi))N/2. (2.26)

Note that

c = J(un,vn)− 1
2
〈J′(un,vn),(un,vn)〉+o(1)

=
1
N

∫
Ω
(|un|2∗ + |vn|2∗ + σ |un|α |vn|β ))+o(1)

=
1
N

(∫
Ω
(|u|2∗ + |v|2∗ + σ |u|α |v|β )+

k

∑
i=1

(νai + ν̃bi)+ ∑
j∈J

νx j

)
.

Since c < c∗ , from (2.19), (2.22), (2.25) and (2.26) it follows that

νai = ν̃bi = 0, i = 1,2, · · · ,k ; νx j = 0 , ∀ j ∈ J .

Up to a subsequence, (un,vn) → (u,v) strongly in H×H . �

Let ρ > 0 be a constant small enough and Vak
λk,ε

(x) be the extremal defined as in

(1.5). Set uak
λk,ε

(x) = ψak(x)V
ak
λk,ε

(x), where ψak(x) ∈C∞
0 (Bρ(ak)) is a cut-off function

such that ψak(x) ≡ 1 in Bρ/2(ak) , 0 � ψak � 1 and ∇ψak � 4
ε in Bρ(ak) .
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LEMMA 3. (see [18, Theorem 1.1]) As ε → 0 , the following estimates hold:

∫
Ω

(
|∇uak

λk,ε
|2 −λk

|uak
λk,ε

|2
|x−ak|2

)
= S(λk)

N
2 +O(ε2

√
λ−λk),

∫
Ω
|uak

λk,ε
|2∗ = S(λk)

N
2 +O(ε2∗

√
λ−λk),

∫
Ω
|u0

λk,ε |
2 =

{
ε2 ∫

RN |Uλk
(x)|2 +o(ε2), λk < λ −1,

C2
λk

ωNε2| lnε|+O(ε2), λk = λ −1,

∫
Ω

|u0
λk,ε

|2
|x+ ξ |2 =

⎧⎨
⎩

ε2

|ξ |2
∫
RN |Uλk

(x)|2 +o(ε2), λk < λ −1,

1
|ξ |2C

2
λk

ωNε2| lnε|+O(ε2), λk = λ −1,

where ξ ∈R
N\{0}, Cλk

= ( 4N(λ−λk)
N−2 )

N−2
4 and ωN is the volume of the unit ball in R

N .

LEMMA 4. Under the assumptions of Theorem 2, there exists a pair of functions
(ũ, ṽ) ∈ H×H \ {(0,0)} such that supt�0 J(tũ,tṽ) < c∗.

Proof. Suppose that

N � 4, ak = bk, λk = μk ∈ [0,λ −1], C1 > 0.

Since Sσ ,α ,β (λ ,μ) is decreasing with respect to λ and μ , by (H1) we have that

c∗ =
1
N

Sσ ,α ,β (λk,λk).

Consider the function

g(t) = J(tuak
λk,ε

, tτminu
ak
λk,ε

).

Note that
lim

t→+∞
g(t) = −∞ and g(t) > 0 as t → 0.

Thus supt�0 g(t) is attained at some finite tε > 0 with g′(tε) = 0. As ε small enough,
from Lemma 3 we derive that c1 < tε < c2, where c1 and c2 are the positive constants
independent of ε. Note that

∫
Ω |uak

λk,ε
|2 =

∫
Ω |u0

λk,ε
|2, and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

k−1

∑
i=1

(λi|uak
λk,ε

|2
|x−ai|2 +

μi(τmin)2|uak
λk,ε

|2
|x−bi|2

)

=
∫

Ω

k−1

∑
i=1

( λi|u0
λk,ε

|2
|x+(ai−ak)|2 +

μi(τmin)2|u0
λk,ε

|2
|x+(bi−bk)|2

)
,

max
t�0

( t2

2
A1− t2

∗

2∗
A2

)
=

1
N

(
A1A

− 2
2∗

2

)N
2
, A1 > 0, A2 > 0. (2.27)
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If 0 � λk < λ −1, from (2.27) and Lemmas 1 and 3 it follows that

g(tε) � 1
N

((
1+(τmin)2

)
S(λk)

N
2 +O(ε2

√
λ−λk)−C1

∫
RN |Uλk

(x)|2ε2 +o(ε2)(
1+ σ(τmin)β +(τmin)α+β

) 2
2∗
(
S(λk)

N
2 +O(ε2∗

√
λ−λk)

) 2
2∗

) N
2

=
1
N

( f (τmin)S(λk))
N
2 +O(ε2

√
λ−λk)−O1(ε2)+o(ε2)

<
1
N

(Sσ ,α ,β (λk,λk))
N
2 .

If 0 � λk = λ −1, we have that

g(tε) � 1
N

( f (τmin)S(λk))
N
2 +O(ε2

√
λ−λk)−O1(ε2| lnε|)+O(ε2) < c∗.

The proof is thus complete. �
PROOF OF THEOREM 2. For any (u,v) ∈ H ×H \ {(0,0)} , from the Hardy and
Sobolev inequalities it follows that

J(u,v) � C(‖u‖2 +‖v‖2−‖u‖2∗ −‖v‖2∗ −‖(u,v)‖2∗
H×H)

� C‖(u,v)‖2
H×H −C‖(u,v)‖2∗

H×H ,

and there exists a positive number ρ small enough such that

b := inf
‖(u,v)‖H×H=ρ

J(u,v) > 0 = J(0,0).

Set c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)), where

Γ = {γ ∈C([0,1],H×H) |γ(0) = (0,0), J(γ(1)) < 0, ‖γ(1)‖ > ρ} .

Since J(tu, tv) →−∞ as t → ∞, there exists t0 > 0 such that

‖(t0u,t0v)‖H×H > ρ and J(t0u, t0v) < 0.

By the Mountain-Pass theorem ([3], [5]), there exists a sequence {(un,vn)} ⊂ H ×H
such that J(un,vn) → c and J′(un,vn) → 0 as n → ∞ .

Let (ũ, ṽ) be the testing functions obtained as in Lemma 4, then

0 < c � sup
t∈[0,1]

J(t t0 ũ, t t0 ṽ) � sup
t�0

J(t ũ, t ṽ) < c∗.

From Lemma 2 it follows that there exists a subsequence of {(un,vn)}, still denoted
by {(un,vn)} , such that (un,vn) → (u,v) strongly in H ×H. We thus get a critical
point (u,v) of J satisfying (1.1) and c is the corresponding critical value. Set u+ =
max{u,0} . In order to obtain positive solution of (1.1), replacing u and v by u+ and
v+ respectively in the terms at the right hand side of equations in (1.1), and repeating
the above process, we can get a nonnegative solution (u0,v0) of (1.1). By the maximum
principle([24]), we obtain that u0,v0 > 0 in Ω . �
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3. Sign-changing solutions

Let (u0,v0) be the positive solution of (1.1) obtained as in Theorem 2 and set
c0 := J(u0,v0) . Then c0 can be characterized by c0 = min

(u,v)∈B
J(u,v) ([25]), where

B :=
{
(u,v)|(u,v) ∈ H×H \ {(0,0)}, (u,v) � 0, 〈J′(u,v), (u,v)〉 = 0

}

=

⎧⎪⎨
⎪⎩

(u,v)|(u,v) ∈ H×H \ {(0,0)}, (u,v) � 0,∫
Ω
(|u|2∗ + |v|2∗ + σ |u|α |v|β)

Q1(u,v)−Q2(u,v)
= 1

⎫⎪⎬
⎪⎭ ,

and Q1 and Q2 are defined as in (1.8) and (1.9). Define the functional and sets

f (u,v) :=

⎧⎪⎨
⎪⎩
∫

Ω
(|u|2∗ + |v|2∗ + σ |u|α |v|β)

Q1(u,v)−Q2(u,v)
, (u,v) �= (0,0),

0, (u,v) = (0,0),

M :=
{
(u,v) ∈ H×H| f (u+,v+) = f (u−,v−) = 1

}
,

N :=
{
(u,v) ∈ H×H| | f (u+,v+)−1|< 1

2
and | f (u−,v−)−1|< 1

2

}
,

where u+ = max{u,0}, u− = max{−u,0} . Then it’s not difficult to see that M �= /0 .
Arguing as in [8], let P = {(u,v) ∈ H ×H|(u,v) � 0} and Σ be the set of maps σ
such that

(i) σ ∈C(D , H×H), where D = [0,1]× [0,1].

(ii) σ(s1,0) = 0, σ(0,s2) ∈ P, σ(1,s2) ∈ −P, ∀(s1,s2) ∈ D .

(iii) (J ·σ)(s1,1) � 0, ( f ·σ)(s1,1) � 2, ∀(s1,s2) ∈ D.

We claim that Σ �= /0 . In fact, for any (u,v) ∈ H ×H with (u+,v+) �= (0,0) and
(u−,v−) �= (0,0) , define

σ = σ(s1,s2) = ks2(1− s1)(u+,v+)− ks1s2(u−,v−), (s1,s2) ∈ D .

when k > 0 is large enough, it is easy to know that σ ∈ Σ .
Let N be the closure of N . We have the following Lemmas 4 and 5.

LEMMA 5. There exists a sequence {(un,vn)} ⊂ N such that

J(un,vn) → c1 := inf
(u,v)∈M

J(u,v), J′(un,vn) → 0, n → ∞.

Furthermore,
inf
σ∈Σ

sup
(u,v)∈σ(D)

J(u,v) = inf
(u,v)∈M

J(u,v).
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Proof. The argument is similar to [22] and the details are omitted. �

LEMMA 6. Suppose that (H1) and (H2) hold. Assume that c1 < c0 + c∗ and
{(un,vn)} ⊂ N satisfies

J(un,vn) → c1, J′(un,vn) → 0, n → ∞ .

Then {(un,vn)} is relatively compact in H×H.

Proof. According to Lemma 2 and following the same lines as that of [22], we can
get the desired result. The details are omitted. �

LEMMA 7. (see[14, Theorem 1.2]) Suppose that (H1) and (H2) hold,

ak = bk, λk = μk ∈ [0,λ), γ ′k :=
√

λ −
√

λ −λk,

and (u0,v0) ∈ H ×H is a positive solution of (1.1). Then there exist ρ > 0 small
enough such that Bρ(ak) ⊂ Ω and

u0(x) = O1
(|x−ak|−γ ′k

)
, v0(x) = O1

(|x−ak|−γ ′k
)
, ∀x ∈ Bρ(ak)\ {ak}.

LEMMA 8. Under the assumptions of Theorem 3 , we have c1 < c0 + c∗.

Proof. We only verify the case C2 > 0. Another case C3 > 0 can be proved
similarly and the details are omitted. Since σ = 0, by Lemma 1 we infer that τmin = 0,

S0,α ,β = S(λk) and therefore c∗ = 1
N S(λk)

N
2 . According to Lemma 4, it suffices to show

that

sup
s1,s2∈R

J
(
s1(u0,v0)+ s2(u

ak
λk,ε

,0)
)

< c0 +
1
N

S(λk)
N
2 .

Since
lim

|s1|+|s2|→0
J
(
s1(u0,v0)+ s2(u

ak
λk,ε

,0)
)

= 0,

lim
|s1|+|s2|→∞

J
(
s1(u0,v0)+ s2(u

ak
λk,ε

,0)
)

= −∞,

we may assume |s1| = O1(1) and |s2| = O1(1). Since (u0,v0) is a positive solution of
(1.1), we have

〈J′(u0,v0), (uak
λk,ε

,0)〉 = 0,

i.e.

∫
Ω

(
∇u0∇uak

λk,ε
−

k

∑
i=1

λiu0u
ak
λk,ε

|x−ai|2 −u2∗−1
0 uak

λk,ε
−σ1u0u

ak
λk,ε

−σ2v0u
ak
λk,ε

)
= 0. (3.1)
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From (3.1) it follows that

J
(
s1(u0,v0)+ s2(u

ak
λk,ε

,0)
)

= J(s1u0,s1v0)+ J(s2u
ak
λk,ε

,0)

+ s1s2

∫
Ω

(
∇u0∇uak

λk,ε
−

k

∑
i=1

λiu0u
ak
λk,ε

|x−ai|2 −σ1u0u
ak
λk,ε

−σ2v0u
ak
λk,ε

)

+
1
2∗

∫
Ω

(|s1u0|2∗ + |s2u
ak
λk,ε

|2∗ − |s1u0 + s2u
ak
λk,ε

|2∗)
� J(s1(u0,v0))+ J(s2(u

ak
λk,ε

,0))+C
∫

Ω

(
u0(u

ak
λk,ε

)2∗−1 +u0
2∗−1uak

λk,ε
)
, (3.2)

where the following inequality is used:∣∣ |a+b |q−|a|q−|b|q∣∣� C ( |a|q−1 |b|+ |a| |b|q−1) , ∀a,b ∈ R, q � 1.

By Lemma 6 and arguing as in [15], we have that

∫
Ω
|u0|2∗−1uak

λk,ε
= O(ε

√
λ−λk),

∫
Ω
|u0|2∗−1uak

λk,ε
= O(ε

√
λ−λk). (3.3)

Let C2 > 0 be defined as in Theorem 3. Note that

0 � λk < λ −4 ⇐⇒
√

λ −λk > 2, 0 < C2

∫
RN

|Uλk
(x)|2 < ∞.

Taking ε → 0 and arguing as in Lemma 4, from (3.2) and (3.3) it follows that

sup
s1,s2∈R

J
(
s1(u0,v0)+ s2(u

ak
λk,ε

,0)
)

� sup
s1∈R

J(s1(u0,v0))+ sup
s2∈R

J(s2(u
ak
λk,ε

,0))+O(ε
√

λ−λk)

� c0 +
1
N

S(λk)
N
2 −C2ε2

∫
RN

|Uλk
(x)|2 +o(ε2)+O

(
ε
√

λ−λk
)

< c0 +
1
N

S(λk)
N
2 .

The proof is complete. �
PROOF OF THEOREM 3. By Lemmas 5-8, there exists a sequence {(un,vn)} ⊂ N,
such that

J(un,vn) → c1 < c0 +
1
N

S(λk)
N
2 , J′(un,vn) → 0, n → ∞.

Passing to a subsequence if necessary, (un,vn) → (u,v) strongly in H ×H as n → ∞.
Therefore (u,v) is a critical point of J and solves (1.1). Since (un,vn) ∈ N , we deduce
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that (u,v)∈N . Furthermore, u �= 0 and v �= 0. From the Hölder and Young inequalities
it follows that there exists a constant δ > 0, such that

‖(u+,v+)‖H×H � δ , ‖(u−,v−)‖H×H � δ ,

(u,v) is thus a sign-changing solution of (1.1) and (−u,−v) is also a solution. �
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