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SINGLE POINT BLOW–UP SOLUTIONS TO THE HEAT

EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

JUNICHI HARADA

(Communicated by Philippe Souplet)

Abstract. We study finite blow-up solutions of the heat equation with nonlinear boundary con-
ditions. We provide a sufficient condition for the single point blow-up at the origin and a precise
spacial singularity of the blow-up profile.

1. Introduction

We study positive solutions of the heat equation with nonlinear boundary condi-
tions: ⎧⎪⎨

⎪⎩
∂t u = Δu, (x,t) ∈ R

n
+× (0,T ),

∂νu = uq, (x,t) ∈ ∂R
n
+ × (0,T),

u(x,0) = u0(x), x ∈ R
n
+,

(P)

where u0 � 0, R
n
+ = {x ∈ R

n;xn > 0} , ∂ν = −∂/∂xn and 1 < q < n/(n−2) if n � 3.
We are concerned with finite time blow-up solutions and their asymptotic behavior. We
call a solution u(x, t) blow-up in a finite time, if there exists T > 0 such that

limsup
t→T

‖u(t)‖L∞(Rn
+) = ∞.

Moreover for a finite blow-up solution u(x,t) , if a limit

U(x) = lim
t→T

u(x,t) ∈ [0,∞]

exists for any x ∈ Rn
+ , we call U(x) a blow-up profile of u(x, t) . The blow-up profile

of positive solutions of the semilinear heat equation:

∂t u = Δu+up in R
n × (0,T) (F)

for p∈ (1,(n+2)/(n−2)) is well studied ([2]–[4], [7], [11], [14]–[16], [20]–[23]). For
a one dimensional case, the blow-up profile of solutions of (F) is completely classified
by Herrero-Vel ázquez [14]–[16]. Let n = 1 and u(x, t) be a positive solution of (F)
which blows up at the origin. Then they proved that the blow-up profile of u(x,t)
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satisfies one of the following two cases:

(i) there exists cp > 0 such that lim
x→0

(
x2

| logx|
)1/(p−1)

U(x) = cp ,

(ii) there exist c > 0 and an even number m � 4 such that lim
x→0

xm/(p−1)U(x) = c .

The blow-up profile of solutions of (F) for a higher dimensional case was also studied
([23]), however the situation is different from that of one dimensional case since the
blow-up set is not always isolated (see [10]).

Recently, the author in [13] studied the blow-up profile of solutions of (P). To
study the asymptotic behavior of blow-up solutions, we introduce a rescaled function:

ϕ(y,s) = (T − t)1/(p−1)u((T − t)1/2x,t), s = − log(T − t),

where T > 0 is a blow-up time. This rescaled function ϕ(y,s) solves (sT = − log(T −
t)) ⎧⎨

⎩
∂sϕ = Δϕ − y

2
·∇ϕ − ϕ

2(q−1)
, (y,s) ∈ R

n
+× (sT ,∞),

∂νϕ = ϕq, (y,s) ∈ ∂R
n
+× (sT ,∞).

Chleb ı́k-Fila in [5], [6] (see also [19]) proved that ϕ(y,s) is uniformly bounded on
R

n
+× (sT ,∞) and

lim
s→∞

ϕ(y,s) = ϕ0(yn)

uniformly any compact set on Rn
+ , where ϕ0(yn) is the unique positive bounded solu-

tion of ⎧⎨
⎩ϕ ′′

0 +
ξ
2

ϕ ′
0−

ϕ0

2(q−1)
= 0, ξ ∈ R+,

∂νϕ0 = ϕq
0 , ξ = 0.

From this fact, the original solution u(x,t) asymptotically behaves like

u(x,t) ∼ (T − t)1/2(q−1)ϕ0((T − t)−1/2xn), t ∼ T.

By virtue of the asymptotic formula of ϕ0(ξ ) : ϕ0(ξ ) ∼ cqξ−1/(q−1) (see p. 202 [9]),
this asymptotic formula gives the spacial singularity of the blow-up profile U(x) , that

is U(x)∼ cqx
−1/(q−1)
n . However this formula of the blow-up profile has no meaning on

the boundary ∂R
n
+ since xn = 0 on ∂R

n
+ . In order to investigate the blow-up profile

on the boundary ∂R
n
+ , we need more precise asymptotic behavior of

v(y,s) = ϕ(y,s)−ϕ0(y). (1.1)

Then v(y,s) satisfies⎧⎨
⎩

∂sv = Δv− y
2
·∇v− v

2(q−1)
, (y,s) ∈ R

n
+× (sT ,∞),

∂νv = qϕq−1
0 v+O(v2), (y,s) ∈ ∂R

n
+× (sT ,∞).
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A corresponding eigenvalue problem is given by⎧⎨
⎩−

(
Δe− y

2
·∇e− 1

2(q−1)
e

)
= λe in R

n
+,

∂νe = qϕq−1
0 e on ∂R

n
+.

(1.2)

Let ei(y) ∈ L2
ρ(Rn

+) be the i-th eigenfunction of (1.2), where L2
ρ(Rn

+) is a weighted
L2 -space defined by

L2
ρ(Rn

+) =
{

v ∈ L2
loc(R

n
+); ‖v‖2

L2
ρ (Rn

+) :=
∫

Rn
+

|v(y)|2e−|y|2/4dy < ∞
}

.

Then v(y,s) behaves as one of the following two cases (see [13]):

(I) there exists c �= 0 depending only on n,q such that ‖v(s)−cs−1e2‖L2
ρ (Rn

+) = o(s−1) ,

(II) there exist c > 0 and γ > 0 such that ‖v(s)‖L2
ρ (Rn

+) � ce−γs .

Moreover we proved in [13] that if the case (I) occurs, then the blow-up profile for
xn -axial symmetric solutions with x′ ·∇′u0 � 0 is given by

U(x′,0) ∼ c

( | log |x′||
|x′|2

)1/2(q−1)

on ∂R
n
+.

However we did not clarify when the case (I) occurs. Our goal of this paper is to provide
sufficient conditions on the initial data for the case (I). To state our result, we define

BC1(Rn
+) = {u ∈C1(Rn

+);u, |∇u| ∈ L∞(Rn
+)}.

THEOREM 1. Let u0(x) ∈ BC1(Rn
+) be xn -axial symmetric and satisfy x′ ·∇′u0 �

0 , ∂nu0 � 0 . If a solution u(x,t) blows up in a finite time, then u(x,t) blows up only
on the origin and behaves as (I) .

REMARK 1. As for the case (F), if the initial data is radially symmetric and mono-
tone decreasing, then these properties are preserved for t > 0. Therefore the solution
has a unique local maximum point at the origin for t > 0 and no local minimum points
for t > 0. From the view point of this geometry of the solution, it is easily proved that
the rescaled solution ϕ(y,s) satisfies the asymptotic formula (i). However this kind of
observation can not be applicable to solutions of (P), since solutions treated here are
not radially symmetric but xn -axial symmetric.

The rest of paper is organized as follows. In the Section 2, we show a single point
blow-up of solutions of (P) by using methods given in [12]. In section 3, we provide a
sufficient condition for the case (I). In particular, we mainly study the singularity of the
blow-up profile.

Throughout this paper, for simplicity we set

m = 1/2(q−1), B = ϕ0(0).
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2. Single point blow-up

2.1. Blow-up profile along xn = |x|cosθ

In this subsection, we provide a blow-up profile along xn = |x|cosθ for fixed θ ∈
[0,π/2) . At the formal level, the blow-up profile U(x) is given by U(x) ∼ cqx

−1/(q−1)
n

as is stated in Introduction. Here we provide a rigorous proof of this formula.

PROPOSITION 1. Let u(x,t) be a finite time blow-up solution at x = x0 . Then
there exists cq > 0 such that

u(x+ x0,T ) = cq(1+o(1))(cosθ )−2m|x|−2m

along xn = |x|cosθ for any fixed θ ∈ [0,π/2) .

Proof. Without loss of generality, we can assume that x0 = 0. It is known (cf. p.
173 in [8]) that u(x, t) is expressed by

u(x, t) =
∫

Rn
+

GN(x,ξ ,t)u0(ξ )dξ +
∫ t

0
dτ
∫

Rn−1
GN(x,ξ ′,t− τ)u(ξ ′,0,τ)qdξ ′

=: J1 + J2,

where GN(x,ξ , t) is given by

GN(x,ξ ,t) =
c

t1/2
G (x′,ξ ′,t)

(
e−(xn−ξn)2/4t + e−(xn+ξn)2/4t

)
,

G (x′,ξ ′,t) = t−(n−1)/2e−|x′−ξ ′|2/4t .

By changing variables: ξ ′ − x′ =
√

t− τ · z′ , we see that

J2 =
∫ t

0
(t− τ)−1/2e−x2

n/4(t−τ)dτ
∫

Rn−1
e−|z′|2/4u(

√
t− τ · z′ + x′,0,τ)qdz′

=
∫ t

0

e−x2
n/4(t−τ)dτ

(t− τ)1/2(T − τ)mq

∫
Rn−1

e−|z′|2/4{(T − τ)mu(
√

t− τ · z′ + x′,0,τ)
}q

dz′.

Since T > t , we note that

(T − τ)−mqe−x2
n/4(t−τ) = (T − τ)−mq

(
x2
n

4(t− τ)

)−mq(
x2
n

4(t− τ)

)mq

e−x2
n/4(t−τ)

� cx−2mq
n

(
t− τ
T − τ

)mq

e−x2
n/8(t−τ) � cx−2mq

n e−x2
n/8(t−τ).

Therefore, since (T − t)m‖u(t)‖L∞(Rn
+) is uniformly bounded for t ∈ (0,T ) (see Section

3 in [5]), by the Lebesgue dominant convergence lemma, we obtain for xn > 0

lim
t→T

J2 =
∫ T

0

e−x2
n/4(T−τ)dτ

(T − τ)mq+1/2

∫
Rn−1

e−|z′|2/4{(T − τ)mu(
√

T − τ · z′ + x′,0,τ)
}q

dz′
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=
∫ T

0

e−x2
n/4(T−τ)dτ

(T − τ)mq+1/2

∫
Rn−1

e−|z′|2/4ϕ
(

z′ +
x′√

T − τ
,0,− log(T − τ)

)q

dz′,

where ϕ(y,s) = (T −τ)mu(
√

T − τ ·y,s) and s =− log(T −τ) . We divide this integra-
tion into three parts:

lim
t→T

J2 =

(∫ T−R2|x′|2

0
+
∫ T−R−2|x′|2

T−R2|x′ |2
+
∫ T

T−R−2|x′|2

)
e−x2

n/4(T−τ)dτ
(T − τ)mq+1/2

×
∫

Rn−1
e−|z′|2/4ϕ

(
z′ +

x′√
T − τ

,0,− log(T − τ)
)q

dz′

=: K1 +K2 +K3.

Now we fix θ ∈ [0,π/2) and

xn = |x|cosθ , |x′| = |x|sinθ .

Since ϕ(y,s) is uniformly bounded on R
n
+× (sT ,∞) , by mq−1/2 = m , we verify that

K1(θ ) � c
∫ T−R2x2

n

0
(T − τ)−(mq+1/2)dτ � cR−2m|xn|−2m = cR−2m(cosθ )−2m|x|−2m.

Since g(ξ ) = ξ e−ξ � ce−ξ/2 for ξ ∈ R+ , K3 is estimated by

K3(θ ) � c
∫ T

T−R−2x2
n

e−x2
n/4(T−τ)

(T − τ)mq+1/2
dτ � cx−2(mq+1/2)

n

∫ T

T−R−2|x′|2
e−x2

n/8(T−τ)dτ

� cR−2x−2m
n = cR−2(cosθ )−2m|x|−2m.

Finally we calculate K2 . By changing variables: T − τ = x2
n/μ , we see that

K2(θ ) = x−2m
n

∫ R2

R−2
μmq−3/2e−μ/4dμ

×
∫

Rn−1
e−|z′|2/4ϕ

(
z′ +

√
μ
(

x′

|x′|
)

sinθ ,0,− log

(
x2
n

μ

))q

dz′

=: A(R,xn)x−2m
n = A(R,xn)(cosθ )−2m|x|−2m.

Then, since ϕ(y′,0,s) → ϕ0(0) = B in L2
ρ(∂R

n
+) , it holds that

lim
xn→0

A(R,xn) = Bq

(∫ R2

R−2
μmq−3/2e−μ/4dμ

)(∫
Rn−1

e−|z′|2/4dz′
)

.

Moreover, since mq−3/2 = −1+m , we see that

lim
R→∞

(
lim
xn→0

A(R,xn)
)

= Bq
(∫ ∞

0
μmq−3/2e−μ/4dμ

)(∫
Rn−1

e−|z′|2/4dz′
)

=: A∞.
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Therefor we obtain

lim
xn→0

|x|2mJ2 = lim
xn→0

|x|2m(K1(θ )+K2(θ )+K3(θ )) = A∞(cosθ )−2m

for any fixed θ ∈ [0,π/2) . As a consequence, it follows that

u(x,T ) = A∞(1+o(1))(cosθ )−2m|x|−2m

along xn = |x|cosθ for any fixed θ ∈ [0,π/2) , which completes the proof. �

2.2. Single point blow-up

In this subsection, we provide a sufficient condition on initial data for a single
point blow-up. For the case where Ω is the unit ball and n = 2, a single point blow-up
was proved in [18], however our argument is different from that of [18]. Let u(x, t) be
a xn -axial symmetric function. Then u(x,t) is written by

u(x,t) = U(r,z,t) (r = |x′|, z = xn).

For simplicity of notations, we set

J = (0,∞)× (0,∞), I = (0,∞)×{0}, Jr = (0,r)× (0,r).

Equation (P) is rewritten in the coordinate (r,z,t) by⎧⎪⎪⎨
⎪⎪⎩

Ut = Urr +
n−2

r
Ur +Uzz, (r,z) ∈ J, t ∈ (0,T ),

∂νU = Uq, (r,z) ∈ I, t ∈ (0,T ),
U(r,z,0) = U0(r,z) := u0(x), (r,z) ∈ J.

(R)

In this subsection, we impose the following monotonicity conditions on initial data:

∂zU0 � 0, ∂rU0 � 0. (2.1)

To apply a technique given in [12], we prepare several lemmas.

LEMMA 1. Let u0(x) ∈ BC1(Rn
+) be xn -axial symmetric and satisfy ∂rU0 � 0 .

Then it follows that ∂rU � 0 for t ∈ (0,T ) .

Proof. Differentiating (R) with respect to r and set χ(r,z,t) = ∂rU(r,z, t) , then
we obtain ⎧⎨

⎩χt = χrr +
n−2

r
χr + χzz− n−2

r2 χ , (r,z) ∈ J, t ∈ (0,T ),

∂ν χ = qUq−1χ , (r,z) ∈ I, t ∈ (0,T ).
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Now we set χ(r,z, t) = e−
√

1+r2+z2 χ(r,z,t) . Then it is verified that⎧⎨
⎩χt = χrr +

n−2
r

χ r + χzz −
n−2
r2 χ +G, (r,z) ∈ J, t ∈ (0,T ),

∂ν χ = qUq−1χ , (r,z) ∈ I, t ∈ (0,T ).

where G is given by

G = a1(r,z)χ +a2(r,z)χ r +a3(r,z)χ z

with some bounded coefficients ai(r,z) ( i = 1,2,3). Since u0 ∈ BC1(Rn
+) , we note that

χ ∈C([0,T );H) , where

H = {U ∈ L1
loc(J); ‖U‖H < ∞} with ‖U‖2

H =
∫ ∞

0
dz
∫ ∞

0
U(r,z)2rn−2dr.

Then, since

χ(r,z,0) = e−
√

1+r2+z2∂rU0(r,z) � 0 for (r,z) ∈ J ,

a comparison argument shows that χ � 0 in J×(0,T) , which completes the proof. �

LEMMA 2. Let u0 be as in Lemma 1. Then for any t0 > 0 there exists ε0 > 0 such
that

−Ur(r,z,t) � ε0r, (r,z) ∈ J1, t ∈ (t0,T ).

Proof. We set v(r,z,t) = −Ur(r,z,t)/r . Then v(r,z,t) satisfies⎧⎨
⎩

vt = vrr +
n
r
vr + vzz, (r,z) ∈ J, t ∈ (0,T ),

∂νv = quq−1v, (r,z) ∈ I, t ∈ (0,T ).

Since Urr(r,z, t) is uniformly bounded on J× (δ ,T − δ ) for any δ ∈ (0,T ) , v(r,z, t)
is uniformly bounded on J × (δ ,T − δ ) . Hence a parabolic regularity theory shows
that v(r,z, t) is a classical solution. Since v � 0, by a strong maximum principle, there
exists ε0 > 0 such that

v(r,z,t0/2) � ε0 in J2.

Let ṽ(r,z, t) be the solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vt = vrr +
n
r
vr + vzz, (r,z) ∈ J2, t ∈ (0,∞),

∂νv = 0, (r,z) ∈ (0,2)×{0}, t ∈ (0,∞),
v = 0, (r,z) ∈ {2}× (0,2)∪ (0,2)×{2}, t ∈ (0,∞),
v(r,z,0) = ε0χJ1 , (r,z) ∈ J2,

where χJ1(r,z) = 1 if (r,z) ∈ J1 and χJ1 = 0 if (r,z) �∈ J1 . From a strong maximum
principle, there exists ε1 > 0 such that

ṽ(r,z,t) � ε1, (r,z) ∈ J1, t ∈ (t0/2,T).
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Then by a comparison argument, we see that

v(r,z,t) � ṽ(r,z,t − t0/2), (r,z) ∈ J2, t ∈ (t0/2,T ).

Therefore the proof is completed. �
Here for simplicity, we set

BR = {x ∈ R
n
+; |x| < R}, DR = {x ∈ ∂R

n
+; |x| < R}, SR = {x ∈ R

n
+; |x| = R}.

LEMMA 3. Let u0 be xn -axial symmetric and satisfy (2.1). Then for t1 ∈ (0,T )
there exist c1,c2 > 0 such that

−∂nu(x,t) � c1u(x,t)q, (x,t) ∈ B1/2× (t1,T ).

Moreover it holds that

u(x,t) � c2x
−1/(q−1)
n , (x,t) ∈ B1/2× (t1,T ).

Proof. Let ϕ1(x) > 0 and μ1 > 0 be the first eigenfunction with ‖φ1‖L∞(B1) = 1
and the first eigenvalue of

−Δφ = μφ in B1, ∂νφ = 0 on D1, φ = 0 on S1.

We set

wa(x, t) = −a∂nu(x,t) (a > 0), g(x,t) = e−μ1tφ1(x)u(x,t)q.

Then it is verified that
∂twa −Δwa = 0

and

∂t g−Δg =
(−μ1φ1u

q +quq−1φ1ut
)
e−μ1t

−((Δφ1)uq +2∇φ1 ·∇uq + φ1(Δuq))e−μ1t

= −(2∇φ1 ·∇uq +q(q−1)φ1u
q−2|∇u|2)e−μ1t .

A standard comparison argumentwith (2.1) implies that ∂nu � 0. Moreover, by Lemma
1, we note that Ur � 0. Therefore we obtain

∂t g−Δg � 0.

By a boundary condition, we note that wa = auq on D1 × (0,T ) . Hence it is verified
that for a � 1

g � uq � auq = wa, (x,t) ∈ D1 × (0,T).

Since g = 0 on S1× (0,T) , it is clear that

g � wa, (x,t) ∈ S1× (0,T ).
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Moreover by a strong maximum principle, we see that wa(x,t1) > ε0 in B1 for some
ε0 > 0. Hence we take a > 1 large enough, then we get

g(x,t1) � wa(x,t1), x ∈ B1.

Therefore, by a comparison argument, we obtain g(x,t) � wa(x,t) in B1 × (t1,T ) ,
which implies that −∂nu(x,t) � cu(x,t)q for (x,t) ∈ B1/2× (t1,T ) . Finally integrating

both sides, we obtain u(x,t) � cx−1/(q−1)
n for (x,t) ∈ B1/2 × (t1,T ) , which completes

the proof. �

PROPOSITION 2. Let u0 be as in Lemma 3. If the solution u(x,t) blows up in a
finite time, then the solution blows up only on the origin.

Proof. Suppose that the blow-up set is larger than B := {(r,0) ∈ J ;0 � r � r0}
for some r0 > 0. By using the same idea as in the proof of Theorem 2.4 in [12], we
compare −Ur and Uq . We set

Va(r,z,t) = −aUr(r,z,t), W (r,z,t) = d(r)U(r,z,t)q,

where d(r) > 0 is chosen later. Then Va(r,z,t) is a solution of⎧⎨
⎩∂tVa = ∂ 2

r Va +
n−2

r
∂rVa + ∂ 2

z Va− n−2
r2 Va, (r,z) ∈ J, t ∈ (0,T ),

∂νVa = qUq−1Va, (r,z) ∈ I, t ∈ (0,T ).

Moreover we find that

LW := ∂tW − ∂ 2
r W − n−2

r
∂rW − ∂ 2

z W +
n−2
r2 W

= −
(

d′′ +
n−2

r
d′ − n−2

r2 d

)
Uq−qd′UrU

q−1−q(q−1)d
(
U2

r +U2
z

)
Uq−2.

From Lemma 3, there exists c0 > 0 such that

q(q−1)U2
z U

q−2 � c0U
3q−2, (r,z) ∈ J1/2, t ∈ (t1,T ).

We set
Ua = {(r,z,t) ∈ J× (0,T );Va(r,z,t) < W (r,z,t)}.

Then we see that for (r,z,t) ∈ Ua

−UrU
q−1 =

(
Va

a

)
Uq−1 <

(
W
a

)
Uq−1 =

(
d
a

)
U2q−1.

Hence we obtain for (r,z,t) ∈ Ua , (r,z) ∈ J1/2 and t ∈ (t1,T )

LW � −
(

d′′ +
n−2

r
d′ − n−2

r2 d

)
Uq +

q
a
|d′|dU2q−1− c0dU3q−2.
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Let r1 = min{r0/2,1/2} and d(r) , μ be the first eigenfunction and the first eigenvalue
of ⎧⎨

⎩−
(

d′′ +
n−2

r
d′
)

+
n−2
r2 d = μd, r ∈ (0,r1),

d = 0, r ∈ {0,r1}.
Since the proof for the case n = 2 is easier than that of the case n � 3, here we give a
proof only for the case n � 3. Then d(r) and μ are explicitly expressed by

d(r) = (
√

μr)−(n−3)/2J(n−1)/2(
√

μr), μ = Z2
1/r2

1,

where Jν (r) is the ν -th Bessel function and Z1 > 0 is the first zero of J(n−1)/2(r) .
Then we obtain for (r,z,t) ∈ Ua and a � 1

LW �
(

μ1U
−2(q−1) +q|d′|U−(q−1)− c0

)
dU3q−2, r ∈ (0,r1), z ∈ (0,1/2). (2.2)

Since (r1,0) ∈ B is a blow-up point, from Proposition 1, it follows that

U(r1,z,T ) = cq(1+o(1))z−2m.

Since Jν(r) = crν +o(rν) and ∂rJν(r) = cνrν−1 +o(rν−1) , there exist c1,c2 > 0 such
that

d(r) = c1r+o(r), d′(r) = c2 +o(1). (2.3)

Hence there exists z1 > 0 such that

μ1U(r1,z1,T )−2(q−1) +q|d′|∞U(r1,z1,T )−(q−1) � c0/4.

From Lemma 3, we note that (r1,z1) ∈ J is not a blow-up point. Hence by a parabolic
regularity theory, u(r1,z1,t) is continuous on (0,T ] . As a consequence, there exists
t1 ∈ (0,T ) such that

μ1U(r1,z1, t)−2(q−1) +q|d′|∞U(r1,z1,t)−(q−1) � c0/2, t ∈ (t1,T ).

Since Uz,Ur � 0, it follows that

μ1U(r,z, t)−2(q−1) +q|d′|∞U(r,z,t)−(q−1) � c0/2, r(0,r1), z ∈ (0,z1), t ∈ (t1,T ).

This implies that for (r,z,t) ∈ Ua and a � 1

LW � 0, r ∈ (0,r1), z ∈ (0,z1), t ∈ (t1,T ).

Now we set
J′1 = (0,r1)× (0,z1), Q1 = J′1× (t1,T ).

By (2.3), we note that W (r,z,t) ∼ rU(r,z,t)q . Therefore, from Lemma 2, there exists
a1 > 1 such that

Va1(r,z,t1) � W (r,z,t1), (r,z) ∈ J′1. (2.4)
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Moreover, by Proposition 2, we find that Va1(r,z1,t) and W (r,z1,t) are continuous
functions on {(r, t);r ∈ [0,r1],t ∈ [0,T ]} . Therefore there exists a2 � a1 such that

Va2(r,z1,t) � W (r,z1,t), r ∈ (0,r1), t ∈ (t1,T ). (2.5)

Furthermore, since W (r1,z,t) = 0, it is clear that

Va2(r1,z,t) � W (r1,z,t), z ∈ (0,z1), t ∈ (t1,T ). (2.6)

Since L(W −Va2) � 0 in Q1 ∩Ua2 , multiplying both sides by (W −Va2)+rn−2 and
integrating over J′1 , we obtain by (2.5) and (2.6)

∂t‖(W −Va2)+‖2
L2(J′1) � c‖(W −Va2)+‖2

L2(J′1).

Hence applying the Gronwall inequality with (2.4), we obtain (W −Va2)+ ≡ 0 in Q1 ,
which implies that

d(r)U(r,z,t)q � −a2Ur(r,z,t) in Q1.

By (2.3), we obtain

U(r,0,t) � cr−2/(q−1) = cr−4m, r ∈ (0,r1), t ∈ (t1,T ),

which contradicts definition of B . Hence a single point blow-up is assured. �

3. Sufficient condition for the case (I)

This section is a main part of this paper. Before going to the proof of Theorem 1,
we recall several facts studied in [13]. Let u(x,t) be a finite time blow-up solution of
(P) and v(y,s) be defined by (1.1). Then v(y,s) satisfies⎧⎨

⎩
∂sv = Δv− y

2
·∇v−mv, (y,s) ∈ R

n
+ × (sT ,∞),

∂νv = qBq−1v+ f (v), (y,s) ∈ ∂R
n
+ × (sT ,∞),

(3.1)

where we recall that B = ϕ0(0) and f (v) is given by

f (v) = (v+ ϕ0)q −ϕq
0 −qϕq−1

0 v.

We define wight functions:

ρ(y) = e−|y|2/4, ρ(y′) = e−|y′|2/4 for y = (y′,yn).

From this definition, it is clear that ρ |∂R
n
+

= ρ . Moreover we define functional spaces:

Lp
ρ(Rn

+) =
{

v ∈ Lp
loc(R

n
+);
∫

R
n
+

|v(y)|pρ(y)dy < ∞
}

,

Hk
ρ(Rn

+) =
{

v ∈ L2
ρ(Rn

+);Dαv ∈ L2
ρ(Rn

+) for any α = (α1, · · · ,αn) satisfying |α| � k
}

,

Lp
ρ(∂R

n
+) =

{
v ∈ Lp

loc(∂R
n
+);
∫

∂Rn
+

|v(y′)|pρ(y′)dy′ < ∞
}

.
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The norm is given by

‖v‖p
Lp

ρ(Rn
+)

=
∫

R
n
+

|v(y)|pρ(y)dy, ‖v‖2
Hk

ρ (Rn
+) = ∑

|α |�k

‖Dαv‖2
L2

ρ (Rn
+),

‖v‖p
Lp

ρ (∂Rn
+) =

∫
∂R

n
+

|v(y′)|pρ(y′)dy′

and the inner product on L2
ρ (Rn

+) is naturally defined by

(v1,v2)ρ =
∫

R
n
+

v1(y)v2(y)ρ(y)dy.

For simplicity, the norm of L2
ρ(Rn

+) is denoted by ‖ · ‖ρ = ‖ · ‖L2
ρ (Rn

+) . Moreover we

define a functional space whose element is yn -axial symmetric function.

L2
sym,ρ(Rn

+) = {v ∈ L2
ρ(Rn

+);v(y) = v(|y′|,yn)}.
To study the asymptotic behavior of v(y,s) , we introduce a linear operator A related to
(3.1).

Av = Δv− y
2
·∇v−mv,

D(A) = {v ∈ H2(Rn
+);∂νv = qBq−1v on ∂R

n
+}.

Since the operator A : D(A) → L2
ρ(Rn

+) is self-adjoint and has a compact inverse from
L2

ρ(Rn
+) to L2

ρ(Rn
+) (see Appendix [13]), L2

sym,ρ(Rn
+) is spanned by yn -axial symmet-

ric eigenfunctions of ⎧⎨
⎩
−
(

Δ− y
2
·∇−m

)
e = λe in R

n
+,

∂νe = qBq−1e on ∂R
n
+.

(3.2)

Let Ki(r) and σi be the i-th eigenfunction with∫
Rn−1

Ki(ξ ′)2e−|ξ ′|2/4dξ ′ = 1

and the i-th eigenvalue of

−
(
K′′ +

n−2
r

K′ − r
2
K′
)

= σK, r ∈ (0,∞).

Then it is known that σi = i−1 and Ki(r) is the 2(i−1)-th polynomial. Let I j(ξ ) and
κ j be the j -th eigenfunction with∫ ∞

0
I j(ξ )e−ξ 2/4dξ = 1

and the j -th eigenvalue of

−
(

I′′ − ξ
2

I′
)

= κI in R+, ∂ν I = qBq−1I on {0}.
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It is known that κ1 =−(m+1) and κ2 > 0 (see Lemma 2.2 [13]). Then eigenfunctions
and their eigenvalues of (3.2) are completely given by

ei j(|y′|,yn) = Ki(|y′|)I j(yn), λi j = (i−1)+ κ j +m (i, j ∈ N). (3.3)

3.1. Dynamical system

As is stated in Introduction, the author studied the asymptotic behavior of v(y,s)
and obtained the following result in [13].

PROPOSITION 3. (Proposition 3.1, Proposition 3.3 [13]) Let u0 be xn -axial sym-
metric. Then v(y,s) satisfies one of two cases :

(I) there exists c0 > 0 such that ‖v(s)+ c0s−1e21‖ρ = o(s−1) ,
(II) ‖v(s)‖ρ decays to zero exponentially.

In this subsection we consider the case (II) and derive a precise decay rate of
‖v(s)‖ρ .

PROPOSITION 4. Let u0 be xn -axial symmetric and satisfy x′ ·∇′u0 � 0 . If the
case (II) in Proposition 3 occurs, then one of two cases holds.

(i) ‖v(s)‖ρ � cγe−γs for any γ > 0 ,

(ii) there exist (i1, j1),(i2, j2) ∈ N
2 \ {(1,1),(2,1)} such that

v(s) = ∑
λkl<λi2 j2

akl(s)ekl +h(s) in L2
ρ(Rn

+) (3.4)

where

|akl(s)−αkle
−λkl | � ckl,εe

−2(λi1 j1
−ε)s, ‖h(s)‖ρ � cεe

−2(λi1 j1
−ε)s

with αi1 j1 �= 0 and αkl = 0 if λkl < λi1 j1 . Moreover expansion (3.4) holds in C2
loc(R

n
+) .

Proof. We assume the case (II) in Proposition 3. Then there exists γ > 0 such that

‖v(s)‖ρ � ce−γs. (3.5)

We set
vi j(y,s) = ai j(s)ei j(y), ai j(s) = (v(s),ei j)ρ

and
hi j(y,s) = v(y,s)− ∑

λkl<λi j

vkl(y,s).

Form (3.1), we verify that

ȧi j = −λi jai j +
∫

∂R
n
+

f (v)ei jρ dy′,

1
2

∂s‖hi j‖2
ρ = −m‖hi j‖2

ρ −‖∇hi j‖2
ρ +qBq−1‖hi j‖2

L2
ρ (∂R

n
+) +

∫
∂Rn

+

f (v)hi jρ dy′.
(3.6)
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To estimate the last term of (3.6), here we provide a pointwise estimate of v(y,s) . By
Lemma 1, we note that x′ · ∇′u(x,t) � 0 for t ∈ (0,T ) . Therefore, since v(y,s) =
ϕ(y,s)−ϕ0(yn) , we see that v(y,s) � v(0,s) for y ∈ ∂R

n
+ , s ∈ (sT ,∞) . By a parabolic

regularity theory with (3.5), we get v(0,s) � ce−γs for s∈ (sT ,∞) . Therefore we obtain

v(y,s) � ce−γs, (y,s) ∈ ∂R
n
+× (sT ,∞).

Next we derive a lower estimate of v(y,s) . Put b(yn) = I1(yn)/I1(0) and w(y,s) =
v(y,s)/b(yn) . Then w(y,s) satisfies

⎧⎨
⎩∂sw = Δw− y

2
·∇w+

(
2b′

b

)
∂nw+w, (y,s) ∈ R

n
+× (sT ,∞),

∂νw = f (w), (y,s) ∈ ∂R
n
+ × (sT ,∞).

Let S(s)w0 be a solution of

⎧⎪⎪⎨
⎪⎪⎩

∂sw = Δw− y
2
·∇w+

(
2b′

b

)
∂nw, (y,s) ∈ R

n
+× (0,∞),

∂νw = 0, (y,s) ∈ ∂R
n
+ × (0,∞),

w(y,0) = w0(y), y ∈ R
n
+.

Since f (v) � 0, by a representation formula (28) in [13], we obtain

w(s) � es−s0S(s− s0)w(s0).

By Lemma 2.9 in [13], the right-hand side is estimated by

es−s0S(s− s0)|w(s0)| � ces−s0 exp

(
e−(s−s0)|y|2

4(1+ e−(s−s0))

)
‖w(s0)b(yn)‖ρ on ∂R

n
+.

Therefore we obtain

es−s0S(s− s0)|w(s0)| � ces−s0−γs0 exp

(
e−(s−s0)|y|2

4(1+ e−(s−s0))

)
on ∂R

n
+.

We fix ε ∈ (0,γ/4) such that 2(γ − ε) �∈ {λi j}(i, j)∈N2 and choose s0 ∈ (0,s) such that

s0 =
(

1+ γ − ε
1+ γ

)
s ⇐⇒ s− s0 =

(
ε

1+ γ

)
s

⇐⇒ (s− s0)− γs0 = −(γ − ε)s.

Hence it follows that

w(y,s) � −es−s0S(s− s0)|w(s0)| � −ce−(γ−ε)s exp

(
e−εs/(1+γ)|y|2
4(1+ e−(s−s0))

)
on ∂R

n
+.
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Here we note that v(y,s) is uniformly bounded and | f (v)| � cv2 . Therefore, since
v(y,s) = w(y,s) on ∂R

n
+ , we see that∫

∂R
n
+

f (v)ei jρ dy′ =
∫
|y′|�eεs/2(1+γ)

f (w)ei jρ dy′ +
∫
|y′|>eεs/2(1+γ)

f (w)ei jρ dy′

� ce−2(γ−ε)s
∫

∂R
n
+

|ei j|ρ dy′ + c
∫
|y′ |>eεs/2(1+γ)

|ei j|ρ dy′.

Since ei j(y′) = Ki(|y′|)I j(0) on ∂R
n
+ and Ki is the 2(i−1)-th polynomial, there exists

ci j > 0 such that |ei j(y′)|ρ(y′) � ci je−|y′|2/8 . Hence we get∫
∂Rn

+

f (v)ei jρ dy′ � ci j,εe
−2(γ−ε)s.

Therefore, by (3.6), there exists αi j ∈ R such that∣∣∣ai j(s)−αi je
−λi js

∣∣∣� ci j,εe
−2(γ−ε)s, (i, j) ∈ N

2. (3.7)

Next we provide a estimate of hi j . Since | f (v)hi j| � δh2
i j + δ−1 f (v)2 , form (3.6), we

verify that

1
2

∂s‖hi j‖2
ρ � −‖∇hi j‖2

ρ −m‖hi j‖2
ρ

+(qBq−1 + δ )‖hi j‖2
L2

ρ (∂R
n
+) + δ−1

∫
∂Rn

+

f (v)2ρ dy′.

Let Πi j be a subspace defined by

Πi j = {e ∈ H1
ρ(Rn

+);(e,ekl)ρ = 0 for any (k, l) ∈ N
2 such that λkl < λi j}.

Then it is known that

λi j = inf
e∈Πi j

(‖∇e‖2
ρ +m‖e‖2

ρ −qBq−1‖e‖L2
ρ(∂R

n
+)

‖e‖2
ρ

)
.

We set

λi j(δ ) = inf
e∈Πi j

⎛
⎝
(
‖∇e‖2

ρ +m‖e‖2
ρ

)
− (qBq−1 + δ )‖e‖L2

ρ(∂R
n
+)

‖e‖2
ρ

⎞
⎠ .

From definition of λi j(δ ) , we get

1
2

∂s‖hi j‖2
ρ � −λi j(δ )‖hi j‖2

ρ + δ−1
∫

∂R
n
+

f (v)2ρ dy′.

By the same way as above, it holds that∫
∂Rn

+

f (v)2ρ dy′ � cεe
−4(γ−ε)s.
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Hence we obtain
‖hi j‖ρ � ci j,ε

(
e−2(γ−ε)s + e−λi j(δ )s

)
. (3.8)

First we assume that αi j = 0 for any (i, j) ∈ N
2 . Then by (3.7) and (3.8), if ‖v‖ρ �

ce−γs , it holds that ‖v‖ρ � ce−2(γ−ε)s . Therefore by induction, for any γ > 0 there
exists cγ > 0 such that ‖v‖ρ < cγe−γs , which implies the case (i). Next we consider
the case αi1 j1 �= 0 and αkl = 0 if λkl < λi1 j1 . Then we choose (i2, j2) ∈ N

2 such
that λi2 j2 > 2λi1 j1 . Since limδ→0 λi j(δ ) = λi j , there exists δ > 0 such that λi2 j2(δ ) >
2λi1 j1 . Therefore by (3.7) and (3.8), we obtain a conclusion. �

3.2. Spacial singularities

First we list lower eigenvalues of (3.2) below (see (3.3) and Appendix).

λ11 = −1, λ12 > m+1/2, λ13 > m+1,

λ21 = 0, λ22 > m+3/2, λ23 > m+2,

λ31 = 1, λ32 > m+5/2, λ33 > m+3,

λ41 = 2, λ42 > m+7/2, λ43 > m+4.

In this subsection, v(y,s) stands for a yn -axial symmetric function defined by (1.1).
Since v(y,s) is yn -axial symmetric, v(y,s) is expressed by v(y,s) = V (r,z,s) (r = |y′| ,
z = yn ). Since there is no confusion, we denote V (r,z,s) by v(r,z,s) .

LEMMA 4. Let u0 be as in Theorem 1. Assume that the case (II) in Proposition 3
and the case (ii) in Proposition 4 occurs. Then expansion (3.4) holds with i1 ∈ {1,2} ,
j1 � 2 .

Proof. From Lemma 1, it follows that

∂rv(r,0,t) � 0, r ∈ (0,∞).

By assumption, it holds that

∂rv(r,0,s) = αi1 j1e
−λ s∂rei1 j1(r,0)+o(e−λ s), r ∈ (0,r0)

for any fixed r0 ∈ (0,∞) . If i1 �∈ {1,2} , then by the shape of Ki(r) , there exists r1 > 0
such that ∂rK1(r1) > 0. However, since ∂rei1 j1(r,0) = ∂rKi1(r)I j1(0) , this contradicts
∂rv � 0. Therefore the proof is completed. �

LEMMA 5. Assume the same condition as in Lemma 4. If expansion (3.4) holds
with i1 = 1 , j1 = 2 and put a12(s) = (v(s),e12)ρ , then there exists γ > 1 such that

v(s) = a12(s)e12 +O(e−γs) in L2
ρ(Rn

+).
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Proof. For the case λ12 > 1, from Proposition 4, this lemma is trivial. Now we
assume that λ12 � 1. Since λ12 > 1/2, we can fix ε > 0 such that 2(λ12− ε) > 1. Put
h(s) = v(s)−∑λkl<λi2 j2

(v(s),ekl)ekl . Then by Proposition 4, we get

‖v(s)−a12(s)e12‖2
ρ = |a11(s)|2 + |a21(s)|2 + ∑

λ12<λkl<λi2 j2

|akl(s)|2 +‖h(s)‖ρ

�
(
2 ∑

λ12<λkl<λi2 j2

α2
kle

−2λkls + ce−4(λ12−ε)s
)
.

From a list of eigenvalues, we see that λkl > 1 if (k, l) �∈ {(1,1),(1,2),(2,1),(3,1)} .
Therefore it is sufficient to show that α31 = 0. Suppose that α31 �= 0. Then, since
a31(s) = α31e−s +O(e−γs) for some γ > 1, it holds that

v(s) = a12(s)e12 + α31e
−se31 +O(e−γs) in L2

ρ(Rn
+)∩C2

loc(Rn
+)

for some γ > 1. Differentiating with respect to r , we get from ∂re12 = 0

∂rv(r,0,s) = a12(s)∂re12(r,0)+ α31e
−s∂re31(r,0)+O

(
e−γs)

= α31e
−s∂re31(r,0)+O

(
e−γs) .

Hence, by the shape of e31(r,0) , there exist r1 > 0 and s = s1 such that

∂rv(r1,0,s1) > 0,

which contradicts ∂rv � 0. Therefore α31 = 0 is assured, which completes the proof. �

LEMMA 6. If v(s) satisfies

‖v(s)‖ρ � ce−γs

for some γ > 1 , then the blow-up profile satisfies

lim
r→0

r4mu(r,0,T ) = +∞.

Proof. Let b(yn) and S(s) be as in the proof of Proposition of 4. Since f (v) � 0,
a representation formula (28) in [13] gives

v(s) � es−s0S(s− s0)
(

v(s0)
b

)
on ∂R

n
+.

Applying Lemma 2.9 in [13], we obtain∣∣∣∣S(s− s0)
(

v(s0)
b

)∣∣∣∣ � cexp

(
e−(s−s0)|y|2

4(1+ e−(s−s0))

)
‖v(s0)‖ρ

� cexp

(
e−(s−s0)|y|2

4(1+ e−(s−s0))

)
e−γs0 on ∂R

n
+.



288 JUNICHI HARADA

We choose s0 ∈ (0,s) such that

s0 =
(

1+ ε
1+ γ

)
s ⇐⇒ s− s0 =

(
γ − ε
1+ γ

)
s

⇐⇒ (s− s0)− γs0 = −εs.

Then it holds that

v(r,0,s) � −ces−s0e−γs0 = −ce−εs, r � e(γ−ε)s/2(1+γ).

By (1.1), this implies that

ϕ(r,0,s) � B− ce−εs, r � e(γ−ε)s/2(1+γ). (3.9)

We set
2gε(s) = e(γ−ε)s/2(1+γ).

Following [13] (originally [15]), we introduce (r,z > 0, t ∈ (0,1))

Us(r,z,t) = e−msu(e−s/2r+ e−s/2gε(s),z,T +(t−1)e−s),

where s > sT is a parameter. We consider a rescaled function ws(r,z,τ) defined by
(y ∈ R

n
+ , τ ∈ R+ )

ws(r,z,τ) = e−mτUs

(
e−τ/2r,e−τ/2z,1− e−τ

)
= e−m(τ+s)u

(
e−(τ+s)/2r+ e−s/2gε(s),e−(τ+s)/2z,T − e−(τ+s)

)
= ϕ

(
r+ eτ/2gε(s),z,τ + s

)
.

From (3.9), there exists s1 > 0 such that for s � s1

ws(r,0,0) = ϕ(r+gε(s),0,s) � B/2, r ∈ (0,1).

From Lemma 2.1 in [13], we recall that |∇ϕ | is uniformly bounded. Hence there exists
z1 > 0 such that for s � s1

ws(r,z,0) � B/4, r ∈ (0,1,), z ∈ (0,z1).

Since ws(r,z,τ) � 0, by the way as in the proof of Proposition 5.1 (lower bound) in
[13], there exist c0 > 0 and τ1 ∈ (0,∞) such that for s � s1 and τ ∈ (τ1,∞)

ws(0,0,τ) � c0e
−mτ .

Hence it follows that for s � s1 and τ ∈ (τ1,∞)

u
(
e−s/2gε(s),0,T − e−(τ+s)

)
� c0e

ms.
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Taking τ → ∞ , we obtain for s � s1

u
(
e−s/2gε(s),0,T

)
� c0e

ms.

Let s̃(b) be an inverse function defined by

2b = 2e−s̃/2gε(s̃) = e−(1+ε)s̃/2(1+γ).

Thus there exists b1 > 0 such that for b ∈ (0,b1) and t ∈ (1− e−τ1,1)

u(b,0,T ) � c′0b
−2(1+γ)m/(1+ε).

Since 2(1+ γ) > 4 if γ > 1, the proof is completed. �

LEMMA 7. Let u0 and v(s) be as in Lemma 5. Then the blow-up profile satisfies

lim
r→0

r4mu(r,0,T ) = ∞.

Proof. From Lemma 5, we note that v(s)− a12(s)e12 = O(e−γs) in L2
ρ(Rn

+) for
some γ > 1. For the case λ12 > 1, this lemma is reduced to Lemma 6. Therefore
we assume that λ12 � 1. We repeat arguments given in the proof of Lemma 6. A
representation formula shows that(

v(s)
b

)
� es−s0S(s− s0)

(
v(s0)

b

)

= es−s0S(s− s0)
(

a12(s0)e12

b

)
+ es−s0S(s− s0)

(
v(s0)−a12(s0)e12

b

)
.

Since S(s− s0)(e12/b) = e−(λ12+1)(s−s0)(e12/b) (see the proof of Lemma 4.3 [13]), we
obtain(

v(s)
b

)
� a12(s0)e−λ12(s−s0)

(e12

b

)
+ es−s0S(s− s0)

(
v(s0)−a12(s0)e12

b

)
.

By the same argument as in the proof of Lemma 6, we choose s0 such that (1+ γ)s0 =
(1+ ε)s , then we see that∣∣∣∣es−s0S(s− s0)

(
v(s0)−a12(s0)e12

b

)∣∣∣∣� ce−εs, r � e(γ−ε)s/2(1+γ), z = 0.

Therefore, since a12(s0) = (α12 +o(1))e−λ12s0 and b = 1 on ∂R
n
+ , it holds that

v(s) � (α12 +o(1))e−λ12se12− ce−εs, r � e(γ−ε)s/2(1+γ), z = 0.

Here we note that e12(y) = K1(|y′|)I2(0) on ∂R
n
+ and K1(r) is a positive constant

function. Therefore the rest of proof follows from that of Lemma 6, which completes
the proof. �

Proof. (Proof of Theorem 1) We prove by contradiction. Suppose that the case
(II) in Proposition 3 occurs. Hence, from Proposition 4 and Lemma 4–5, there are two
possibilities:



290 JUNICHI HARADA

(i) ‖v(s)‖ρ � e−γs (γ > 1) , (ii) v(s) ∼ α12e−λ12s (α12 �= 0) .

For the both cases, from Lemma 6–7, it follows that

lim
r→0

r4mu(r,0,T ) = ∞. (3.10)

Now we use the same technique given in Proposition 2 to derive a contradiction. We
set

Va(r,z, t) = −aUr(r,z,t), W (r,z,t) = d(r;r1)U(r,z,t)q,

d(r;r1) = (
√μr)−(n−3)/2J(n−1)/2(

√μr), μ(r1) = Z2
1/r2

1,

where Jν (r) is the ν -th Bessel function and Z1 > 0 is the first zero of J(n−1)/2(r) .
Moreover we set

Ua = {(r,z,t) ∈ J× (0,T );Va(r,z,t) < W (r,z,t)}.

Repeating arguments in Proposition 2, we obtain (2.2), that is

LW �
(

μ(r1)U−2(q−1) +q|∂rd(r;r1)|U−(q−1)− c0

)
dU3q−2

for (r,z, t) ∈ Ua , r ∈ (0,r1) , z ∈ (0,1/2) and a � 1. Here we note that

r−(n−1)/2|J(n−1)/2(r)|+ r−(n−3)/2|∂rJ(n−1)/2(r)| � c, r ∈ (0,z1).

Hence we see that

|∂rd(r;r1)| �
(

n−3
2

)√
μ(

√
μr)−(n−1)/2|J(n−1)/2(

√
μr)|

+
√

μ(
√

μr)−(n−3)/2|J′(n−1)/2(
√

μr)|
� c

√
μ , r ∈ (0,r1).

Therefore, it follows that for (r,z,t) ∈ Ua , a � 1, r ∈ (0,r1) , and z ∈ (0,1/2) ,

LW �
((

Z1

r1

)2

U−2(q−1) + c

(
Z1

r1

)
U−(q−1)− c0

)
dU3q−2.

From (3.10), it holds that

lim
r1→0

r−1
1 U(r1,0,T )−(q−1) � lim

r1→0
r−2
1 U(r1,0,T )−(q−1) = 0.

Hence there exists r∗1 > 0 such that

(
Z1

r∗1

)2

U(r∗1,0,T )−2(q−1) + c

(
Z1

r∗1

)
U(r∗1,0,T )−(q−1) � c0/2.
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From Proposition 2, u(x,t) blows up only on the origin. Hence by the continuity, there
exist z1 > 0 and t1 > 0 such that(

Z1

r∗1

)2

u(r∗1,z, t)
−2(q−1) + c

(
Z1

r∗1

)
u(r∗1,z,t)

−(q−1) � c0, z ∈ (0,z1), t ∈ (t1,T ).

Hence by ∂zU,∂rU � 0, we obtain

(
Z1

r∗1

)2

U(r,z,t)−2(q−1) + c

(
Z1

r∗1

)
U(r,z,t)−(q−1) � c0

for r ∈ (0,r∗1) , z ∈ (0,z1) , t ∈ (t1,T ) . This implies that for (r,z,t) ∈ Ua and a � 1

LW � 0, r ∈ (0,r∗1), z ∈ (0,z1), t ∈ (t1,T ).

Hence by the same way as in the proof of Proposition 2, we find that there exists a1 > 1
such that

−a1(∂ru) � d(r;r∗1)u
q, r ∈ (0,r∗1), z ∈ (0,z1), t ∈ (t1,T ),

which implies that

u(r,0,t) � cr−4m, r ∈ (0,r∗1), t ∈ (t1,T ).

As a consequence, a blow-up profile satisfies

u(r,0,T ) � cr−4m, r ∈ (0,r∗1),

which contradicts (3.10). Thus the proof is completed. �

A. Appendix

A.1. Eigenvalue problems

In this section, for simplicity, we denote N∪{0} by N0 . We study the following
eigenvalue problem: ⎧⎨

⎩−
(

u′′ − ξ
2

u′
)

= μu in R+,

∂νu = Ku on {0},
(A.1)

where K > 0. It is known that the first eigenvalue μ1 is negative and μi ( i � 2)
is positive. Here we give precise estimate of positive eigenvalues of (A.1). To find
two linearly independent fundamental solutions of (A.1), we consider ODE problem
without a boundary condition:

u′′ − ξ
2

u′ = −μu. (A.2)
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We put v(ξ ) = u(2
√

ξ ) . Then v(ξ ) satisfies Kummer’s equation:

ξ v′′ +(b− ξ )w′ −aw = 0, (A.3)

where a =−μ and b = 1/2. Since b = 1/2 �∈N , two linearly independent fundamental
solutions of (A.3) are given by (see p. 504 [1])

v1(ξ ) = M(−μ ,1/2,ξ ), v2(ξ ) =

{
ξ 1/2M(−μ +1/2,3/2,ξ ) if 2μ ∈ N0,

U(−μ ,1.2,ξ ) if 2μ �∈ N0,

where M(a,b,ξ ) (Kummer’s function) and U(a,b,ξ ) are given by

M(a,b,ξ ) = 1+
∞

∑
k=1

a(a+1) · · ·(a+ k−1)
b(b+1) · · ·(b+ k−1)

ξ k

k!
(−b �∈ N0),

U(a,b,ξ ) =
( π

sinπb

)(M(a,b,ξ )
Γ(a′)Γ(b)

− ξ 1−b M(a′,b′,ξ )
Γ(a)Γ(b′)

)
(−a,±b,−a′,−b′ �∈ N0),

where a′ = 1+a−b , b′ = 2−b . For the case a = −n (n ∈ N), M(a,b,ξ ) is the n -th
polynomial:

M(−n,b,ξ ) = 1+
n

∑
k=1

−n(−n+1) · · ·(−n+ k−1)
b(b+1) · · ·(b+ k−1)

ξ k

k!
(−b �∈ N0).

Moreover for the case −a �∈ N0 , the asymptotic formulas of M(a,b,ξ ) and U(a,b,ξ )
for large ξ > 0 are given by (see p. 504 [1])

M(a,b,ξ ) =
Γ(b)
Γ(a)

eξ ξ a−b(1+O(ξ−1)) (−a,−b �∈ N0),

U(a,b,ξ ) = ξ−a(1+O(ξ−1)) (−a,±b,−a′,−b′ �∈ N0),
(A.4)

where a′ = 1+ a− b , b′ = 2− b . Then, since u(ξ ) = v(ξ 2/4) , the original equation
(A.2) has two linearly independent fundamental solutions given by

u1(ξ ) = M(−k,1/2,ξ 2/4), u2(ξ ) =

⎧⎨
⎩

ξ
2

M(−μ +1/2,3/2,ξ 2/4) if 2μ ∈ N0,

U(−μ ,1/2,ξ 2/4) if 2μ �∈ N0.

Then by virtue of asymptotic formula (A.4), we find that a solution u(x, t) of (A.2) in
L2

ρ(R+) is given by

u0(ξ ) = c ·

⎧⎪⎨
⎪⎩

M(−k,1/2,ξ 2/4) if μ = k ∈ N0,

ξM(−k,3/2,ξ 2/4) if μ −1/2 = k ∈ N0,

U(−μ ,1/2,ξ 2/4) if 2μ ∈ N0
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for some constant c �= 0. Since u′0(0) = 0 if μ ∈ N0 and u0(0) = 0 if μ −1/2∈ N0 , if
u is a solution of (A.1) in L2

ρ(R+) , it holds that 2μ �∈ N0 . Therefore to find all positive
eigenvalue of (A.1), it is sufficient to find all value μ > 0 such that

K = −
(

u′0(0)
u0(0)

)
= −1

2
lim
ξ→0

(
ξU ′(−μ ,1/2,ξ 2/4)

U(−μ ,1/2,ξ )

)
(2μ �∈ N0). (A.5)

Then it is known that asymptotic formulas for ξ ∼ 0 are given by (see p. 508 [1])

U(a,b,ξ ) =
Γ(1−b)

Γ(a′)
+O(|ξ |1−b) (−a,−a′ �∈ N0,b ∈ (0,1)),

U(a,b,ξ ) =
Γ(b−1)

Γ(a)
ξ 1−b +O(1) (−a,−a′ �∈ N0,b ∈ (1,2)),

where a′ = 1+a−b . Since U ′(a,b,ξ ) = −aU(a+1,b+1,ξ ) (see p. 507 [1]), we see
that

lim
ξ→0

(
ξU ′(−μ ,1/2,ξ 2/4)

U(−μ ,1/2,ξ )

)
=

2μΓ(−μ +1/2)
Γ(1− μ)

.

Since

Γ(μ)Γ(1− μ) = π/sinπμ and Γ(μ +1/2)Γ(−μ +1/2) = π/cosπμ ,

it holds that
μΓ(−μ +1/2)

Γ(1− μ)
=

Γ(μ)
Γ(μ +1/2)

(μ tanπμ).

Therefore (A.5) is reduced to

K = − Γ(μ)
Γ(μ +1/2)

(μ tanπμ) (2μ �∈ N0). (A.6)

Since Γ(ξ ) > 0 if ξ > 0, the roots of (A.6) are in
⋃

k∈N(k−1/2,k) . Here we fix k ∈N .
Now we claim that (A.6) has a unique root in (k−1/2,k) . Put

G(μ) = Γ(μ)/Γ(μ +1/2) and f (μ) = μ tanπμ .

It is known that G′(μ) < 0 for μ > 0 (see p. 4 [17]). Moreover we see that

f ′(μ) = tanπμ +
πμ

(cosπμ)2 =
1

(cosπμ)2 (cosπμ · sinπμ + πμ)

� 1
(cosπμ)2 (−1+(k−1/2)π)

>
1

(cosπμ)2 (−1+ π/2)� 0, μ > k−1/2.

Therefore, since G(μ) > 0 and f (μ) < 0 for μ ∈ (k−1/2,k) , we obtain

d
dμ

(G(μ) f (μ)) = G′(μ) f (μ)+G(μ) f ′(μ) > 0, μ ∈ (k−1/2,k).
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As a consequence, since

lim
μ→k−1/2+0

G(μ) f (μ) = −∞, G(k) f (k) = 0,

there exists a unique μk(K) ∈ (k− 1/2,k) such that −K = G(μk) f (μk) . This proves
the claim. Therefore we obtain the following result.

LEMMA 8. Let μk (k ∈ N) be the k -th eigenvalue of (A.1). Then it follows that
μ1 < 0 and μk ∈ (k−3/2,k−1) if k � 2 (k ∈ N) .
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