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Abstract. We analyze positive solutions of the two-dimensional systems of nonlinear differential
equations

x′ + p(t)yα = 0, y′ +q(t)xβ = 0, (A)

x′ = p(t)yα , y′ = q(t)xβ , (B)

in the framework of regular variation and indicate the situation in which system (A) (resp.
(B)) possesses strongly decreasing solutions (resp. strongly increasing solutions) with accurate
asymptotic behavior as t → ∞ .

1. Introduction

Since the publication of the book of Marić [9] theory of regular variation (in the
sense of Karamata) has gradually been recognized as a powerful tool for the asymptotic
analysis of positive solutions of linear and nonlinear ordinary differential equations.
Particularly noteworthy is the marked role played by Karamata’s integration theorem
in establishing the accurate asymptotic behavior at infinity of possible positive solu-
tions for nonlinear differential equations of Emden-Fowler and Thomas-Fermi types;
see e.g. the papers [4 - 8]. It is expected that similar analysis in the framework of regu-
lar variation could be effectively applied to a much larger class of differential equations.
Motivated by this expectation we experiment in this paper with deriving precise infor-
mation about the asymptotic behavior of positive solutions for the two simplest classes
of nonlinear systems of differential equations

x′ + p(t)yα = 0, y′ +q(t)xβ = 0, (A)

x′ = p(t)yα , y′ = q(t)xβ , (B)

where the following assumptions are always assumed to hold:
(a) α and β are positive constants such that αβ < 1;
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(b) p(t) and q(t) are positive continuous functions on [a,∞) , a > 0, both of
which are regularly varying or nearly regularly varying in the sense specified in the
next section.

Our primary concern is with solutions (x(t),y(t)) of (A) such that limt→∞ x(t) =
limt→∞ y(t) = 0, which are referred to as strongly decreasing solutions of (A), and with
solutions (x(t),y(t)) of (B) such that limt→∞ x(t) = limt→∞ y(t)= ∞ , which are referred
to as strongly increasing solution of (B). Such solutions are constructed as solutions of
the integral equations

x(t) =
∫ ∞

t
p(s)y(s)αds, y(t) =

∫ ∞

t
q(s)x(s)β ds, t � T, (1.1)

and

x(t) = x0 +
∫ t

T
p(s)y(s)αds, y(t) = y0 +

∫ t

T
q(s)x(s)β ds, t � T, (1.2)

x0 > 0, y0 > 0 and T > a being constants, in the class of regularly varying or nearly
regularly varying functions with specific asymptotic behavior at infinity. The Schauder-
Tychonoff fixed point theorem is employed for this purpose (see [2]). It will be shown
that complete knowledge can be acquired of strongly monotone solutions with nonzero
indices of (A) and (B) in the particular case where p(t) and q(t) are regularly varying.

After stating the definition and some basic properties of regularly varying func-
tions in Section 2 we establish our main results on the existence and asymptotic behav-
ior of nearly regularly varying solutions with explicit nonzero indices which provides
strongly monotone solutions for systems (A) and (B) in Sections 3 and 4, respectively.

For the in-depth analysis of oscillation and asymptotic behavior for systems of
nonlinear differential equations the reader is referred to the book of Mirzov [10].

2. Regularly varying functions

For the reader’s conveniencewe recall the definition of regularly varying functions.

DEFINITION 2.1. A measurable function f : [0,∞) → (0,∞) is called regularly
varying of index ρ ∈ R if

lim
t→∞

f (λ t)
f (t)

= λ ρ for all λ > 0.

The totality of regularly varying functions of index ρ is denoted by RV(ρ) . We
often use the symbol SV to denote RV(0), and call members of SV slowly varying
functions. Any function f (t) ∈ RV(ρ ) is written as f (t) = tρg(t) with g(t) ∈ SV,
and so the class SV of slowly varying functions is of fundamental importance in the
theory of regular variation. One of the most important properties of regularly varying
functions is the following representation theorem.
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PROPOSITION 2.1. f (t) ∈ RV(ρ) if and only if f (t) is represented in the form

f (t) = c(t)exp
{∫ t

t0

δ (s)
s

ds
}

, t � t0,

for some t0 > 0 and for some measurable functions c(t) and δ (t) such that

lim
t→∞

c(t) = c0 ∈ (0,∞) and lim
t→∞

δ (t) = ρ . (2.1)

If c(t) ≡ c0 in (2.1), then f (t) is referred to as a normalized regularly varying
function of index ρ .

Typical examples of slowly varying functions are: all functions tending to some
positive constants as t → ∞ ,

N

∏
n=1

(logn t)αn , αn ∈ R, and exp

{ N

∏
n=1

(logn t)βn

}
, βn ∈ (0,1),

where logn t denotes the n -th iteration of the logarithm. It is known that the function

L(t) = exp

{
(log t)

1
3 cos (logt)

1
3

}

is a slowly varying function which is oscillating in the sense that

limsup
t→∞

L(t) = ∞ and liminf
t→∞

L(t) = 0.

The following result concerns operations which preserve slow variation.

PROPOSITION 2.2. Let L(t) , L1(t) , L2(t) be slowly varying. Then, L(t)α for any
α ∈ R , L1(t)+L2(t) , L1(t)L2(t) and L1(L2(t)) ( if L2(t) → ∞) are slowly varying.

A slowly varying function may grow to infinity or decay to 0 as t → ∞ . But its
order of growth or decay is severely limited as is shown in the following

PROPOSITION 2.3. Let f (t) ∈ SV. Then, for any ε > 0 ,

lim
t→∞

tε f (t) = ∞, lim
t→∞

t−ε f (t) = 0.

A simple criterion for deciding the regularity of differentiable positive functions
follows.

PROPOSITION 2.4. A differentiable positive function f (t) is a normalized regu-
larly varying function of index ρ if and only if

lim
t→∞

t
f ′(t)
f (t)

= ρ .
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The following result which is called Karamata’s integration theorem is useful in
handling slowly and regularly varying functions analytically.

PROPOSITION 2.5. Let L(t) ∈ SV. Then,
(i) If α > −1 , ∫ t

a
sαL(s)ds ∼ 1

α +1
tα+1L(t), t → ∞.

(ii) If α < −1 , ∫ ∞

t
sαL(s)ds ∼− 1

α +1
tα+1L(t), t → ∞.

(iii) If α = −1 ,

l(t) =
∫ t

a

L(s)
s

ds ∈ SV and lim
t→∞

L(t)
l(t)

= 0,

and

m(t) =
∫ ∞

t

L(s)
s

ds ∈ SV and lim
t→∞

L(t)
m(t)

= 0.

Here and throughout the symbol ∼ is used to mean the asymptotic equivalence,
i.e.

f (t) ∼ g(t), t → ∞ ⇐⇒ lim
t→∞

g(t)
f (t)

= 1.

A function f (t) ∈ RV(ρ ) is called a trivial regularly varying function of index ρ
if it is expressed in the form f (t) = tρL(t) with L(t) ∈ SV satisfying limt→∞ L(t) =
const > 0. Otherwise f (t) is called a nontrivial regularly varying function of index ρ .
The symbol tr-RV(ρ ) (or ntr-RV(ρ )) denotes the set of all trivial RV(ρ )-functions (or
the set of all nontrivial RV(ρ )-functions).

A measurable function f : (0,∞) → (0,∞) is called regularly bounded if for any
λ0 > 1 there exist positive constants m and M such that

1 < λ < λ0 =⇒ m � f (λ t)
f (t)

� M for all large t.

The totality of regularly bounded functions is denoted by RO.
It is clear that RV(ρ ) ⊂ RO for any ρ ∈ R . Any function which is bounded both

from above and from below by positive constants is regularly bounded. For example,
2+ sint and 2+ sin(log t) are regularly bounded. Note that 2+ sin t and 2+ sin(logt)
are not slowly varying, whereas 2+ sin(logn t) , n � 2, are slowly varying.

We now define the class of nearly regularly varying functions which is a useful
subclass of RO including all regularly varying functions. To this end it is convenient to
introduce the following notation.

Let f (t) and g(t) be two positive continuous functions in a neighborhood of in-
finity, say for t � T . We use the notation f (t) 
 g(t) , t → ∞ , to denote that there exist
positive constants m and M such that

mg(t) � f (t) � Mg(t) for t � T.
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Clearly, f (t) ∼ g(t) , t → ∞ , implies f (t) 
 g(t) , t → ∞ , but not conversely. It is
easy to see that if f (t) 
 g(t) , t → ∞ , and if limt→∞ g(t) = 0, then limt→∞ f (t) = 0.

DEFINITION 2.2. If f (t) satisfies f (t) 
 g(t) , t → ∞ , for some g(t) which is
regularly varying of index ρ , then f (t) is called a nearly regularly varying function of
index ρ .

Since 2 + sin t 
 2 + sin(logn t) , t → ∞ , for all n � 2, the function 2+ sin t is
nearly slowly varying, and the same is true of 2+ sin(log t) . If g(t) ∈ RV(ρ ), then the
functions (2+ sint)g(t) and (2+ sin(logt))g(t) are nearly regularly varying of index
ρ , but not regularly varying of index ρ .

A vector function ( f (t),g(t)) is called regularly varying (or nearly regularly vary-
ing) of index (ρ ,σ) if f (t) and g(t) are regularly varying (or nearly regularly varying)
of indices ρ and σ , respectively.

The reader is referred to Bingham et al [1] for the most complete exposition of
theory of regular variation and its applications and to Marić [9] for the comprehensive
survey of results up to 2000th on the asymptotic analysis of second order linear and
nonlinear ordinary differential equations in the framework of regular variation.

3. Strongly decreasing solutions of (A)

One of the main results of this section is the following theorem ensuring the ex-
istence of strongly decreasing solutions for (A) in the class of nearly regularly varying
vector functions of negative indices.

THEOREM 3.1. Let λ and μ be constants satisfying the linear system of inequal-
ities

λ +1+ α(μ +1) < 0, β (λ +1)+ μ +1 < 0, (3.1)

and define ρ and σ by

ρ =
λ +1+ α(μ +1)

1−αβ
, σ =

β (λ +1)+ μ +1
1−αβ

. (3.2)

Suppose that p(t) and q(t) are nearly regularly varying functions of indices λ and μ ,
respectively, such that

p(t) 
 tλ l(t), q(t) 
 tμm(t), l(t), m(t) ∈ SV. (3.3)

Then, system (A) possesses a nearly regularly varying solution (x(t),y(t)) of negative
index (ρ ,σ) such that

x(t) 

[ t1+α p(t)q(t)α

(−ρ)(−σ)α

] 1
1−αβ

, y(t) 

[ t1+β p(t)β q(t)

(−ρ)β (−σ)

] 1
1−αβ

, t → ∞. (3.4)
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The proof of this theorem is based on the fact (see Lemma 3.1 below) that complete
analysis of strongly decreasing regularly varying solutions of the system of integral
asymptotic relations

(AR) x(t) ∼
∫ ∞

t
p(s)y(s)αds, y(t) ∼

∫ ∞

t
q(s)x(s)β ds, t → ∞,

can be made provided p(t) and q(t) are regularly varying.

LEMMA 3.1. Suppose that p(t) ∈ RV(λ ) and q(t) ∈ RV(μ) are expressed in
the form

p(t) = tλ l(t), q(t) = tμm(t), l(t), m(t) ∈ SV. (3.5)

Relation (AR) possesses regularly varying solutions of index (ρ ,σ ) with ρ < 0 and
σ < 0 if and only if (λ ,μ) satisfies the system of inequalities (3.1), in which case ρ
and σ are given by (3.2) and the asymptotic behavior of any such solution (x(t),y(t))
of (AR) is governed by the unique formula

x(t) ∼
[ t1+α p(t)q(t)α

(−ρ)(−σ)α

] 1
1−αβ

, y(t) ∼
[ t1+β p(t)β q(t)

(−ρ)β (−σ)

] 1
1−αβ

, t → ∞. (3.6)

Proof. (The “only if” part) Let (x(t),y(t)) be a regularly varying solution of (AR)
such that

x(t) = tρ ξ (t), y(t) = tσ η(t), ξ (t), η(t) ∈ SV, ρ < 0, σ < 0. (3.7)

Then, we have

x(t) ∼
∫ ∞

t
sλ+ασ l(s)η(s)α ds, y(t) ∼

∫ ∞

t
sμ+β ρm(s)ξ (s)β ds, t → ∞. (3.8)

The convergence of the above integrals implies that λ + ασ � −1 and μ + β ρ � −1.
If λ + ασ = −1 and μ + β ρ = −1, then by Karamata’s integration theorem ((iii) of
Proposition 2.5)∫ ∞

t
s−1l(s)η(s)α ds ∈ SV,

∫ ∞

t
s−1m(s)ξ (s)β ds ∈ SV,

so that neither x(t) nor y(t) can be regularly varying functions of negative index.
Therefore, we must have λ + ασ < −1 and μ + β ρ < −1, in which case applying
Karamata’s integration theorem ((ii) of Proposition 2.5) to the integrals in (3.8), we
obtain

x(t) ∼ tλ+ασ+1l(t)η(t)α

−(λ + ασ +1)
, y(t) ∼ tμ+β ρ+1m(t)ξ (t)β

−(μ + β ρ +1)
, t → ∞, (3.9)

which shows that x(t) and y(t) must be regularly varying of negatives indices λ +
ασ +1 and μ + β ρ +1, respectively. It follows that

ρ = λ + ασ +1, σ = μ + β ρ +1,
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from which we see that ρ and σ are uniquely determined by (3.2). We now rewrite
(3.9) as

x(t) ∼ tλ+1l(t)y(t)α

−ρ
=

t p(t)y(t)α

−ρ
, y(t) ∼ tμ+1m(t)x(t)β

−σ
=

tq(t)x(t)β

−σ
, t → ∞,

from which it follows that

x(t) ∼ t1+α p(t)q(t)αx(t)αβ

(−ρ)(−σ)α , y(t) ∼ t1+β p(t)β q(t)y(t)αβ

(−ρ)β (−σ)
, t → ∞.

This immediately yields the asymptotic formulas (3.6) for x(t) and y(t) .
(The ”if” part) Suppose that (λ ,μ) satisfies (3.1), define (ρ ,σ) by (3.2) and con-

sider the function (X(t),Y (t)) given by

X(t) =
[ t1+α p(t)q(t)α

(−ρ)(−σ)α

] 1
1−αβ

, Y (t) =
[ t1+β p(t)β q(t)

(−ρ)β (−σ)

] 1
1−αβ

, (3.10)

It is convenient to notice that X(t) and Y (t) are rewritten as

X(t) = tρ
[ l(t)m(t)α

(−ρ)(−σ)α

] 1
1−αβ

, Y (t) = tσ
[ l(t)β m(t)
(−ρ)β (−σ)

] 1
1−αβ

.

Using these expressions and applying Karamata’s integration theorem, we obtain

∫ ∞

t
p(s)Y (s)αds =

∫ ∞

t
sλ+ασ l(s)

[ l(s)β m(s)
(−ρ)β (−σ)

] α
1−αβ

ds

=
∫ ∞

t
sρ−1l(s)

[ l(s)β m(s)
(−ρ)β (−σ)

] α
1−αβ

ds

∼ tρ l(t)
(−ρ)

[ l(t)β m(t)
(−ρ)β (−σ)

] α
1−αβ = X(t),

as t → ∞ , and similarly,

∫ ∞

t
q(s)X(s)β ds ∼ tσm(t)

(−σ)

[ l(t)m(t)α

(−ρ)(−σ)α

] β
1−αβ = Y (t), t → ∞.

Thus, we conclude that (X(t),Y (t)) satisfies∫ ∞

t
p(s)Y (s)αds ∼ X(t),

∫ ∞

t
q(s)X(s)β ds ∼ Y (t), t → ∞,

that is, provides a regularly varying solution of index (ρ ,σ) of the asymptotic relation
(AR). This completes the proof of Lemma 3.1.

Proof of Theorem 3.1. Let (λ ,μ) satisfy (3.1) and define (ρ ,σ) by (3.2). Let
pλ (t) and qμ(t) denote the functions

pλ (t) = tλ l(t) ∈ RV(λ ), qμ(t) = tμm(t) ∈ RV(μ), (3.11)
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where l(t) and m(t) are SV-functions appearing in (3.3). By (3.3) there exist positive
constants k, l,K and L such that

kpλ (t) � p(t) � Kpλ (t), lqμ(t) � q(t) � Lqμ(t), t � a. (3.12)

Define the function (Xλ (t),Yμ(t)) by the formulas (3.10) with p(t) and q(t) replaced
by pλ (t) and qμ(t) , respectively. Since (Xλ (t),Yμ(t)) satisfies (AR) by Lemma 3.1,
there exists T > a such that{

1
2Xλ (t) �

∫ ∞
t pλ (s)Yμ(s)αds � 2Xλ (t),

1
2Yμ(t) �

∫ ∞
t qμ(s)Xλ (s)β ds � 2Yμ(t),

(3.13)

for t � T . We may assume that Xλ (t) and Yμ(t) are decreasing for t � T . Let us now
choose (a,b),(A,B) ∈ R

2 so that a < A, b < B and

a � 1
2
kbα , b � 1

2
laβ , 2KBα � A, 2LAβ � B. (3.14)

It is elementary to see that such a choice of (a,b),(A,B) is really possible. For example,
one can choose as follows:

a = (2−(1+α)lαk)
1

1−αβ , b = (2−(1+β )lkβ )
1

1−αβ ,

A = (21+αLαK)
1

1−αβ , B = (21+βLKβ )
1

1−αβ .

We define X to be the subset of C[T,∞)×C[T,∞) consisting of vector functions
(x(t),y(t)) satisfying

aXλ (t) � x(t) � AXλ (t), bYμ(t) � y(t) � BYμ(t), t � T. (3.15)

Clearly, X is a closed convex subset of C[T,∞)×C[T,∞) . Furthermore, define the
mapping Φ : X →C[T,∞)×C[T,∞) by

Φ(x(t),y(t)) = (Fy(t),G x(t)), t � T, (3.16)

where F and G denote the integral operators

Fy(t) =
∫ ∞

t
p(s)y(s)αds, G x(t) =

∫ ∞

t
q(s)x(s)β ds, t � T. (3.17)

It can be shown that Φ is a continuous self-map of X which sends X into a relatively
compact subset of C[T,∞)×C[T,∞) .

(i) Φ(X ) ⊂ X . If (x(t),y(t)) ∈ X , then using (3.12) - (3.15), we see that

Fy(t) �
∫ ∞

t
kpλ (s)(bYμ(s))αds � 1

2
kbαXλ (t) � aXλ (t),

Fy(t) �
∫ ∞

t
Kpλ (s)(BYμ(s))αds � 2KBαXλ (t) � AXλ (t),
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G x(t) �
∫ ∞

t
lqμ(s)(aXλ (s))β ds � 1

2
laβYμ(t) � bYμ(t),

G x(t) �
∫ ∞

t
Lqμ(s)(AXλ (s))β ds � 2LAβYμ(t) � BYμ(t),

for t � T , which implies that (Fy(t),G x(t)) ∈ X .
(ii) Φ(X ) is relatively compact. The inclusion Φ(X ) ⊂ X shows that Φ(X )

is uniformly bounded on [T,∞) . The inequalities

0 � (Fy)′(t) � −Bα p(t)Yμ(t)α , 0 � (G x)′(t) � −Aβ q(t)Xλ (t)β , t � T,

holding for all (x(t),y(t)) ∈ X ensure that Φ(X ) is equicontinuous on [T,∞) . The
relative compactness of Φ(X ) then follows from the Arzela-Ascoli lemma (see [2],
pp. 7-8).

(iii) Φ is continuous. Let {(xn(t),yn(t))} be a sequence in X converging to
(x(t),y(t)) ∈ X as n → ∞ uniformly on any compact subinterval of [T,∞) . We have
to prove that Φ(xn(t),yn(t)) → Φ(x(t),y(t)) , that is,

Fyn(t) → Fy(t), G xn(t) → G x(t) as n → ∞, (3.18)

uniformly on compact subintervals of [T,∞) . But this follows immediately from the
Lebesgue dominated convergence theorem applied to the integrals in the inequalities

|Fyn(t)−Fy(t)| �
∫ ∞

t
p(s)|yn(s)α − y(s)α |ds,

|G xn(t)−G x(t)| �
∫ ∞

t
q(s)|xn(s)β − x(s)β |ds.

This establishes the continuity of Φ .
Thus all the hypotheses of the Schauder-Tychonofffixed point theorem are fulfilled

for Φ , and so there exists (x(t),y(t)) ∈X such that Φ(x(t),y(t)) = (x(t),y(t)) , t � T ,
that is,

x(t) = Fy(t) =
∫ ∞

t
p(s)y(s)αds, y(t) = G x(t) =

∫ ∞

t
q(s)x(s)β ds, t � T,

which implies that (x(t),y(t)) gives a strongly decreasing solution of system (A). Since
(x(t),y(t)) is a member of X , it becomes nearly regularly varying of negative index
(ρ ,σ) . This completes the proof of Theorem 3.1. �

As for the solutions constructed in Theorem 3.1, their regularity can be character-
ized completely under the stronger assumption that p(t) and q(t) are regularly varying
functions.

The generalized L’Hospital’s rule given in the following lemma (see [3]) plays a
crucial role in the proof of Theorem 3.2 below.

LEMMA 3.2. Let f (t),g(t) ∈ C1[T,∞) and suppose that

lim
t→∞

f (t) = lim
t→∞

g(t) = ∞ and g′(t) > 0 f or all large t,
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or
lim
t→∞

f (t) = lim
t→∞

g(t) = 0 and g′(t) < 0 f or all large t.

Then,

liminf
t→∞

f ′(t)
g′(t)

� liminf
t→∞

f (t)
g(t)

, limsup
t→∞

f (t)
g(t)

� limsup
t→∞

f ′(t)
g′(t)

.

THEOREM 3.2. Suppose that p(t) and q(t) are regularly varying of indices λ
and μ , respectively. System (A) possesses regularly varying solutions (x(t),y(t)) such
that

x(t) ∈ RV(ρ), y(t) ∈ RV(σ), ρ < 0, σ < 0

if and only if (3.1) holds, in which case ρ and σ are given by (3.2) and the asymptotic
behavior of any such solution (x(t),y(t)) is governed by the formulas

x(t) ∼
[ t1+α p(t)q(t)α

(−ρ)(−σ)α

] 1
1−αβ

, y(t) ∼
[ t1+β p(t)β q(t)

(−ρ)β (−σ)

] 1
1−αβ

, t → ∞. (3.19)

Proof of Theorem 3.2.
(The “only if” part) This follows from Lemma 3.1.

(The “if” part) Suppose that (3.1) holds and define the negative constants ρ and σ
by (3.2). By Theorem 3.1 system (A) has a nearly regularly varying solution (x(t),y(t))
on [T,∞) such that

aX(t) � x(t) � AX(t), bY (t) � y(t) � BY (t), t � T, (3.20)

for some positive constants T,a,A,b and B , where

X(t) =
[ tα+1p(t)q(t)α

(−ρ)(−σ)α

] 1
1−αβ ∈ RV(ρ), Y (t) =

[ tβ+1p(t)β q(t)
(−ρ)β (−σ)

] 1
1−αβ ∈ RV(σ).

(3.21)
It is clear that (x(t),y(t)) satisfies

x(t) =
∫ ∞

t
p(s)y(s)αds, y(t) =

∫ ∞

t
q(s)x(s)β ds, t � T. (3.22)

Let U(t) and V (t) denote the functions defined by

U(t) =
∫ ∞

t
p(s)Y (s)αds, V (t) =

∫ ∞

t
q(s)X(s)β ds, t � a. (3.23)

Note that U(t) and V (t) satisfy the asymptotic relations

U(t) ∼ X(t), V (t) ∼ Y (t), t → ∞. (3.24)

Put

k = liminf
t→∞

x(t)
U(t)

, K = limsup
t→∞

x(t)
U(t)

, l = liminf
t→∞

y(t)
V (t)

, L = limsup
t→∞

y(t)
V (t)

. (3.25)
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From (3.20) and (3.22) we see that 0 < k � K < ∞ and 0 < l � L < ∞ . Applying the
generalized L’Hospital rule repeatedly, we obtain

k = liminf
t→∞

x(t)
U(t)

� liminf
t→∞

x′(t)
U ′(t)

= liminf
t→∞

p(t)y(t)α

p(t)Y (t)α

= liminf
t→∞

(
y(t)
Y (t)

)α
= liminf

t→∞

(
y(t)
V (t)

)α
=

(
liminf

t→∞

y(t)
V (t)

)α
= lα ,

and

l = liminf
t→∞

y(t)
V (t)

� liminf
t→∞

y′(t)
V ′(t)

= liminf
t→∞

q(t)x(t)β

q(t)X(t)β

= liminf
t→∞

(
x(t)
X(t)

)β
= liminf

t→∞

(
x(t)
U(t)

)β
=

(
liminf

t→∞

x(t)
U(t)

)β
= kβ ,

where (3.24) has been used in the final step of each of the above computations. Since
αβ < 1, the inequalities k � lα and l � kβ thus obtained imply

1 � k < ∞, 1 � l < ∞. (3.26)

Similarly, we obtain K � Lα and L � Kβ , from which it follows that

0 < K � 1, 0 < L � 1. (3.27)

From (3.26) and (3.27) we conclude that k = K = 1 and l = L = 1, that is,

lim
t→∞

x(t)
U(t)

= 1, lim
t→∞

y(t)
V (t)

= 1,

which combined with (3.24) shows that

x(t) ∼U(t) ∼ X(t), y(t) ∼V (t) ∼ Y (t), t → ∞.

This completes the proof. �

EXAMPLE 3.1. Consider system (A) with

p(t) 
 2tα−3(logt)α+1, q(t) 
 t2(β−1)(log t)−(β+1), t → ∞.

This means that (3.3) holds with

λ = α −3, μ = 2(β −1), l(t) = 2(logt)α+1, m(t) = (log t)−(β+1).

Since λ +1+α(μ +1) = −2(1−αβ ) < 0 and β (λ +1)+ μ +1 = 1−αβ < 0, (3.2)
determines the constants ρ and σ to be ρ = −2 and σ = −1, and one finds that

l(t)m(t)α

(−ρ)(−σ)α = (logt)1−αβ ,
l(t)β m(t)

(−ρ)β (−σ)
= (log t)αβ−1.
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Therefore, by Theorem 3.1 the system (A) possesses a strongly decreasing solution
(x(t),y(t)) such that

x(t) 
 t−2 log t, y(t) 
 (t logt)−1, t → ∞.

Assume more strongly that p(t) and q(t) are regularly varying functions such that

p(t) ∼ 2tα−3(logt)α+1, q(t) ∼ t2(β−1)(log t)−(β+1), t → ∞.

Then, applying Theorem 3.2 we conclude that system (A) possesses strongly decreasing
solutions of index (-2,-1) all of which enjoy the unique asymptotic formulas

x(t) ∼ t−2 log t, y(t) ∼ (t logt)−1, t → ∞.

If in particular

p(t) = 2tα−3(log t)α+1
(
1− 1

2log t

)
, q(t) = t2(β−1)(logt)−(β+1)

(
1+

1
logt

)
,

then the system (A) has an exact strongly decreasing solution (t−2 log t,(t logt)−1) .

4. Strongly increasing solutions of (B)

We turn our attention to the study of strongly increasing solutions of system (B)
satisfying conditions (a) and (b). One of our main results here is the following theorem
which enables us to find the desired solutions in the class of nearly regularly varying
solutions of positive indices.

THEOREM 4.1. Let λ and μ be constants satisfying the linear system of inequal-
ities

λ +1+ α(μ +1) > 0, β (λ +1)+ μ +1 > 0, (4.1)

and define ρ > 0 and σ > 0 by (3.2). Suppose that p(t) and q(t) are nearly regularly
varying functions of indices λ and μ , respectively, given by (3.3). Then, system (B)
possesses a nearly regularly varying solution (x(t),y(t)) of positive index (ρ ,σ) such
that

x(t) 

[ t1+α p(t)q(t)α

ρσα

] 1
1−αβ

, y(t) 

[ t1+β p(t)β q(t)

ρβ σ

] 1
1−αβ

, t → ∞. (4.2)

We notice that a strongly increasing solution (x(t),y(t)) of (B), if exists on [T,∞) ,
satisfies the following system of integral asymptotic relations

x(t) ∼
∫ t

T
p(s)y(s)αds, y(t) ∼

∫ t

T
q(s)x(s)β ds, t → ∞. (BR)

The proof of Theorem 4.1 heavily depends on the fact that accurate information can be
acquired about regularly varying solutions of (BR) provided p(t) and q(t) are regularly
varying.
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LEMMA 4.1. Suppose that p(t) ∈ RV(λ ) and q(t) ∈ RV(μ) are expressed in
the form (3.5). Relation (BR) possesses regularly varying solutions of index (ρ ,σ )
with ρ > 0 and σ > 0 if and only if (λ ,μ) satisfies the system of inequalities (4.1),
in which case ρ and σ are given by (3.2) and the asymptotic behavior of any such
solution (x(t),y(t)) of (BR) is governed by the unique formula

x(t) ∼
[ t1+α p(t)q(t)α

ρσα

] 1
1−αβ

, y(t) ∼
[ t1+β p(t)β q(t)

ρβ σ

] 1
1−αβ

, t → ∞. (4.3)

Proof of lemma 4.1. (The “only if” part) Suppose that (BR) has a regularly varying
solution (x(t),y(t)) of positive index (ρ ,σ) which exists on [T,∞) and is expressed in
the form (3.7). Then,

x(t) ∼
∫ t

T
sλ+ασ l(s)η(s)α ds, y(t) ∼

∫ t

T
sμ+β ρm(s)ξ (s)β ds, t → ∞. (4.4)

The divergence of the above integrals as t → ∞ implies that λ + ασ � −1 and μ +
β ρ � −1. The possibilities λ + ασ = −1 and μ + β ρ = −1 should be excluded
because ∫ t

T
s−1l(s)η(s)α ds ∈ SV,

∫ t

T
s−1m(s)ξ (s)β ds ∈ SV,

by (iii) of Proposition 2.5. Therefore, we must have λ +ασ > −1 and μ +β ρ > −1,
in which case from Karamata’s integration theorem ((i) of Proposition 2.5) applied to
the integrals in (4.4) we obtain

x(t) ∼ tλ+ασ+1l(t)η(t)α

λ + ασ +1
, y(t) ∼ tμ+β ρ+1l(t)ξ (t)β

μ + β ρ +1
, t → ∞. (4.5)

which shows that x(t) and y(t) are regularly varying of positive indices λ + ασ + 1
and μ + β ρ +1, respectively. Consequently, we must have ρ = λ + ασ +1 and σ =
μ + β ρ + 1, from which it follows that the positive constants ρ and σ are uniquely
determined by (3.2). We note that (4.5) can be rewritten as

x(t) ∼ tλ+1l(t)y(t)α

ρ
=

t p(t)y(t)α

ρ
,

y(t) ∼ tμ+1m(t)x(t)β

σ
=

tq(t)x(t)β

ρ
, t → ∞,

which implies

x(t) ∼ t1+α p(t)q(t)αx(t)αβ

ρσα , y(t) ∼ t1+β p(t)β q(t)y(t)αβ

ρβ σ
, t → ∞.

Clearly, this leads to the asymptotic formula (4.3) for (x(t),y(t)) .
(The “if” part) Let (λ ,μ) satisfy (4.1) and define (ρ ,σ) by (3.2). Consider the

regularly varying function (X(t),Y (t)) defined by

X(t) =
[ t1+α p(t)q(t)α

ρσα

] 1
1−αβ

, Y (t) =
[ t1+β p(t)β q(t)

ρβ σ

] 1
1−αβ

. (4.6)
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It can be verified that (X(t),Y (t)) satisfies the system of asymptotic relations (BR)
for any T � a . In fact, rewriting (4.6) as

X(t) = tρ
[ l(t)m(t)α

ρσα

] 1
1−αβ

, Y (t) = tσ
[ l(t)β m(t)

ρβ σ

] 1
1−αβ

,

we compute via Karamata’s integration theorem as follows:
∫ t

T
p(s)Y (s)αds =

∫ t

T
sλ+ασ l(s)

[ l(s)β m(s)
ρβ σ

] α
1−αβ

ds

=
∫ t

T
sρ−1l(s)

[ l(s)β m(s)
ρβ σ

] α
1−αβ

ds

∼ tρ l(t)
ρ

[ l(t)β m(t)
ρβ σ

] α
1−αβ

= X(t),

as t → ∞ , and similarly

∫ t

T
q(s)X(s)β ds ∼ tσ m(t)

σ

[ l(t)m(t)α

ρσα

] β
1−αβ = Y (t), t → ∞.

This completes the proof of Lemma 4.1. �
Proof of Theorem 4.1. Let (λ ,μ) satisfy (4.1) and define (ρ ,σ) by (3.2). Define

pλ (t) and qμ(t) by (3.11), which satisfy (3.12) for some positive constants k,K, l,L ,
and let Xλ (t) and Yμ(t) denote the functions defined by (4.6) with p(t) and q(t) re-
placed by pλ (t) and qμ(t) , respectively. Since (Xλ (t),Yμ(t)) satisfies relation (BR),
there exists T0 � a such that∫ t

T0

pλ (s)Yμ(s)αds � 2Xλ (t),
∫ t

T0

qμ(s)Xλ (s)β ds � 2Yμ(t), t � T0. (4.7)

We may assume that Xλ (t) and Yμ(t) are increasing for t � T0 . Using (BR) again, we
see that there exists T1 > T0 such that∫ t

T0

pλ (s)Yμ(s)αds � 1
2
Xλ (t),

∫ t

T0

qμ(s)Xλ (s)β ds � 1
2
Yμ(t), t � T1. (4.8)

We now choose (a,b),(A,B) ∈ R
2 so that a < A, b < B ,

a � 1
2
kbα , b � 1

2
laβ , 4KBα � A, 4LAβ � B, (4.9)

and

aXλ (T1) � 1
2
AXλ (T0), bYμ(T1) � 1

2
BYμ(T0). (4.10)

It is easy to check that (4.9) and (4.10) are consistent. Let X be defined to be the set
of continuous vector functions (x(t),y(t)) on [T0,∞) such that

aXλ (t) � x(t) � AXλ (t), bYμ(t) � y(t) � BYμ(t), t � T0, (4.11)
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and consider the mapping Φ : X →C[T0,∞)×C[T0,∞) given by

Φ(x(t),y(t)) = (Fy(t),G x(t)), t � T0, (4.12)

where F and G stand for the integral operators

Fy(t) = x0 +
∫ t

T0

p(s)y(s)αds, G x(t) = y0 +
∫ t

T0

q(s)x(s)β ds, t � T0, (4.13)

where x0 and y0 are positive constants satisfying

aXλ (T1) � x0 � 1
2
AXλ (T0), bYμ(T1) � y0 � 1

2
BYμ(T0). (4.14)

It is proved without difficulty that Φ is a continuous self-map of X with the
property that Φ(X ) is relatively compact in C[T0,∞)×C[T0,∞) . Let(x(t),y(t)) ∈ X .
Using (4.7) - (4.11), we see that

Fy(t) � x0 � aXλ (T1) � aXλ (t), T0 � t � T1,

and

Fy(t) �
∫ t

T0

p(s)y(s)αds �
∫ t

T0

kpλ (s)(bYμ(s))αds

� 1
2
kbαXλ (t) � aXλ (t), t � T1.

On the other hand, we have for t � T0

Fy(t) � 1
2
AXλ (T0)+

∫ t

T0

Kpλ (s)(BYμ(s))αds

� 1
2
AXλ (t)+2KBαXλ (t)

� 1
2
AXλ (t)+

1
2
AXλ (t) = AXλ (t).

This implies that aXλ (t) � Fy(t) � AXλ (t) for t � T0 . And entirely analogous com-
putations apply to G , showing that bYμ(t) � G x(t) � BYμ(t) for t � T0 . It follows that
Φ(x(t),y(t)) ∈ X . The relative compactness of Φ(X ) follows from the inclusion
Φ(X ) ⊂ X and the inequalities

0 � (Fy)′(t) � Bα p(t)Yμ(t)α , 0 � (G x)′(t) � Aβ q(t)Xλ (t)β , t � T0,

holding for all (x(t),y(t)) ∈ X . To confirm the continuity of Φ it suffices to con-
sider any sequence {(xn(t),yn(t))} in X converging to (x(t),y(t)) ∈X uniformly on
compact subintervals of [T0,∞) and verify that Fyn(t) → Fy(t) and G xn(t) → G x(t)
uniformly on any compact subinterval of [T0,∞) by applying the Lebesgue dominated
convergence theorem to the following integrals

|Fyn(t)−Fy(t)| �
∫ t

T0

p(s)|yn(s)α − y(s)α |ds,
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|G xn(t)−G x(t)| �
∫ t

T0

q(s)|xn(s)β − x(s)β |ds, t � T0.

Consequently by the Schauder-Tychonoff fixed point theorem Φ has a fixed point
(x(t),y(t)) ∈ X , which satisfies the system of integral equations

x(t) = x0 +
∫ t

T0

p(s)y(s)αds, y(t) = y0 +
∫ t

T0

q(s)x(s)β ds, t � T0.

It follows therefore that (x(t),y(t)) provides a strongly increasing solution of system
(B) which is nearly regularly varying of index (ρ ,σ) . This completes the proof of
Theorem 4.1. �

As the next theorem shows, under the stronger assumption that p(t) and q(t) are
regularly varying functions, the full regularity of the solutions obtained in Theorem 4.1
can be proved via the generalized L’Hospital rule (Lemma 3.2), so that the existence
of regularly varying solutions with positive indices is characterized completely in this
particular case. The proof is similar to that of Theorem 3.2 and we omit it.

THEOREM 4.2. Suppose that p(t) and q(t) are regularly varying of indices λ
and μ , respectively. System (B) possesses regularly varying solutions (x(t),y(t)) such
that

x(t) ∈ RV(ρ), y(t) ∈ RV(σ), ρ > 0, σ > 0,

if and only if (4.1) holds, in which case ρ and σ are given by (3.2) and the asymptotic
behavior of any such solution is governed by the formulas

x(t) ∼
[
tα+1p(t)q(t)α

ρσα

] 1
1−αβ

, y(t) ∼
[
tβ+1p(t)β q(t)

ρβ σ

] 1
1−αβ

, t → ∞. (4.15)

EXAMPLE 4.1. Consider system (B) with

p(t) 
 2t1−3α exp
(
(1+ α)

√
logt

)
,

q(t) 
 3t2(1−β ) exp
(−(1+ β )

√
log t

)
, t → ∞.

This means that (3.3) holds with λ = 1−3α , μ = 2(1−β ) ,

l(t) = 2exp
(
(1+ α)

√
logt

)
and m(t) = 3exp

(−(1+ β )
√

logt
)
.

Since

λ +1+ α(μ +1) = 2(1−αβ ) > 0 and β (λ +1)+ μ +1 = 3(1−αβ ) > 0,

(3.2) determines the constants ρ = 2 and σ = 3, and we have

l(t)m(t)α

ρσα = exp
(
(1−αβ )

√
logt

)
,

l(t)β m(t)
ρβ σ

= exp
(
(αβ −1)

√
logt

)
.
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Therefore, by Theorem 4.1 this system (B) possesses a strongly increasing solution
(x(t),y(t)) such that

x(t) 
 t2 exp
(√

logt
)
, y(t) 
 t3 exp

(−√
logt

)
, t → ∞.

If p(t) and q(t) are regularly varying functions such that

p(t) ∼ 2t1−3α exp
(
(1+ α)

√
logt

)
,

q(t) ∼ 3t2(1−β ) exp
(− (1+ β )

√
logt

)
, t → ∞,

then by Theorem 4.2 system (B) possesses strongly increasing solutions which are reg-
ularly varying of index (2,3) all of which enjoy the unique asymptotic formulas

x(t) ∼ t2 exp
(√

logt
)
, y(t) ∼ t3 exp

(−√
log t

)
, t → ∞.

If in particular

p(t) = 2t1−3α exp
(
(1+ α)

√
logt

)(
1+

1
4
√

logt

)
,

q(t) = 3t2(1−β ) exp
(−(1+ β )

√
logt

)(
1− 1

6
√

logt

)
,

then the system (B) has the following exact strongly increasing solution

(t2 exp
(√

logt
)
,t3 exp

(−√
log t

)
).

5. Application to generalized Thomas-Fermi equations

We conclude this paper with a remark that our main results for systems (A) and (B)
can be used to produce new results on the existence and precise asymptotic behavior
of strongly monotone regularly varying solutions for the generalized Thomas-Fermi
differential equation

(p(t)|x′|α−1x′)′ = q(t)|x|β−1x, (5.1)

where α , β are positive constants such that α > β and p(t) , q(t) are positive contin-
uous functions on [a,∞) . An important feature of our results is that we do not need to
distinguish the two cases

(I)
∫ ∞
a p(t)−1/αdt = ∞ , (II)

∫ ∞
a p(t)−1/αdt < ∞ ,

as was done by some authors.

A positive solution x(t) of (5.1) is said to be strongly decreasing if it satisfies

lim
t→∞

x(t) = 0 and lim
t→∞

p(t)
1
α x′(t) = 0 (5.2)

and strongly increasing if it satisfies

lim
t→∞

x(t) = ∞ and lim
t→∞

p(t)
1
α x′(t) = ∞. (5.3)

(It is easy to see that if we define the functions
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P(t) =
∫ t
a p(s)−1/αds in the case (I), π(t) =

∫ ∞
t p(s)−1/αds in the case (II),

then (5.2) is equivalent to a single condition

lim
t→∞

x(t) = 0 if (I) holds and lim
t→∞

x(t)
π(t)

= 0 if (II) holds.

Similarly, (5.3) reduces to:

lim
t→∞

x(t)
P(t)

= ∞ in the case (I), and lim
t→∞

x(t) = ∞ in the case (II).)

Let x(t) be a strongly decreasing (resp. strongly increasing) solution of equation
(5.1) and put y(t) = p(t)(−x′(t))α (resp. y(t) = p(t)x′(t)α ). Then, (x(t),y(t)) is a
strongly decreasing (resp. strongly increasing) solution of the following system of first
order differential equations

x′ + p(t)−
1
α y

1
α = 0, y′ +q(t)xβ = 0, (5.4)(

resp. x′ = p(t)−
1
α y

1
α , y′ = q(t)xβ

)
. (5.5)

In order to study these systems in the framework of regular variation we need
to require that p ∈ RV(λ ) and q ∈ RV(μ ) and that they are expressed in the form
p(t) = tλ l(t) and q(t) = tμm(t) with l,m ∈ SV.

We are now in a position to apply Theorems 3.2 and 4.2 to the systems (5.4) and
(5.5), respectively. From Theorem 3.2 applied to (5.4) we see that (5.4) has strongly
decreasing solutions (x(t),y(t)) such that x∈ RV(ρ ) and y∈ RV(σ ) for some negative
ρ and σ if and only if

α −λ + μ +1 < 0 and β (α −λ )+ α(μ +1) < 0,

in which case ρ and σ are determined uniquely by

ρ =
α −λ + μ +1

α −β
and σ =

β (α −λ )+ α(μ +1)
α −β

. (5.6)

On the other hand, from Theorem 4.2 it follows that (5.5) has strongly increasing solu-
tions (x(t),y(t)) such that x ∈ RV(ρ ) and y ∈ RV(σ ) for some positive ρ and σ if
and only if

α −λ + μ +1 > 0 and β (α −λ )+ α(μ +1) > 0,

in which case ρ and σ are given by (5.6).
As easily seen, if α � λ , then

α −λ + μ +1 < 0 implies β (α −λ )+ α(μ +1) < 0,

and
β (α −λ )+ α(μ +1) > 0 implies α −λ + μ +1 > 0.
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Similarly, if α � λ , then

β (α −λ )+ α(μ +1) < 0 implies α −λ + μ +1 < 0,

and
α −λ + μ +1 > 0 implies β (α −λ )+ α(μ +1) > 0.

The above-mentioned statements concerning the strongly monotone solutions of
systems (5.4) and (5.5) can be transformed into the following theorems on the strongly
monotone regularly varying solutions of the generalized Thomas-Fermi equation (5.1).

THEOREM 5.1. Suppose that p∈ RV(λ ) and q∈ RV (μ) . (i) Let λ � α . Then,
equation (5.1) possesses strongly decreasing regularly varying solutions in RV(ρ) with
ρ < 0 if and only if α −λ +μ +1 < 0 , in which case the regularity index ρ is uniquely
determined by

ρ =
α −λ + μ +1

α −β
, (5.7)

and the asymptotic behavior of any such solution x(t) is governed by the unique decay
law

x(t) ∼
[

tα+1p(t)−1q(t)
(−ρ)α(α −λ −αρ)

] 1
α−β

, t → ∞. (5.8)

(ii) Let α < λ . Then, equation (5.1) possesses strongly decreasing regularly varying
solutions in RV(ρ) with ρ < α−λ

α if and only if β (α −λ )+ α(μ + 1) < 0 , in which
case the regularity index is uniquely determined by (5.7) and the asymptotic behavior
of any such solution x(t) is governed by the unique decay law (5.8).

THEOREM 5.2. Suppose that p ∈ RV(λ ) and q ∈ RV(μ) . (i) Let λ � α . Then,
equation (5.1) possesses strongly increasing regularly varying solutions in RV(ρ) with
ρ > 0 if and only if α −λ +μ +1 > 0 , in which case the regularity index ρ is uniquely
determined by (5.7) and the asymptotic behavior of any such solution x(t) is governed
by the unique growth law

x(t) ∼
[

tα+1p(t)−1q(t)
ρα(αρ + λ −α)

] 1
α−β

, t → ∞. (5.9)

(ii) Let α > λ . Then, equation (5.1) possesses strongly increasing regularly varying
solutions in RV(ρ) with ρ > α−λ

α if and only if β (α −λ )+ α(μ + 1) > 0 , in which
case the regularity index is uniquely determined by (5.7) and the asymptotic behavior
of any such solution x(t) is governed by the unique growth law (5.9).

We note that the above theorems generalize some of the recent results of Kusano
et al. [8] concerning the special case of (5.1) with p(t) ≡ 1.
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[9] V. MARIĆ, Regular Variation and Differetial Equations, Lecture Notes in Mathematics 1726,
Springer-Verlag, Berlin, 2000.

[10] J. D. MIRZOV, Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary
Differential Equations, Folia Facultatis Scientiarium Naturalium Universitatis Massarykianae Brunen-
sis, Mathematica 14, Masaryk University, Brno, 2004.

(Received October 23, 2012) Jaroslav Jaroš
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