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Abstract. In this paper, we study the existence of a ground state solution, that is, a non trivial
solution with least energy, of a noncooperative semilinear elliptic system on a bounded domain.
By using the method of the generalized Nehari manifold developed recently by Szulkin and
Weth, we prove the existence of a ground state solution when the nonlinearity is subcritical and
satisfies a weak superquadratic condition.

1. Introduction

In this paper, we are concerned with the following noncooperative elliptic system

(P)

⎧⎪⎪⎨
⎪⎪⎩
−Δu = Fu(x,u,v), x ∈ Ω,

Δv = Fv(x,u,v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain in R
N and Fu designates the partial derivative

with respect to u of the nonlinearity F : Ω×R
2 → R . The solutions of such systems

are steady state of reaction-diffusion systems which arise in many applications such as
Chemistry, Biology, Geology, Physics or Ecology. It is well known (P) has variational
structure, that is, its solutions can be found as critical points of the following functional

Φ(u,v) :=
∫

Ω

(1
2
|∇u|2− 1

2
|∇v|2 −F(x,u,v)

)

defined on H1
0 (Ω)×H1

0 (Ω)
(
i.e the solutions of the equation Φ′(u,v) = 0, where Φ′

is the Fréchet derivative of Φ
)
. In this paper, we will be interested in the existence

of a ground state solution, that is, a non trivial solution which minimizes the energy
functional Φ . Let us recall that ground state solutions play an important role in ap-
plications. For instance, in the study of the formation of spacial patterns in various
reaction-diffusion systems, the solutions of the system often converge to a ground state
of a simplified semilinear elliptic system, as time tends to infinity (see [2]).
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In recent years, the existence of ground state solutions of elliptic equations and
systems has been widely study, and many interesting results have been obtained (see
for instance [2, 3, 7, 9, 1, 6] and the references therein). In ([7], chapter 3), the authors
presented the well known method of the Nehari manifold in a unified way, which can
be applied to find ground state solutions of the following elliptic system of cooperative
type: ⎧⎪⎨

⎪⎩
−Δu = Fu(x,u,v), x ∈ Ω,

−Δv = Fv(x,u,v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

However, there appears to be no result in the noncooperative case.
Let us now introduce the precise assumptions on the nonlinearity F under which

our problem is studied:

(F1) F ∈ C 1(Ω×R
2,R) and F(x,0) = 0 for every x in Ω , and 0 ∈ R

2 .

(F2) |∇F(x,u)| � a
(
1 + |u|p−1

)
, for some p ∈ (2,2�) , x ∈ Ω , u = (u1,u2) ∈ R

2 ,
where 2� := 2N/(N−2) if N � 3 and 2� := ∞ if N = 1,2.

(F3) F(x,u) = ◦(|u|2) as |u| → 0, uniformly in x .

(F4)
F(x,u)
|u|2 → ∞ as |u| → ∞ , uniformly in x .

(F5) F(x,u) > 0 and u ·∇F(x,u) > 2F(x,u) , ∀u ∈ R
2\{0} .

(F6)
(
v ·∇F(x,u)

)
(u · v) � 0, ∀v ∈ R

2 .

(F7) If |u| = |v| , then F(x,u) = F(x,v) and v ·∇F(x,u) � u ·∇F(x,u) , with strict
inequality if in addition u �= v .

(F8) |u| �= |v| and u · v �= 0 ⇒ v ·∇F(x,u) �= u ·∇F(x,v) .

Here we write
F(x,u) = ◦(|u|2) as |u| → 0

to mean that

lim
|u|→0

F(x,u)
|u|2 = 0.

Also, ∇F(x,u) denotes the gradient of F with respect to u and u · v is the usual in-
ner product in R

2 . A simple example of a nonlinearity satisfying these conditions is
F(x,u) = f (x)|u|p , where 2 < p < 2� and f > 0 is of class C 1 on Ω .

The main result of this paper is the following:

THEOREM 1. Under assumptions (F1)-(F8) , (P) has a ground state solution.
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We point out here that the energy functional Φ associated to (P) is strongly
indefinite, in the sense that the negative and positive eigenspaces of its quadratic part
are both infinite-dimensional. Therefore, the set

N :=
{
z ∈ H1

0 (Ω)×H1
0 (Ω)

∣∣z �= 0and
〈
Φ′(z),z

〉
= 0

}
need not be closed (since infN Φ can be 0), and Theorem 1 cannot be proved by
using the usual method of the Nehari manifold (see [7], chapter 3 for a description and
some applications of this method). To circumvent the difficulty posed by the strongly
indefiniteness of Φ , we will use the method of the generalized Nehari manifold inspired
by Pankov [4], and developed recently by Szulkin and Weth [7], which consists in a
reduction into two steps.

We organize the paper in the following way: In section 2, the method of the gener-
alized Nehari manifold is briefly presented while in section 3, the existence of a ground
state solution is proved.

2. The method of the generalized Nehari manifold

Let X be a Hilbert space with norm ‖ · ‖ , and an orthogonal decomposition X =
X+⊕X− . We denote by S+ the unit sphere in X+ ; that is,

S+ :=
{
u ∈ X+ ∣∣‖u‖ = 1

}
.

For u = u+ +u− ∈ X , where u± ∈ X± , we define

X(u) := Ru⊕X− ≡ Ru+⊕X− and X̂(u) := R
+u⊕X− ≡ R

+u+⊕X−, (2.1)

where Rv := {λv ; λ ∈ R} and R
+v := {λv ; λ � 0} for v ∈ X .

Let Φ be a C 1− functional defined on X by

Φ(u) :=
1
2
‖u+‖2− 1

2
‖u−‖2− I(u).

We consider the following situation:

(A1) I(0) = 0, 1
2

〈
I′(u),u

〉
> I(u) > 0 for all u �= 0, and I is weakly lower semicon-

tinuous.

(A2) For each w∈X\X− there exists a unique nontrivial critical point m̂(w) of Φ|X̂(w) .
Moreover, m̂(w) is the unique global maximum of Φ|X̂(w) .

(A3) There exists δ > 0 such that ‖m̂(w)+‖ � δ for all w ∈ X\X− , and for each
compact subset K ⊂ X\X− there exists a constant CK such that ‖m̂(w)‖ �
CK .

We consider the following set introduced by Pankov [4]:

M :=
{
u ∈ X\X− :

〈
Φ′(u),u

〉
= 0 and

〈
Φ′(u),v

〉
= 0 ∀v ∈ X−}

.

Following Szulkin and Weth [7], we will call M the generalized Nehari manifold.
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REMARK 1. By (A1) M contains all nontrivial critical points of Φ and by (A2)
X̂(w)∩M = {m̂(w)} whenever w ∈ X\X− .

In the following we consider the mappings:

m̂ : X\X− → M , w �→ m̂(w) and m := m̂|S+ .

The following results are due to A. Szulkin and T. Weth
(
[7], Chapter 4

)
. For reader’s

convenience we provide the proofs here.

PROPOSITION 1. If (A1), (A2) and (A3) are satisfied, then

(a) m̂ is continuous,

(b) m is a homeomorphism between S+ and M .

Proof. (a) Let (wn) ⊂ X\X− such that wn → w /∈ X− . We want to show that
m̂(wn) → m̂(w) . Since m̂(wn) = m̂(w+

n /‖w+
n ‖) , we may assume without loss of gen-

erality that wn ∈ S+ . Therefore, it suffices to show that m̂(wn) → m̂(w) after passing
to a subsequence. Write m̂(wn) = snwn + vn , with sn � 0 and vn ∈ X− . By (A3) , the
sequence (m̂(wn)) is bounded. So taking a subsequence, we have sn → s and vn ⇀ v .
Setting m̂(w) = sw+ v , it follows from (A2) that

Φ(m̂(wn)) � Φ(snwn + v) → Φ(sw+ v) = Φ(m̂(w))

and hence, using the weak lower semicontinuity of the norm and I ,

Φ(m̂(w)) � lim
n→∞

Φ(m̂(wn)) = lim
n→∞

(1
2
s2
n −

1
2
‖vn‖2− I(m̂(wn))

)
� 1

2
s2 − 1

2
‖v‖2− I(sw+ v) � Φ(m̂(w)).

Hence the inequalities above must be equalities. It follows that (vn) is strongly conver-
gent, and so vn → v . Hence m̂(wn) = snwn + vn → sw+ v = m̂(w) .

(b) It is easy to see that m is a bijection whose inverse m−1 is given by

m−1(u) =
u+

‖u+‖ , ∀u ∈ M .

Since m−1 is clearly continuous, we then deduce from (a) that m is a homeomorphism
between S+ and M .

Let
Ψ̂ : X+\{0}→ R, Ψ̂(w) := Φ(m̂(w)) and Ψ := Ψ̂|S+ .

PROPOSITION 2. Under assumptions (A1), (A2) and (A3) , Ψ̂ is of class C 1 and

〈
Ψ̂′(w),z

〉
=

‖m̂(w)+‖
‖w‖

〈
Φ̂′(w),z

〉
, for all w,z ∈ X+, w �= 0.
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Proof. Let w ∈ X+\{0} , z ∈ X+ and put m̂(w) = sww+ vw , vw ∈ X− . Using the
maximality property of m̂(w) given by (A2) and the mean value theorem, we obtain

Ψ̂(w+ tz)− Ψ̂(w) = Φ(sw+tz(w+ tz)+ vw+tz)−Φ(sww+ vw)
� Φ(sw+tz)(w+ tz)+ vw+tz)−Φ(sw+tz)w+ vw+tz)

=
〈
Φ′(sw+tzw+ vw+tz + τt sw+tztz),sw+tztz

〉
,

where |t| is small enough and τt ∈ (0,1) . Similarly,

Ψ̂(w+ tz)− Ψ̂(w) � Φ(sw(w+ tz)+ vw)−Φ(sww+ vw)

=
〈
Φ′(sww+ vw + ηt swtz),swtz

〉
,

where ηt ∈ (0,1) . Since the mappings w �→ sw and w �→ vw are continuous according
to Proposition 1, we see by combining these two inequalities that

〈
Ψ̂′(w),z

〉
= lim

t→0

Ψ̂(w+ tz)− Ψ̂(w)
t

= sw
〈
Φ′(sww+ vw),z

〉
=

‖m̂(w)+‖
‖w‖

〈
Φ′(m̂(w)),z

〉
.

Hence the Gâteaux derivative of Ψ̂ is bounded linear in z and continuous in w . It
follows from Proposition 1.3 in [8] that Ψ̂ is of class C 1 .

Before giving a consequence of the previous propositions, which is the main result
of this section, we recall some definitions.

DEFINITION 1. Let ϕ ∈ C 1(X ,R) .

1. A sequence (un)⊂ X is a Palais-Smale sequence
(
resp. a Palais-Smale sequence

at level c ∈ R
)

for ϕ if (ϕ(un)) is bounded
(
resp. ϕ(un) → c

)
and ϕ ′(un) → 0

as n → ∞ .

2. We say that ϕ satisfies the Palais-Smale condition
(
resp. the Palais-Smale con-

dition at level c
)

if every Palais-Smale sequence
(
resp. every Palais-Smale se-

quence at level c
)

has a convergent subsequence.

COROLLARY 1. Assume that (A1), (A2) and (A3) are satisfied. Then:

(a) Ψ ∈ C 1(S+,R) and〈
Ψ′(w),z

〉
= ‖m(w)+‖〈Φ′(m(w)),z

〉
for all z ∈ Tw(S),

where Tw(S) is the tangent space of S at w.

(b) If (wn) is a Palais-Smale sequence for Ψ, then (m(wn)) is a Palais-Smale se-
quence for Φ . If (un) ⊂ M is a bounded Palais-Smale sequence for Φ , then
(m−1(wn)) is a Palais-Smale sequence for Ψ .
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(c) w is a critical point of Ψ if and only if m(w) is a nontrivial critical point of Φ .
Moreover, the corresponding critical values coincide and in fS+Ψ = in fM Φ .

Proof. (a) This is a direct consequence of Proposition 2, since m(w) = m̂(w) for
w ∈ S+ .

(b) Let (w) ⊂ S+ and let u = m(w) ∈ M . We have an orthogonal decomposition

X = X(w)⊕Tw(S+) = X(u)⊕Tw(S+).

Using (a) we have

‖Ψ′(w)‖ = sup
z∈Tw(S+)
‖z‖=1

〈
Ψ′(w),z

〉
= sup

z∈Tw(S+)
‖z‖=1

‖u+‖〈Φ′(m(w)),z
〉

= ‖u+‖‖Φ′(u)‖, (2.2)

where the last equality holds because
〈
Φ′(u),v

〉
= 0 for all v ∈ X(w) , and Tw(S+) is

orthogonal to X(u) . By (A3) , there is δ > 0 such that ‖u+‖ � δ . It is then easy to
conclude.

(c) By (2.2), Ψ′(w) = 0 if and only if Φ′(m(w)) = 0. The other part is clear.

3. Proof of the main result

Let X := H1
0 (Ω)×H1

0 (Ω) endowed with the norm

‖(a,b)‖ =
(‖∇a‖2

L2(Ω) +‖∇b‖2
L2(Ω)

) 1
2 ,

which by the Poincaré inequality is equivalent to its usual norm. Define

X+ := H1
0 (Ω)×{0} and X− := {0}×H1

0(Ω).

Then for u = u+ +u− ∈ X , we have

Φ(u) =
1
2
‖u+‖2− 1

2
‖u−‖2− I(u), (3.1)

where I(u) :=
∫

Ω F(x,u)dx.
We recall that for u ∈ X ,

X(u) := Ru⊕X− ≡ Ru+⊕X− and X̂(u) := R
+u⊕X− ≡ R

+u+⊕X−. (3.2)

By a standard argument we have:

LEMMA 1. Under (F1)-(F2) , Φ ∈ C 1(X ,R) and

〈
Φ′(u),v

〉
=

∫
Ω

(
∇u+ ·∇v+−∇u− ·∇v−− v ·∇F(x,u)

)
. (3.3)

Before giving the proof of the main theorem, we need some preliminary results.
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LEMMA 2. Assume (F1) and (F5) . Then (A1) is satisfied.

Proof. Clearly by (F1) and (F5) we have I(0) = 0 and

1
2

〈
I′(u),u

〉
> I(u) > 0, ∀u �= 0.

Let (un) ⊂ X and c ∈ R such that un ⇀ u and I(un) � c . By Rellich-Kondrachov
theorem un → u in L2(Ω)× L2(Ω) , and taking a subsequence if necessary we have
un(x) → u(x) a.e on Ω . Since F is continuous, we conclude by applying Fatou’s
Lemma that I is weakly lower semicontinuous.

LEMMA 3. Under (F1) , (F3)-(F8) , (A2) is satisfied.

Proof. (1) We first show that X̂(w)∩M �= /0 for any w ∈ X\X− . Let w ∈ X\X−.
Then Φ � 0 on X̂(w)\BR for R large enough, where BR := {u∈ X |‖u‖� R} . In fact,
if this is not true then there exists a sequence (un) ⊂ X̂(w) such that ‖un‖ → ∞ and
Φ(un) > 0. Up to a subsequence we have vn = un/‖un‖ ⇀ v . By (3.1) we have

0 <
Φ(un)
‖un‖2 =

1
2
‖v+

n ‖2− 1
2
‖v−n ‖2−

∫
Ω

F(x,‖un‖vn)∣∣vn‖un‖
∣∣2 |vn|2.

If v �= 0 we deduce, by using Fatou’s Lemma and (F4) , that 0 � −∞ ; a contradiction.
Consequently v = 0. Since X̂(w) = X̂(w+/‖w+‖) , we may assume that w ∈ S+ . Now
since I(un) � 0 and 1 = ‖v+

n ‖2 +‖v−n ‖2 , then necessarily v+
n = snw � 0. Hence there

is r > 0 such that ‖v+
n ‖ = ‖snw‖ > r ∀n . So ‖v+

n ‖ = sn is bounded and bounded away
from 0. But then, up to a subsequence, v+

n → sw, s > 0, which contradicts the fact that
vn ⇀ 0.

By (F3) , Φ(sw) = s2/2+◦(s2) as s → 0. Hence

0 < sup
X̂(w)

Φ < ∞.

Since Φ is weakly upper semicontinuous on X̂(w) and Φ � 0 on X̂(w)∩ X− , the
supremum is attained at some point u0 such that u+

0 �= 0. So u0 is a nontrivial critical
point of Φ|X̂(w) and hence u0 ∈ M .

(2) Now we show that if u ∈ M , then u is the unique global maximum of Φ|X̂(u) .

Let u ∈ M and u+w ∈ X̂(u) with w �= 0. By definition of X̂(u) we have

u+w = (1+ s)u+ v, s � −1 and v ∈ X−.

By using the fact that

s(
s
2

+1)u+(1+ s)v∈ X(u)

we obtain
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Φ(u+w)−Φ(u) = −1
2
‖v‖2+∫

Ω

[(
s(

s
2

+1)u+(1+ s)v
) ·∇F(x,u)+F(x,u)−F(x,u+w)

]
.

We define g on [−1,∞[ by

g(s) :=
(
s(

s
2

+1)u+(1+ s)v
) ·∇F(x,u)+F(x,u)−F(x,u+w).

Since u �= 0, then in view of (F5) we have g(−1) < 0. On the other hand we deduce
from (F4) and (F5) that g(s) →−∞ as s → ∞ . Assume that g attains its maximum at
a point s ∈ [−1,∞[ , then

g′(s) =
(
(1+ s)u+ v

) ·∇F(x,u)−u ·∇F(x,(1+ s)u+ v) = 0. (3.4)

Setting z = u+w = (1+ s)u+ v , one can easily verify that

g(s) = −( s2

2
+ s+1

)
u ·∇F(x,u)+ (1+ s)z ·∇F(x,u)+F(x,u)−F(x,z).

It is then clear that if u · z � 0, then (F6) implies g(s) < 0. Suppose that u · z > 0, then
in view of (3.4), (F8) implies |u| = |z| and by (F7) we have

F(x,u) = F(x,z) and z ·∇F(x,u) < u ·∇F(x,u)

whenever w �= 0. This implies that

g(s) < − s2

2
u ·∇F(x,u) � 0.

Hence Φ(u+w) < Φ(u) .

LEMMA 4. Assume (F2)-(F8) . Then (A3) is satisfied.

Proof. Clearly (F3) implies I′(u) = ◦(‖u‖) as |u| → 0, which together with (A1)
imply that

∀ε > 0,∃α > 0 |∀u ∈ X+, |u| < α ⇒ I(u) <
1
2

〈
I′(u),u

〉
� ‖I′(u)‖‖u‖ � ε

2
‖u‖2.

Hence we can find ρ ,η > 0 such that Φ(w) � η for any w ∈ {u ∈ X+ |‖u‖ = ρ} .
By (A2) , Φ(m̂) � η for any w ∈ X\X− . Since I � 0, we deduce from (3.1) that
‖m̂(w)+‖ �

√
2η for any w ∈ X\X− .

Now let K be a compact subset of X\X− . We want to show that there exists
a constant CK such that ‖m̂(w)‖ � CK , ∀w ∈ K . Since m̂(w) = m̂(w+/‖w+‖)
∀w ∈ X\X− , we may assume that K ⊂ S+ . Suppose by contradiction that there
exists a sequence (wn) ⊂ K such that ‖m̂(wn)‖ → ∞. Since m̂(wn) ∈ X̂(wn) , we
have m̂(wn) = λnwn + vn , with λn � 0 and vn ∈ X− . Since Φ(m̂(wn)) > 0, ‖wn‖ = 1
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and I � 0, we deduce from (3.1) that λn � ‖vn‖ . Hence λn → ∞ , which implies
|λnwn + vn| → ∞ as n → ∞ . By (3.1) we have

0 <
Φ(m̂(wn))

λ 2
n

=
1
2
− 1

2
‖vn‖2

λ 2
n

−
∫

Ω

F(x,λnwn + vn)
λ 2

n

=
1
2
− 1

2
‖vn‖2

λ 2
n

−
∫

Ω

F(x,λnwn + vn)
|λnwn + vn|2

|λnwn + vn|2
λ 2

n

� 1
2
−

∫
Ω

F(x,λnwn + vn)
|λnwn + vn|2 |wn|2. (�)

Since K is compact we have, by taking a subsequence if necessary that wn → w ∈ S+

and wn → w a.e on Ω . Clearly w �= 0. Then by using (F4) and Fatou’s Lemma, we
deduce from (�) that 0 � −∞ ; a contradiction.

We need the following result:

LEMMA 5. Let 1 � q,r < ∞ and G ∈ C (Ω×R×R) such that

|G(x,a,b)| � c
(
1+ |a| q

r + |b| q
r
)
.

Then for all a,b ∈ Lq(Ω) , G(·,a,b) ∈ Lr(Ω) and the operator A : Lq(Ω)×Lq(Ω) →
Lr(Ω) , (a,b) �→ G(x,a,b) is continuous.

The proof of Lemma 5 follows the lines of the proof of Theorem A.2 in [8] and is
omitted here.

LEMMA 6. Assume (F1)-(F8) . Then Φ satisfies the Palais-Smale condition on
M .

Proof. Let (un) ⊂ M be a sequence such that Φ(un) � d for some d > 0 and
Φ′(un) → 0. We want to show that (un) has a convergent subsequence.

Let us first show that (un) is bounded.
If (un) is not bounded, then up to a subsequence we have ‖un‖ → ∞. Define vn :=
un/‖un‖ . We easily deduce from (3.1) that

0 <
Φ(un)
‖un‖2 =

1
2
‖v+

n ‖2− 1
2
‖v−n ‖2− I(un)

‖un‖2

=
1
2
‖v+

n ‖2− 1
2
‖v−n ‖2−

∫
Ω
|vn|2 F(x,vn‖un‖)∣∣vn‖un‖

∣∣2 . (��)

Since (vn) is bounded we have, by taking a subsequence if necessary, vn ⇀ v . If
v �= 0, then by using one more time (F4) and Fatou’s Lemma we obtain from (��) the
contradiction 0 � −∞ . Hence v = 0. Since Φ(un) > 0 and I(un) > 0, (3.1) implies
‖v+

n ‖ � ‖v−n ‖ . Hence we cannot have v+
n → 0 (since ‖vn‖ = 1). There then exists
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α > 0 such that, up to a subsequence, ‖v+
n ‖ � α ∀n . It is clear that sv+

n ∈ X̂(un)
∀s > 0. Then by (A2) we have

d � Φ(un) � Φ(sv+
n ) � 1

2
s2α2− I(sv+

n ), ∀s > 0.

Since v+
n ⇀ 0, we deduce from the compactness of the embedding X ↪→ Lp(Ω)×Lp(Ω)

that v+
n → 0 in Lp(Ω)× Lp(Ω) . Now since by (F2) F satisfies the conditions of

Lemma 5 (with q = p and r = 1), we deduce that I(sv+
n ) → 0. It then follows that

d � 1
2 s2α2 ∀s > 0. This gives another contradiction if we take s big enough. Hence

(un) is bounded.
By taking a subsequence if necessary we have un ⇀ u in X . It follows from the

compactness of the embedding X ↪→ Lp(Ω)×Lp(Ω) that un → u in Lp(Ω)×Lp(Ω) .
Now we easily obtain from (3.1) and (3.3):

‖u±n −u±‖2 = ±〈
Φ′(un)−Φ′(u),u±n −u±

〉±∫
Ω
(u±n −u±) · (∇F(x,un)−∇F(x,u)

)
.

Clearly
〈
Φ′(un)−Φ′(u),u±n − u±

〉 → 0. By (F2) the components of ∇F satisfy the
conditions of Lemma 5 with q = p−1 and r = p

p−1 , then by using the Hölder inequality
and Lemma 5 we obtain∫

Ω
(u±n −u±) · (∇F(x,un)−∇F(x,u)

) → 0.

Consequently un → u .

We also need the following consequence of the Ekeland variational principle:

LEMMA 7. ([8], Corollary 2.5) Let E be a Banach space and let ϕ ∈ C 1(E,R)
be bounded below. If ϕ satisfies the Palais-Smale condition at level θ := infE ϕ , then
there exists x ∈ E such that ϕ ′(x) = 0 and θ = ϕ(x) .

Proof. [Proof of Theorem 1] We already know from Lemmas 2, 3 and 4 that (A1) ,
(A2) and (A3) are satisfied. By Corollary 1-(a) Ψ ∈C1(S+,R) .

Let us show that Ψ satisfies the Palais-Smale condition on S+ .
Let (wn) ⊂ S+ be a Palais-Smale sequence for Ψ . By Corollary 1-(b) (m(wn)) is
a Palais-Smale sequence for Φ on M . By Lemma 6 we have m(wn) → w up to
a subsequence. Since m−1 is continuous, it follows that wn → m−1(w) . Hence Ψ
satisfies the Palais-Smale condition on S+ . Particularly Ψ satisfies the Palais-Smale
condition at level θ = infS+ Ψ . By Corollary 1-(c) infS+ Ψ = infM Φ > 0 and Ψ
is bounded below. By Lemma 7 infS+ Ψ is a critical value of Ψ . There then exists
u0 ∈ S+ such that infS+ Ψ = Ψ(u0) and Ψ′(u0) = 0. It follows from Corollary 1-(c)
that m(u0) is a critical point of Φ and Φ(m(u0)) = infM Φ . Hence m(u0) is a ground
state solution for the equation Φ′(u) = 0.
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