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QUASILINEAR ELLIPTIC PROBLEM WITH HARDY

POTENTIAL AND A REACTION–ABSORBTION TERM

SOFIANE EL-HADI MIRI

(Communicated by Claudianor O. Alves)

Abstract. We consider the following quasilinear elliptic problem⎧⎨
⎩−Δpu±uq = λ

up−1

|x|p +h in Ω,

u � 0 and u = 0 on ∂Ω,

where, 1 < p < N, Ω ⊂ RN is a bounded regular domain such that 0 ∈ Ω , q > p− 1 and h is
a nonnegative measurable function with suitable hypotheses. The main goal of this paper is to
analyze the interaction between the Hardy potential, and the term uq , in order to get existence
and non existence of positive solution. We can summarize our main results, in the two following
points:

(i) If uq appears as a reaction term, then we show the existence of a critical exponent q+(λ) ,
such that for q > q+ , the considered problem has no positive distributional solution. If q < q+
we find solutions under suitable hypothesis on h .

(ii) If uq appears as an absorption term, then there exists q∗ such that if q > q∗ , the problem
under consideration has a positive solution for all λ > 0 and for all h ∈ L1(Ω) . The optimality
of q∗ is proved in the sense that if q < q∗ , then nonexistence holds if λ > ΛN,p .

1. Introduction and preliminaries results

In this paper we study existence and nonexistence of positive solutions to the prob-
lem

(P±)

⎧⎨
⎩−Δpu±uq = λ

up−1

|x|p +h in Ω,

u = 0 on ∂Ω,

where 1 < p < N , Ω ⊂ RN is a bounded domain containing the origin, q > p−1 and
h is a nonnegative measurable function, with suitable hypotheses.

Problem (P±) is related to the classical Hardy-Sobolev inequality

ΛN,p

∫
RN

|φ |p
|x|p dx �

∫
RN

|∇φ |p dx for all φ ∈ C ∞
0 (RN),
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where ΛN,p = (N−p
p )p is optimal and not achieved, we refer to [14] for more details

about this constant.
In the case where uq appears as a reaction term (problem (P−)), then for λ >

ΛN,p , a strong local nonexistence result is obtained in [4].
The case p = 2 and λ � ΛN,2 was studied in [12], the authors prove the existence

of a critical exponent q+(λ ) such that existence holds if and only if q < q+ .
If p �= 2 and q � p∗−1, the problem is widely studied in the literature, we refer to

[2] where the authors got the exact behavior of the solution near the origin and studied
also the case where Ω = RN .

In the case where uq appears as an absorption term, then if λ = 0, the exis-
tence and uniqueness of ”entropy” solution is obtained in [11]. If λ � ΛN,p and

h ∈ L
p∗

p∗−1 (Ω) , then existence holds in the Sobolev space W 1,p
0 (Ω) using variational

arguments. The authors proved that for all h ∈ L1(Ω) , there exists at least one distribu-
tional solution. The regularity of the solution is obtained according to the one of h and
the value of q .

If λ > 0, the situation is a quite different, in the case where q = 0 and p = 2,
then an integrability condition on h near the origin is needed to insure the existence of
a distributional solution; see [5] for a complete discussion about this case.

The problem (P−) can also be seen, as the stationary case associated to the parabolic
problem: ⎧⎪⎪⎨

⎪⎪⎩
ut −Δpu = λ

up−1

|x|p +uq + f , u � 0 in Ω× (0,T),

u(x,t) = 0 on ∂Ω× (0,T),
u(x,0) = u0(x), x ∈ Ω,

which will be studied in a forthcoming paper [3]. Notice that for the semilinear case,
some related results were obtained in [7].

Since we are considering solution with data in L1 , then we need to use a week
concept of solutions. More precisely we have the next definitions.

DEFINITION 1. We say that u is a nonnegative distributional solution to problem
(P±) if

|∇u|p−1 ∈ L1
loc(Ω) and λ

up−1

|x|p , uq, h ∈ L1
loc(Ω),

and for all φ ∈ C ∞
0 (Ω) , we have∫
Ω

|∇u|p−2〈∇u,∇φ〉dx =
∫
Ω

(
λ

up−1

|x|p ±uq +h
)

φdx. (1.1)

In the case where λ
up−1

|x|p ,uq,h ∈ L1(Ω) we can use the concept of entropy solu-

tion.
For k > 0, define

Tk(s) =

{
s , if |s| � k ;

k s
|s| , if |s| > k ;
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then we have the following definitions.

DEFINITION 2. Let u be a measurable function, we say that u ∈ T 1,p
0 (Ω) if

Tk(u)∈W 1,p
0 (Ω) for all k > 0. Let F ∈ L1(Ω) , then u∈T 1,p

0 (Ω) is an entropy solution
to {

−Δpu = F in Ω,

u|∂Ω = 0,
(1.2)

if for all k > 0 and all v ∈W 1,p
0 (Ω)∩L∞(Ω) , we have∫

Ω

|∇u|p−2〈∇u,∇(Tk(u− v))〉dx =
∫
Ω

F Tk(u− v)dx. (1.3)

Hence we say that u is an entropy solution to problem (P±) if

λ
up−1

|x|p ,uq,h ∈ L1(Ω)

and the above definition holds with

F(x) ≡ λ
up−1

|x|p ±uq +h.

From the results of [10], we know that if u is an entropy solution, then |∇u|p−1 ∈ Ls(Ω)
for all s < N

N−1 . Hence, we conclude that if u is an entropy solution, then u is also a
distributional solution.

We recall the following existence result obtained in [10].

THEOREM 1. Assume that 1 < p and F ∈ L1(Ω) . Let { fn}n ⊂ L∞(Ω) be such
that fn →F strongly in L1(Ω) . Consider un ∈W 1,p

0 (Ω) , the unique solution to problem{ −Δpun = fn in Ω,
un = 0 on ∂Ω,

then there exits u ∈ T 1,p
0 (Ω) such that u is the unique entropy solution of (1.2),

Tk(un)→ Tk(u) strongly in W 1,p
0 (Ω) , up−1

n → up−1 strongly in Lσ (Ω) for all σ < N
N−2

and |∇un|p−1 → |∇u|p−1 strongly in Ls(Ω) for all s < N
N−1 .

The paper is organized as follows. In Section 2 we deal with the problem (P−) . In
Subsection 2.1 we prove the existence of a critical exponent q+(λ ) such that a strong
non existence result holds if q > q+(λ ) . As a consequence we prove some complete
Blow-up results for approximated problems.

The case q < q+(λ ) is treated in Subsection 2.2, then, under suitable hypothesis
on h , problem (P−) has a positive solution. This prove the optimality of q+(λ ) .

The case of absorption term is considered in Section 3, we find an exponent q∗
such that if q > q∗ , then problem (P+) has an entropy solution for all λ > 0 and
h ∈ L1(Ω) .
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Notice that, without the absorption term uq , existence holds if and only if λ �
ΛN,p with strong condition on h . Thus this show the strong effect of the absorption

term uq in order to break down any resonant effect of the reaction term λ up−1

|x|p .

The optimality of q∗ is proved by showing that if q < q+ , then for λ > ΛN,p ,
problem (P+) has no positive solution. Some extensions are given at the end of the
section.

2. Problem with reaction term

In this section we consider the next problem

⎧⎨
⎩−Δpu = λ

up−1

|x|p +uq +h in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω is a bounded domain of RN containing the origin, 1 < p < N and q > p−1.
First, let us consider the equation.

−Δpw = λ
wp−1

|x|p . (2.2)

By setting w(x) = C |x|−α , there results

−1
rN−1

(∣∣w′∣∣p−2
w′rN−1

)′
= λwp−1r−p.

Hence, we get the next algebraic equation

D(α) ≡ (p−1)α p− (N− p)α p−1 + λ = 0 (2.3)

Under the hypothesis λ < ΛN,p ≡ (
(N − p)/p

)p
, equation (2.3) posses exactly two

solutions α1 < (N− p)/p < α2 (see the computation details in [2]).
Since λ > 0, then using the strong maximum principle and a suitable comparison

function we can show that u(x) → ∞ as |x| → 0. The next result give a more precise
information about the behavior of any supersolution of (2.1) near the origin, the proof
can be seen in [2].

LEMMA 1. Assume that u ∈W 1,p
loc (Ω) is a nonnegative supersolution to problem

(2.2), then if u �≡ 0 , there exist a positive constant C and a small ball Bη(0) ⊂⊂ Ω
such that

u � C|x|−α1 in Bη(0) (2.4)

where α1 is defined above.
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2.1. Nonexistence results: the optimal exponent.

Assume that λ < ΛN,p , we look now for radial solutions to the elliptic equation

−Δpw = λ
wp−1

|x|p +wq, x ∈ RN . (2.5)

Then by setting w(x) = |x|−α , it follows that

((p−1)α p− (N− p)α p−1−λ )r−α(p−1)−p = r−αq (2.6)

so by identification, one have that

α =
p

1+q− p
, q > p−1, and α <

N− p
p−1

.

Since
wp−1

|x|p ∈ L1
loc(Ω) and wq ∈ L1

loc(Ω),

then by the result of Lemma 1 we obtain that α1 < α < α2 which is equivalent to

p
α2

+ p−1 < q <
p

α1
+ p−1, (2.7)

We set
q+(λ ) ≡ p

α1
+ p−1 and q−(λ ) ≡ p

α2
+ p−1, (2.8)

then
p−1 < q−(λ ) < p∗ −1 < q+(λ ).

with p∗ = Np/(N− p).
Since we are considering an equation with right hand side in L1 , then we will use

the concept of entropy solutions given in Definition 2
We are now able to prove the next nonexistence result.

THEOREM 2. Assume that q > q+(λ ) ≡ (p−1)+ p/α1. Then for all λ > 0 , the
problem (2.1) has no positive entropy solution.

To prove this theorem we need the following well known inequality [8].

THEOREM 3. (Picone inequality) Let v ∈ W 1,p
0 (Ω) be such that −Δpv � 0 is a

bounded Radon measure v � 0 , then for all u ∈W 1,p
0 (Ω) ,

∫
Ω

|∇u|pdx �
∫
Ω

|u|p
vp−1 (−Δpv)dx.
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Proof of Theorem 2.
If λ > ΛN,p , then the nonexistence result is obtained in [4]. Let us consider the

case λ � ΛN,p .
We argue by contradiction. Let u be an entropy solution to (2.1), then using an

approximation argument as in [4], we get the existence of a minimal entropy solution
obtained as a limit of approximation problems. We note u the minimal solution. Let
ϕ ∈ C ∞

0 (Br (0)) , then using Picone inequality of Theorem 3 to u , it follows that∫
Br(0)

|∇ϕ |p dx �
∫

Br(0)

−Δpu
up−1 |ϕ |p dx � λ

∫
Br(0)

|ϕ |p
|x|p dx+

∫
Br(0)

uq−p+1 |ϕ |p dx

� λ
∫

Br(0)

|ϕ |p
|x|p dx+

∫
Br(0)

|ϕ |p
|x|α1(q−p+1) dx.

If q > q+(λ ) , then α1 (q− p+1) > p , thus we get a contradiction with the Hardy
inequality, hence non existence holds.

REMARK 1. Since the arguments used in the proof of the nonexistence result, are
local, then we conclude that problem (2.1) has no non-trivial supersolution in the sense

that λ
up−1

|x|p +uq ∈ L1
loc(Ω) in any domain containing the origin.

THEOREM 4. Assume that g : R→ [0,∞) is a continuous function such that g(s)>
0 if s > 0 and

liminf
s→∞

g(s)
sq = c > 0 for some q > q+(λ ).

Then we have:

(i) if g(0) = 0 , then the unique entropy solution to problem

−Δpu = λ
up−1

|x|p +g(u), in Ω,u|∂Ω = 0, (2.9)

is u = 0 ;

(ii) if g(0) > 0 than problem (2.9), does not admit any entropy positive solution.

As a consequence we get the next blow-up result.

THEOREM 5. Fix q > q+(λ ) and λ < ΛN,p . Define

an(x) = min{n,
1
|x|p } and Dn(s) = min{n,sq}, s � 0.

Let {hn}n ⊂ L∞(Ω) be such that hn � 0 and hn ↑ h ∈ L1(Ω) . Let un be the minimal
solution to problem ⎧⎨

⎩
−Δpun = λan(x)u

p−1
n +gn(un)+hn in Ω,

un � 0 in Ω,
un = 0 on ∂Ω.

(2.10)

Then un(x) → ∞ as n → ∞ uniformly in x ∈ Ω .
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We first recall the following Lemma proved in [4], which will be useful in the
proof of Theorem 5.

LEMMA 2. Let u be the unique positive energy solution to problem⎧⎨
⎩

−Δpu = f in Ω,
u � 0 in Ω,
u = 0 on ∂Ω,

(2.11)

where f ∈ L∞(Ω) and f � 0 . Then for all ball Br ⊂ Ω such that B4r ⊂ Ω , there exist
a positive constant c = c(r,N, p) such that,

up−1(x)
(d(x,∂Ω))p−1 � c

∫
B2r

f (y)dy for all x ∈ Ω. (2.12)

Proof of Theorem 5.
Since λ < ΛN,p , then we get easily the existence of a minimal solution un ∈

L∞(Ω)∩W 1,p
0 (Ω) to (2.10). Using the fact that λan(x)u

p−1
n +gn(un)+hn is increasing

in n , then we conclude that {un} is an increasing sequence in n .
Assume by contradiction that there exist x0 ∈ Ω , such that supn un(x0) = c0 < ∞ ,

then using Lemma (2) for a ball satisfying 0 ∈ B2r ⊂ Ω , we obtain that∫
Br

(λan(x)up−1
n +gn(un)+hn)dx � c1 for all n.

Since Fn(x) := λan(x)u
p−1
n +gn(un)+hn is increasing we obtain that Fn → w , n → ∞

in L1(B2r) to some w � 0. Starting from v0 = 0, we define the sequence,{−Δpvn+1 = λan+1(x)v
p−1
n +gn(vn)+hn in Br,

vn+1|∂Br = 0.
(2.13)

Since λan(x)sp−1 + gn(s)+ hn is increasing in n , by comparison we obtain that vn �
vn+1 .
Claim: vn � un in Br(0) for all n ∈ N .
We prove the claim by induction. We have −Δpv1 = h1 � −Δpu1 and since u1|∂Br >
0 = v1|∂Br we conclude that v1 � u1 . Suppose vn � un . Recall that un � un+1 , then
using the fact that

λan+1(x)vp−1
n +gn(vn)+hn � an+1(x)u

p−1
n+1 +gn(un+1)+hn+1,

we conclude that

−Δpvn+1 � −Δpun+1 and un+1 � vn+1 on ∂Br.

Thus vn+1 � un+1 and the claim follows.
Moreover we have∫

Br

|∇Tk(vn)|pdx � k
∫

Br

(
an+1(x)u

p−1
n+1 +gn(un+1)+hn+1

)
dx � ck,
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Therefore we reach that Tk(vn) is bounded in W 1,p
0 (Br) for all k > 0. Thus Tk(vn) ⇀

Tk(v) weakly in W 1,p
0 (Br)

Since {Tk(vn)}n is increasing in n , then using a simple variation of the compact-
ness argument of [10] we can prove that and then Tk(vn)→ Tk(v) strongly in W 1,p

0 (Br) .
Hence, v is an entropy solution to problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−Δpv = λ

vp−1

|x|p + vq +h in Br,

v � 0 in Br and v �= 0,

v|∂Br = 0

(2.14)

with q > q+(λ ) . This is a contradiction with the nonexistence result of Theorem (2).
Hence for all x0 ∈ Ω , un(x0) → ∞ as n → ∞ and the proof is complete.

2.2. Existence result for q < q+(λ ) .

To show the optimality of the exponent q+(λ ) we will prove the next existence
result.

THEOREM 6. Assume that λ � ΛN,p and q < q+(λ ) , then:

(i) if q < p∗ − 1 and λ < ΛN,p , then for h ≡ 0 , problem (2.1) has a positive solution

u ∈W 1,p
0 (Ω);

(ii) if q < p∗ −1 and λ = ΛN,p , then for h ≡ 0 , problem (2.1) has a positive solution

u ∈W 1,s
0 (Ω) for all s < p;

(iii) if p∗ −1 � q < q+(λ ) and λ < ΛN,p , then there exists a positive constant c such
that if h(x) � c/|x|p , then problem (2.1) has an entropy positive solution u such that
Tk(u) ∈W 1,p

0 (Ω) for all k > 0 .

Proof. We divide the proof in several steps.
The first case: q < p∗ −1 and λ < ΛN,p .

In this case problem (2.1) has a variational structure in the space W 1,p
0 (Ω) , then

we can find a solution as a critical points of the functional

Jλ (u) =
1
p

∫
Ω

|∇u|p dx− λ
p

∫
Ω

|u|p
|x|p dx− 1

q+1

∫
Ω

uq+1
+ dx.

By a direct application of the Mountain-Pass theorem [9], we reach the existence of
positive solution as a mountain pass point.

The second case q < p∗ −1 and λ = ΛN,p .
To get the existence result in this case we use the following improved Hardy-

Sobolev inequality obtained in [1], for any s < p , there exists a positive constant C ≡
C(N, p,s,Ω) such that∫

Ω

(
|∇u|p−ΛN,p

|u|p
|x|p

)
dx � C‖u‖p

W1,s
0 (Ω)

for all u ∈ C ∞
0 (Ω). (2.15)
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Let now {λn}n be a strictly increasing sequence of positive constants, such that
λn ↑ ΛN,p as n → ∞ . Using the result of the first case, we reach that the problem

−Δpun = λn
up−1

n

|x|p +uq
n, in Ω,un ∈W 1,p

0 (Ω). (2.16)

has a positive solution un obtained using the Mountain-Pass Theorem [9]. Notice that

Jλn(un) = (
1
p
− 1

q+1
)
(∫

Ω

|∇un|p dx− λ
p

∫
Ω

|un|p
|x|p dx

)
≡Cn

where
Cn = inf

γ∈Γ
max
t∈[0,1]

Jλn(γ(t))

with
Γ = {γ ∈ C ([0,1],W 1,p

0 (Ω)), γ(0) = 0, γ(1) = v}
and v ∈W 1,p

0 (Ω) is such that

1
p

∫
Ω

|∇v|p dx− 1
q+1

∫
Ω

vq+1
+ dx << 0.

It is clear that Jλn(v) << 0 uniformly for λn ∈ [0,ΛN,p] . If γ(t) = tv , then γ ∈ Γ , and

Cn � max
t∈[0,1]

Jλn(tv) � A,

where

A = max
t∈[0,1]

(
t p

p

∫
Ω

|∇v|p dx− tq+1

q+1

∫
Ω

vq+1
+ dx

)
.

Hence we conclude that(1
p
− 1

q+1

)(∫
Ω

|∇un|p dx− λ
p

∫
Ω

|un|p
|x|p dx

)
� A.

Now using the improved Hardy-Sobolev inequality stated in (2.15), it follows that
‖un‖p

W1,s
0 (Ω)

� C for all s < p and for all n � 1.

Since q+1 < p∗ , we get the existence of 1 < s0 < p, such that

q+1 < s∗0 ≡
s0N

N− s0
.

Fix s0 to get the above estimate, then ‖un‖p

W
1,s0
0 (Ω)

� C . In the same way and using

(2.15), we get the existence of a positive constant a such that Jλn(un) � a . This follows
using the fact that ap−Caq+1 > 0 if a is small enough.
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Hence we get the existence of u0 ∈W 1,s0
0 (Ω) such that un ⇀ u weakly in W 1,s0

0 (Ω)
and un → u strongly in Lq+1(Ω) .

Since

Jλn(un) =
( 1

p
− 1

q+1

)∫
Ω

(un)
q+1
+ dx →

( 1
p
− 1

q+1

)∫
Ω

(u0)
q+1
+ dx,

then u0 � 0 and u0 solves

−Δpu = ΛN,p
up−1

|x|p +uq in Ω, un ∈W 1,s0
0 (Ω)

at least in the distributional sense. Il is clear that, by the above computation, u0 ∈
W 1,s

0 (Ω) for all s < p . Hence the existence result follows.

The third case q−(λ ) � q < q+(λ ) and λ < ΛN,p .
Recall that p−1< q−(λ ) < p∗−1 < q+(λ ) . Let R > 0 be such that Ω⊂⊂BR(0) ,

then using a dilatation argument, without loss of generality one can put R = 1. Assume
that h(x) � c/|x|p , where c > 0 will be chosen later.

By a continuity argument, we get the existence of λ1 > λ such that q−(λ1) < q <
q+(λ1) . Define

w(x) = |x|−α −1 for x ∈ B1(0), with α =
p

q− (p−1)
,

then
wp−1

|x|p +wq ∈ L1(B1(0))

and w solves

−Δpw = λ1
(w+1)p−1

|x|p +(w+1)q in D ′(B1(0)).

Using the fact that λ < λ1 we get the existence of a positive constant c1 > 0 such that

λ1
(w+1)p−1

|x|p � λ
wp−1

|x|p +
c1

|x|p .

Choosing c � c1 , then we obtain a supersolution to problem (2.1).
Let w0 be the unique solution to the problem

{−Δpw0 = h in Ω,
w0 = 0 on ∂Ω,

(2.17)

it is clear that w0 is subsolution to problem (2.1) with w0 � w . Thus using a mono-
tonicity argument we get the existence result.
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3. Problem with absorption term: breaking of resonance

In this section we deal with the existence of a nonnegative solutions to the problem⎧⎨
⎩−Δpu+uq = λ

up−1

|x|p +h in Ω,

u = 0 on ∂Ω.
(3.1)

THEOREM 7. Assume that q > q∗ ≡ N(p−1)
N−p , then for all λ > 0 and for all h ∈

L1(Ω) , problem (3.1) has a minimal positive entropy solution.

We will also need the following comparison principle, proved in [4]

THEOREM 8. (Comparison Principle) Assume that 1 < p and let f be a nonneg-
ative continuous function such that f (x,s)/sp−1 is decreasing for s > 0 . Suppose that
u,v ∈W 1,p

0 (Ω) are such that{ −Δpu � f (x,u), u > 0 in Ω,
−Δpv � f (x,v), v > 0 in Ω.

(3.2)

Then u � v in Ω .

Proof of Theorem 7. Let

hn ≡ Tn(h) and an(x) =
1

|x|p + 1
n

.

Using the sub-supersolution argument, we get the existence of a unique positive solu-
tion to problem

−Δpwn +wq
n = hn,wn ∈W 1,p

0 (Ω).

Notice that the positivity of wn follows from the strong maximum principle obtained in
[16], moreover the uniqueness is obtained using the comparison principle of Theorem
8. We claim that the approximated problem{

−Δpun +uq
n = λan(x)Tn(u

p−1
n )+hn,

un ∈W 1,p
0 (Ω), un � 0

(3.3)

has a unique positive solution un, such that un � un+1 for all n � 1. Let us begin by
showing the existence. Define vn as the unique positive solution to problem

−Δpvn = nλan(x)+hn,vn ∈W 1,p
0 (Ω),

then vn is a supersolution to problem (3.3). Since u ≡ 0 is a subsolution to (3.3), then
using an iteration argument, we get the existence of a solution un such that un � vn .
The positivity of un follows using the result of [16]. To get the uniqueness we use
Lemma 8. Let Dn(x,s) ≡ λan(x)Tn(sp−1)+hn(x)− sq , s � 0, it is clear that, for s > 0,
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Dn(x,s)/sp−1 is a decreasing function, then the uniqueness result follows. Using the
fact that Dn(x,s) � Dn+1(x,s) , it results that un+1 is a supersolution to (3.3), thus
un � un+1 and the claim follows.

Let k > 0 fixed, using Tk(un) as a test function in (3.1) we get

∫
Ω

|∇Tkun|p dx+
∫

Ω
uq

nTkun dx

= λ
∫

Ω
an(x)Tn(up−1

n )Tk(un)dx+
∫

Ω
hn(x)Tkun dx.

Using Hölder inequality we reach that

λ
∫

Ω
an(x)Tn(up−1

n )dx � λ
(∫

Ω

uq
ndx

) p−1
q

(∫
Ω

1

|x|
pq

q−(p−1)
dx

) q−(p−1)
q

.

Recall that q > N(p−1)
N−p , then pq

q−(p−1) < N , hence

λ
∫

Ω
an(x)Tn(up−1

n )Tk(un)dx � Cλ
(∫

Ω

uq
ndx

) p−1
q

.

Thus ∫
Ω

|∇Tkun|p dx+
∫

Ω
uq

nTkun dx � Ckλ
(∫

Ω

uq
ndx

) p−1
q

+ k||h||L1 .

Notice that ∫
Ω

uq
nTkun dx �

∫
Ω

uq
n dx−C(k).

Hence ∫
Ω

|∇Tkun|p dx+
∫

Ω
uq

n dx � C(k,λ , ||h||L1).

Therefore we conclude that ∫
Ω

uq
n dx � C uniformly in n,∫

Ω
an(x)Tn(up−1

n )dx � C uniformly in n.

Using the monotonicity of the sequence {un}n we get the existence of a measurable
function u such that

uq
n ↑ u and an(x)Tn(up−1

n ) ↑ up−1

|x|p strongly in L1(Ω) .

Setting fn = an(x)Tn(u
p−1
n )− uq

n , then fn → f ≡ up−1

|x|p − uq strongly in L1(Ω) .
Thus following the arguments of [10], we reach that u is an entropy solution to (3.1). It
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is not difficult to show that if v is another positive entropy solution to (3.1), then v � un

for all n � 0, thus v � u .

To show the optimality of the condition imposed in the Theorem 7 we prove the
next non existence result.

THEOREM 9. Assume that q < q∗ . If λ > ΛN,p , then problem (3.1) has no very
weak positive supersolution in the sense that uq, up−1/|x|p ∈ L1

loc(Ω) and

∫ (
(−Δpu)φ + |u|qφ

)
dx � λ

∫
up−1 φ
|x|p dx+

∫
h(x)φ dx, for all φ ∈ C ∞

0 (Ω) .

Proof. Without loss of generality we can assume that h ∈ L∞(Ω) . We argue by
contradiction. Suppose that for some λ > ΛN,p , problem (3.1) has a nonnegative very
weak supersolution u in the sense defined above. Let Ω1 be a regular domain such that
Ω1 ⊂⊂ Ω , then u is a supersolution to problem (3.1) in Ω1 . Thus using an iteration
argument we get the existence of u1 , the minimal entropy positive solution to (3.1) in
Ω1 . It is clear that up−1

1 ∈ Ls(Ω1) for all s < N/(N− p) .
Let Bη(0) ⊂⊂ Ω1 where η is a small constant to be chosen later. Consider φ ∈

C ∞
0 (Bη(0)) , since u1 > 0 in Bη(0) , then using Picone inequality it follows that

∫
Bη (0)

|∇φ |pdx � λ
∫

Bη (0)

|φ |p
|x|p dx−

∫
Bη (0)

uq−(p−1)
1 |φ |p. (3.4)

Since q < q∗ , then

(q− (p−1))
p∗

p∗− p
<

N(p−1)
N− p

,

thus using Hölder and Sobolev inequality inequalities we obtain that

∫
Bη (0)

uq−(p−1)|φ |pdx �
(∫

Bη (0)
|φ |p∗dx

) p
p∗

(∫
Bη (0)

u(q−(p−1)) p∗
p∗−p dx

) p∗−p
p

� S−1
∫

Bη (0)
|∇φ |pdx

(∫
Bη (0)

u(q−(p−1)) p∗
p∗−p dx

) p∗−p
p

.

Using the fact that

(q− (p−1))
p∗

p∗− p
<

N(p−1)
N− p

,

there result that ∫
Ω1

u(q−(p−1)) p∗
p∗−p dx < ∞. (3.5)

We claim that

lim
η→0

∫
Bη (0)

u(q−(p−1)) p∗
p∗−p dx = 0. (3.6)

To prove (3.6), we set

kη(x) ≡ u(q−(p−1)) p∗
p∗−p χBη(0),
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then

kη � u(q−(p−1)) p∗
p∗−p and ||kη ||L1(Ω1) � ||u(q−(p−1)) p∗

p∗−p ||L1(Ω1)

for all η << 1.
Using the fact that kη → 0 a.e. in Ω1 , then by the dominated convergence Theo-

rem we reach that
kη → 0 strongly in L1.

Hence the claim follows.
Since λ > ΛN,p , we get the existence of ε > 0 such that choosing η small enough

we obtain that

λ

1+S−1
(∫

Bη (0)
u(q−(p−1)) p∗

p∗−p dx
) p∗−p

p

� ΛN,p + ε.

Hence, back to (3.4) we obtain

∫
Bη (0)

|∇φ |pdx � (ΛN,p + ε)
∫

Bη (0)

|φ |p
|x|p dx

a contradiction with Hardy inequality.

REMARK 2. Fix q > p− 1 and let g be a measurable function such that g � 0

and g
q

q−(p−1) ∈ L1(Ω) , then using the same arguments as in the proof of Theorem 7 we
can prove that problem ⎧⎪⎨

⎪⎩
−Δpu+uq = λg(x)u+h(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.7)

has an entropy positive solution for all λ > 0 and for all h ∈ L1(Ω) . In this case we
say that g is an admissible weight related to the problem (3.7).
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