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POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEMS

INVOLVING NONLINEAR FRACTIONAL q–DIFFERENCE EQUATIONS

WENGUI YANG

(Communicated by Eduardo M. Hernandez)

Abstract. In this work, we investigate the eigenvalue intervals of nonlinear boundary value prob-
lems involving fractional q -difference equations by means of the properties of the Green func-
tion and Guo-Krasnosel’skii fixed point theorem on cones. Furthermore, some sufficient condi-
tions for the nonexistence and existence of at least one or two positive solutions for the boundary
value problem are established. As applications, some examples are presented to illustrate the
main results.

1. Introduction

In the past serval decades, boundary value problems for nonlinear fractional dif-
ferential equations have gained considerable popularity and importance due to their ap-
plication in many engineering and scientific disciplines as the mathematical modeling
of systems and processes in the fields of physics, chemistry, aerodynamics, engineer-
ing, signal and image processing, and so on. In consequence, the existence of solutions
to fractional boundary value problems have been of great interest; for example, see
[2, 3, 4, 5, 18, 24, 25, 21] and the references therein.

In [14, 15], Jackson firstly introduced the q -difference calculus or quantum calcu-
lus. For details, basic definitions and properties of q -difference calculus can be found
in the book mentioned in [16]. Later, the fractional q -difference calculus has been
proposed by Al-Salam [6] and Agarwal [1]. Recently, maybe due to the explosion in
research within the fractional differential calculus setting, new developments in this
theory of fractional q -difference calculus have been addressed extensively by several
researchers. For example, some researcher obtained q -analogues of the integral and
differential fractional operators properties such as the q -Laplace transform, q -Taylor’s
formula, Mittage-Leffler function [7, 22, 23], and so on.

More recently, many people pay attention to boundary value problems involv-
ing nonlinear fractional q -difference equations. There have been some papers deal-
ing with the existence and multiplicity of solutions or positive solutions for bound-
ary value problems involving nonlinear fractional q -difference equations by the use of
some well-known fixed point theorems. For some recent developments on the subject,
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see [9, 10, 11, 19] and the references therein. El-Shahed and Al-Askar [8] studied the
existence of multiple positive solutions to the nonlinear q -fractional boundary value
problems by using Guo-Krasnoselskii’s fixed point theorem in a cone. Ma and Yang
[20] considered the existence of solutions for multi-point boundary value problems of
nonlinear fractional q -difference equations by means of the Banach contraction princi-
ple and Krasnoselskii’s fixed point theorem.

Ferreira [12] studied the existence of positive solutions to nonlinear fractional q -
difference boundary value problem as following:{

(Dα
q u)(t)+ f (t,u(t)) = 0, 0 < t < 1,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β � 0,

where 2 < α � 3, Dα
q is the Riemann-Liouville fractional q -derivative, and f : [0,1]×

R → R is a nonnegative continuous function. By using the properties of the Green
function, they obtained some existence criteria for one positive solution for nonlinear
fractional q -difference boundary value problems by means of the Krasnosel’skii fixed
point theorem in cones.

To the best of author’s knowledge, there is very little known about the existence
of positive solutions for the following nonlinear boundary value problem of fractional
q -difference equation:{

(Dα
q u)(t)+ λ f (u(t)) = 0, 0 < t < 1,

u(0) = (Dqu)(0) = (Dqu)(1) = 0,
(1)

where 2 < α � 3, Dα
q is the Riemann-Liouville fractional q -derivative, λ is a positive

parameter and f : [0,1]×R→ R is a nonnegative continuous function.
On the one hand, the boundary value problem in [12] is the particular case of prob-

lem (1) as the case of λ = 1. On the other hand, similarly as Ferreira discussed in [12],
we also give some existence results by the fixed point theorem on a cone in this paper.
The main purpose of this article is, by applying the properties of the Green function and
Guo-Krasnosel’skii fixed point theorem in cones, to establish the eigenvalue λ inter-
vals of the nonlinear fractional q -difference boundary value problem (1) such that, for
any λ lying in this interval, the problem (1) has existence and multiplicity on positive
solutions. Moreover, some sufficient conditions for the existence and nonexistence of
at least one or two positive solutions for the boundary value problem are established.
As applications, some examples are presented to illustrate the main results.

2. Preliminaries

For the convenience of the reader, we present some necessary definitions and lem-
mas of fractional q -calculus theory to facilitate analysis of problem (1). These details
can be found in the recent literature; see [16] and references therein.

Let q ∈ (0,1) and define

[a]q =
qa−1
q−1

, a ∈ R.
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The q -analogue of the power (a−b)n with n ∈ N0 is

(a−b)(0) = 1, (a−b)(n) =
n−1

∏
k=0

(a−bqk), n ∈ N, a,b ∈ R.

More generally, if α ∈ R , then

(a−b)(α) = aα
∞

∏
n=0

a−bqn

a−bqα+n .

Note that, if b = 0 then a(α) = aα . The q -gamma function is defined by

Γq(x) =
(1−q)(x−1)

(1−q)x−1 , x ∈ R\ {0,−1,−2, . . .},

and satisfies Γq(x+1) = [x]qΓq(x) .
The q -derivative of a function f is here defined by

(Dq f )(x) =
f (x)− f (qx)

(1−q)x
, (Dq f )(0) = lim

x→0
(Dq f )(x),

and q -derivatives of higher order by

(D0
q f )(x) = f (x) and (Dn

q f )(x) = Dq(Dn−1
q f )(x), n ∈ N.

The q -integral of a function f defined in the interval [0,b] is given by

(Iq f )(x) =
∫ x

0
f (t)dqt = x(1−q)

∞

∑
n=0

f (xqn)qn, x ∈ [0,b].

If a ∈ [0,b] and f is defined in the interval [0,b] , its integral from a to b is defined by∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt−

∫ a

0
f (t)dqt.

Similarly as done for derivatives, an operator In
q can be defined, namely,

(I0
q f )(x) = f (x) and (In

q f )(x) = Iq(In−1
q f )(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq , i.e.,

(DqIq f )(x) = f (x),

and if f is continuous at x = 0, then

(IqDq f )(x) = f (x)− f (0).

Basic properties of the two operators can be found in the book [16]. We now point
out three formulas that will be used later ( iDq denotes the derivative with respect to
variable i)

[a(t− s)](α) = aα(t− s)(α), tDq(t− s)(α) = [α]q(t− s)(α−1),
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(
xDq

∫ x

0
f (x,t)dqt

)
(x) =

∫ x

0
xDq f (x,t)dqt + f (qx,x).

We note that if α > 0 and a � b � t , then (t−a)(α) � (t−b)(α) [11].

DEFINITION 1. ([1]). Let α � 0 and f be function defined on [0,1] . The frac-
tional q -integral of the Riemann-Liouville type is I0

q f (x) = f (x) and

(Iα
q f )(x) =

1
Γq(α)

∫ x

0
(x−qt)(α−1) f (t)dqt, α > 0,x ∈ [0,1].

DEFINITION 2. ([23]). The fractional q -derivative of the Riemann-Liouville type
of order α � 0 is defined by D0

q f (x) = f (x) and

(Dα
q f )(x) = (Dm

q Im−α
q f )(x), α > 0,

where m is the smallest integer greater than or equal to α .

LEMMA 1. ([11]). Let α > 0 and p be a positive integer. Then the following
equality holds:

(Iα
q Dα

q f )(x) = (Dα
q Iα

q f )(x)−
p−1

∑
k=0

xα−p+k

Γq(α + k− p+1)
(Dk

q f )(0).

LEMMA 2. ([12]). Let y ∈C[0,1] and 2 < α � 3 , the unique solution of{
Dα

q u(t)+ y(t) = 0, 0 < t < 1,

u(0) = (Dqu)(0) = (Dqu)(1) = 0,

is given by

u(t) =
∫ 1

0
G(t,qs)y(s)dqs,

where

G(t,s) =

{
tα−1(1− s)(α−2)− (t− s)(α−1), 0 � s � t � 1,

tα−1(1− s)(α−2), 0 � t � s � 1.
(2)

The following properties of the Green function play important roles in this paper.

LEMMA 3. ([12]). Let Function G(t,s) defined by (2) satisfies the following con-
ditions:

(A1) G(t,qs) � 0 and G(t,qs) � G(1,qs) for all 0 � t,s � 1 ;

(A2) G(t,qs) � g(t)G(1,qs) for 0 � t,s � 1 with g(t) = tα−1 .
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The following lemma is fundamental in the proofs of our main results.

LEMMA 4. ([13, 17]). Let X be a Banach space, and let P ⊂ X be a cone in X .
Assume that Ω1,Ω2 are open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 , and let S : P → P
be a completely continuous operator such that, either

(B1) ‖Sw‖ � ‖w‖ , w ∈ P∩∂Ω1 , and ‖Sw‖ � ‖w‖ , w ∈ P∩∂Ω2 or

(B2) ‖Sw‖ � ‖w‖ , w ∈ P∩∂Ω1 , and ‖Sw‖ � ‖w‖ , w ∈ P∩∂Ω2

Then S has a fixed point in P∩ (Ω2 \Ω1) .

Let E =C[0,1] be the Banach space endowed with the norm ‖u‖= supt∈[0,1] |u(t)| .
Define the cone P ⊂ E by

P = {u ∈ E : u(t) � g(t)‖u‖,t ∈ [0,1]} .

Suppose that u is a solution of boundary value problem (1). Then from Lemma 2,
we obtain

u(t) = λ
∫ 1

0
G(t,qs) f (u(s))dqs, t ∈ [0,1].

We define an operator Sλ : P → E as follows:

(Sλ u)(t) = λ
∫ 1

0
G(t,qs) f (u(s))dqs, t ∈ [0,1].

By Lemma 3, we have

‖Sλu‖ � λ
∫ 1

0
G(1,qs) f (u(s))dqs,

(Sλ u)(t) � λ
∫ 1

0
g(t)G(1,qs) f (u(s))dqs � g(t)‖Sλ u‖.

Thus, Sλ (P) ⊂ P . Then we have the following lemma.

LEMMA 5. Sλ : P → P is completely continuous.

Proof. The operator Sλ : P → P is continuous in view of continuity of G(t,s) and
f (u(t)) . By means of the Arzela-Ascoli theorem, Sλ : P→ P is completely continuous.

3. Main results

In this section, we establish some sufficient conditions for the existence and nonex-
istence of positive solutions for boundary value problem (1).



210 WENGUI YANG

For convenience, we denote

F0 = lim
u→0+

sup
f (u)
u

, F∞ = lim
u→+∞

sup
f (u)
u

,

f0 = lim
u→0+

inf
f (u)
u

, f∞ = lim
u→+∞

inf
f (u)
u

,

C1 =
∫ 1

0
G(1,qs)dqs, C2 =

∫ 1

0
g(s)G(1,qs)dqs.

THEOREM 1. If there exists l ∈ (0,1) such that g(l) f∞C2 > F0C1 holds, then for
each

λ ∈ (
(g(l) f∞C2)−1,(F0C1)−1) , (3)

the boundary value problem (1) has at least one positive solution. Here we impose
(g(l) f∞C2)−1 = 0 if f∞ = +∞ and (F0C1)−1 = +∞ if F0 = 0 .

Proof. Let λ satisfy (3) and ε > 0 be such that

(g(l)( f∞ − ε)C2)−1 � λ � ((F0 + ε)C1)−1. (4)

By the definition of F0 , we see that there exists r1 > 0 such that

f (u) � (F0 + ε)u, for 0 < u � r1. (5)

So if u ∈ P with ‖u‖ = r1 , then by (4) and (5), we have

‖Sλu‖ � λ
∫ 1

0
G(1,qs) f (u(s))dqs

� λ
∫ 1

0
G(1,qs)(F0 + ε)r1dqs

= λ (F0 + ε)r1C1 � r1 = ‖u‖.

Hence, if we choose Ω1 = {u ∈ E : ‖u‖ < r1} , then we get

‖Sλu‖ � ‖u‖, for u ∈ P∩∂Ω1. (6)

Let r3 > 0 be such that

f (u) � ( f∞ − ε)u, for u � r3. (7)

If u ∈ P with ‖u‖ = r2 = max{2r1,r3} , then from (4) and (7), we obtain

‖Sλ u‖ � (Sλ u)(l) = λ
∫ 1

0
G(l,qs) f (u(s))dqs

� λ
∫ 1

0
g(l)G(1,qs) f (u(s))dqs
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� λ
∫ 1

0
g(l)G(1,qs)( f∞ − ε)u(s)dqs

� λ
∫ 1

0
g(l)g(s)G(1,qs)( f∞ − ε)‖u‖dqs

= λg(l)C2( f∞ − ε)‖u‖� ‖u‖.
Thus, if we set Ω2 = {u ∈ E : ‖u‖ < r2} , then we get

‖Sλu‖ � ‖u‖, for u ∈ P∩∂Ω2. (8)

Now, from (6), (8), and Lemma 4,we guarantee that Sλ has a fixed-point u ∈ P∩
(Ω2 \Ω1) with r1 � ‖u‖ � r2 , and clearly u is a positive solution of (1). The proof is
complete.

THEOREM 2. If there exists l ∈ (0,1) such that g(l) f∞C2 > F0C1 holds, then for
each

λ ∈ (
(g(l) f0C2)−1,(F∞C1)−1) , (9)

the boundary value problem (1) has at least one positive solution. Here we impose
(g(l) f0C2)−1 = 0 if f0 = +∞ and (F∞C1)−1 = +∞ if F∞ = 0 .

Proof. Let λ satisfy (9) and ε > 0 be such that

(g(l)( f0 − ε)C2)−1 � λ � ((F∞ + ε)C1)−1. (10)

From the definition of f0 , we see that there exists r1 > 0 such that

f (u) � ( f0 − ε)u, for 0 < u � r1.

Further, if u ∈ P with ‖u‖ = r1 , then similar to the second part of Theorem 1, we can
obtain that ‖Sλu‖ � ‖u‖ . Thus, if we choose Ω1 = {u ∈ E : ‖u‖ < r1} , then

‖Sλu‖ � ‖u‖, for u ∈ P∩∂Ω1. (11)

Next, we may choose R1 > 0 such that

f (u) � (F∞ + ε)u, for u � R1. (12)

We consider two cases.

Case 1. Suppose f is bounded. Then there exists some M > 0, such that

f (u) � M, for u ∈ (0,+∞).

We define r3 = max{2r1,λMC1} , and u ∈ P with ‖u‖ = r3 , then

‖Sλu‖ � λ
∫ 1

0
G(1,qs) f (u(s))dqs
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� λM
∫ 1

0
G(1,qs)dqs

= λMC1 � r3 = ‖u‖.

Hence,

‖Sλu‖ � ‖u‖, for u ∈ Pr3 = {u ∈ P : ‖u‖ � r3}.

Case 2. Suppose f is unbounded. Then there exists some r4 > max{2r1,R1} such that

f (u) � f (r4), for 0 < u � r4.

Let u ∈ P with ‖u‖ = r4 . Then by (9) and (12), we have

‖Sλu‖ � λ
∫ 1

0
G(1,qs) f (u(s))dqs

� λ
∫ 1

0
G(1,qs)(F∞ + ε)‖u‖dqs

= λC1(F∞ + ε)‖u‖� ‖u‖.

Thus,

‖Sλu‖ � ‖u‖, for u ∈ Pr4 = {u ∈ P : ‖u‖ � r4}.

In both Cases 1 and 2, if we set Ω2 = {u ∈ P : ‖u‖ < r2 = max{r3,r4}} , then

‖Sλu‖ � ‖u‖, for u ∈ P∩∂Ω2. (13)

Now that we obtain (11), (13), it follows from Lemma 4 that Sλ has a fixed-point
u ∈ P∩ (Ω2 \Ω1) with r1 � ‖u‖ � r2 . It is clear that u is a positive solution of (1).
The proof is complete.

THEOREM 3. If there exists l ∈ (0,1) and r2 > r1 > 0 such that g(l) > r1/r2 and
f satisfy

min
g(l)r1�u�r1

f (u) � r1

λg(l)C1
, max

0�u�r2
f (u) � r2

λC1
.

the boundary value problem (1) has a positive solution u with r1 � ‖u‖ � r2 .

Proof. Choose Ω1 = {u ∈ E : ‖u‖ < r1} ; then for u ∈ P∩∂Ω1 , we have

‖Sλu‖ � (Sλ u)(l) = λ
∫ 1

0
G(l,qs) f (u(s))dqs

� λ
∫ 1

0
g(l)G(1,qs) f (u(s))dqs
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= λg(l)C1
r1

λg(l)C1
= r1 = ‖u‖.

On the other hand, choose Ω2 = {u ∈ E : ‖u‖ < r2} ; then for u ∈ P∩ ∂Ω2 , we
have

‖Sλ u‖ � λ
∫ 1

0
G(1,qs) f (u(s))dqs

� λ
∫ 1

0
G(1,qs) max

0�u�r2
f (u(s))dqs

� λC1
r2

λC1
= r2 = ‖u‖.

Thus, by Lemma 4, the boundary value problem (1) has a positive solution u with
r1 � ‖u‖ � r2 . The proof is complete.

For the reminder of this section, we will need the following condition.

(H) (minu∈[g(l)r,r] f (u))/r > 0, where l ∈ (0,1) .

For convenience, we denote

λ1 = sup
r>0

r
C1 maxu∈[0,r] f (u)

, λ2 = inf
r>0

r
C1 minu∈[g(l)r,r] f (u)

. (14)

In view of the continuity of f (u) and (H) , we have 0 < λ1 � +∞ and 0 � λ2 <
+∞ .

THEOREM 4. Assume (H) holds. If f0 = f∞ = +∞ , then the boundary value
problem (1) has at least two positive solutions for each λ ∈ (0,λ1) .

Proof. Define

a(r) =
r

C1 maxu∈[0,r] f (u)
.

By the continuity of f (u) and f0 = f∞ = +∞ , we have that a(r) : (0,+∞) → (0,+∞)
is continuous and

lim
r→0

a(r) = lim
r→+∞

a(r) = 0.

From (14), there exists r0 ∈ (0,+∞) such that

a(r0) = sup
r>0

a(r) = λ1;

then for λ ∈ (0,λ1) , there exist constants c1,c2 (0 < c1 < r0 < c2 < +∞) with

a(c1) = a(c2) = λ ;



214 WENGUI YANG

Thus,

f (u) � c1

λC1
, for u ∈ [0,c1], (15)

f (u) � c2

λC1
, for u ∈ [0,c2]. (16)

On the other hand, applying the conditions f0 = f∞ = +∞ , there exist constants
d1,d2 (0 < d1 < c1 < r0 < c2 < d2 < +∞) with

f (u)
u

� 1
g2(l)λC1

, for u ∈ (0,d1)∪ (g(l)d2,+∞).

Then

min
g(l)d1�u�d1

f (u) � d1

λg(l)C1
, (17)

min
g(l)d2�u�d2

f (u) � d2

λg(l)C1
. (18)

By (15) and (17), (16) and (18), combining with Theorem 3 and Lemma 4, we can
complete the proof.

COROLLARY 1. Assume (H) holds. If f0 = +∞ or f∞ = +∞ , then the boundary
value problem (1) has at least one positive solution for each λ ∈ (0,λ1) .

THEOREM 5. Assume (H) holds. If f0 = f∞ = 0 , then the boundary value prob-
lem (1) has at least two positive solutions for each λ ∈ (λ2,+∞) .

Proof. Define

b(r) =
r

C1 minu∈[g(l)r,r] f (u)
.

By the continuity of f (u) and f0 = f∞ = 0, we can easily see that b(r) : (0,+∞) →
(0,+∞) is continuous and

lim
r→0

b(r) = lim
r→+∞

b(r) = +∞.

From (14), there exists r0 ∈ (0,+∞) such that

b(r0) = sup
r>0

b(r) = λ2;

then for λ ∈ (0,λ1) , there exist constants d1,d2 (0 < d1 < r0 < d2 < +∞) with

b(d1) = b(d2) = λ ;
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Therefore,

f (u) � d1

λg(l)C1
, for u ∈ [g(l)d1,d1], (19)

f (u) � d2

λg(l)C1
, for u ∈ [g(l)d2,d2]. (20)

On the other hand, applying the conditions f0 = 0, there exist constants c1 (0 <
c1 < d1) with

f (u)
u

� 1
λC1

, for u ∈ (0,c1).

Then

max
0�u�c1

f (u) � c1

λC1
. (21)

In view of f∞ = 0, there exists a constant c2 ∈ (d2,+∞) such that

f (u)
u

� 1
λC1

, for u ∈ (c2,+∞).

Let M = max0�u�c2 f (u) , c2 � λC1M . It is easily seen that

max
0�u�c2

f (u) � c2

λC1
. (22)

By (19) and (21), (20) and (22), combining with Theorem 3 and Lemma 4, we can
complete the proof.

COROLLARY 2. Assume (H) holds. If f0 = 0 or f∞ = 0 , then the boundary value
problem (1) has at least one positive solution for each λ ∈ (λ2,+∞) .

By the above theorems, we can obtain the following results.

COROLLARY 3. Assume (H) holds. If f0 = +∞ , f∞ = d or f∞ = +∞ , f0 = d ,
then the boundary value problem (1) has at least one positive solution for each λ ∈
(0,(dC1)−1) .

COROLLARY 4. Assume (H) holds. If f0 = 0 , f∞ = d or f∞ = 0 , f0 = d ,
then the boundary value problem (1) has at least one positive solution for each λ ∈
((g(l)dC2)−1,+∞) .

THEOREM 6. Assume (H) holds. If F0 < +∞ and F∞ < +∞ , then there exists a
λ0 > 0 such that for all 0 < λ < λ0 , the boundary value problem (1) has no positive
solution.
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Proof. Since F0 < +∞ and F∞ < +∞ , there exist positive numbers m1 , m2 , r1

and r2 such that r1 < r2 and

f (u) � m1u, for u ∈ [0,r1]; f (u) � m2u, for u ∈ [r2,+∞).

Let

m = max
{

m1,m2, max
u∈[r1,r2]

{ f (u)/u}
}
.

Then we have

f (u) � mu, for u ∈ [0,+∞).

Assume v(t) is a positive solution of (1). We will show that this leads to a contradiction
for 0 < λ < λ0;= (mC1)−1 . Since Sλ v(t) = v(t) for t ∈ [0,1] ,

‖v‖ = ‖Sλv‖ � λ
∫ 1

0
G(1,qs) f (v(s))dqs � mλ‖v‖

∫ 1

0
G(1,qs)dqs < ‖v‖,

which is a contradiction. Therefore, (1) has no positive solution. The proof is complete.

THEOREM 7. Assume (H) holds. If f0 > 0 and f∞ > 0 , then there exists a λ0 > 0
such that for all λ > λ0 , the boundary value problem (1) has no positive solution.

Proof. Since f0 > 0 and f∞ > 0, there exist positive numbers n1 , n2 , r1 and r2

such that r1 < r2 and

f (u) � n1u, for u ∈ [0,r1]; f (u) � n2u, for u ∈ [r2,+∞).

Let n = min{n1,n2,minu∈[r1,r2]{ f (u)/u}} . Then we have

f (u) � nu, for u ∈ [0,+∞).

Assume v(t) is a positive solution of (1). We will show that this leads to a contradiction
for λ > λ0;= (g(l)nC2)−1 . Since Sλ v(t) = v(t) for t ∈ [0,1] ,

‖v‖ = ‖Sλv‖ � λ
∫ 1

0
g(l)G(1,qs) f (v(s))dqs > ‖v‖,

which is a contradiction. Therefore, (1) has no positive solution. The proof is complete.

4. Examples

In this section, we will present some examples to illustrate the main results.
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EXAMPLE 1. Consider the fractional q -difference boundary value problem{
(D2.5

0.5u)(t)+ λua = 0, 0 < t < 1, a > 1,

u(0) = (Dqu)(0) = (Dqu)(1) = 0.
(23)

Since α = 2.5 and q = 0.5, we have [12]

C1 =
∫ 1

0
G(1,qs)dqs � 1− (1−q)(α−1)

Γq(α)
≈ 0.48636,

C2 =
∫ 1

0
g(s)G(1,qs)dqs �

∫ 1

1
2

sα−1G(1,qs)dqs

�
(

1
2

)α−1 ∫ 1

1
2

G(1,qs)dqs

�
(

1
2

)α−1 (1−q/2)(α−1)− (1−q)(α−1)

2Γq(α)
≈ 0.06250.

Let f (u) = ua , a > 1. Then from [26], we have F0 = 0 and f∞ = +∞ . Choose l = 0.5.
Then g(0.5) = 0.51.5 ≈ 0.35355. So g(l)C2 f∞ > F0C1 holds. Thus, by Theorem 1, the
boundary value problem (23) has a positive solution for each λ ∈ (0,+∞) .

EXAMPLE 2. Consider the fractional q -difference boundary value problem{
(D2.5

0.5u)(t)+ λub = 0, 0 < t < 1, 0 < b < 1,

u(0) = (Dqu)(0) = (Dqu)(1) = 0.
(24)

Since α = 2.5 and q = 0.5, we have C1 � 0.48636 and C2 � 0.06250. Let f (u) =
ub , 0 < b < 1. Then from [26], we have F∞ = 0 and f0 = +∞ . Choose l = 0.5. Then
g(0.5) = 0.51.5 ≈ 0.35355. So g(l)C2 f0 > F∞C1 holds. Thus, by Theorem 2, the
boundary value problem (24) has a positive solution for each λ ∈ (0,+∞) .

EXAMPLE 3. Consider the fractional q -difference boundary value problem

⎧⎨
⎩(D2.5

0.5u)(t)+ λ
(200u2 +u)(2+ sinu)

u+1
= 0, 0 < t < 1,

u(0) = (Dqu)(0) = (Dqu)(1) = 0.

(25)

Since α = 2.5 and q = 0.5, we have C1 � 0.48636 and C2 � 0.06250. Let

f (u) =
(200u2 +u)(2+ sinu)

u+1
.

Then from [26], we have F0 = f0 = 2, F∞ = 600, f∞ = 200, and 2u < f (u) < 600u .
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(i) Choose l = 0.5. Then g(0.5) = 0.51.5 ≈ 0.35355. So g(l)C2 f∞ > F0C1 holds.
Thus, by Theorem 1, the boundary value problem (25) has a positive solution for
each λ ∈ (0.22628,1.02805) .

(ii) By Theorem 6, the boundary value problem (25) has no positive solution for all
λ ∈ (0,0.00342) .

(iii) By Theorem 7, the boundary value problem (25) has no positive solution for all
λ ∈ (22.6276,+∞) .
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and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359–373.
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