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SINGLE POINT BLOW-UP SOLUTIONS TO THE HEAT
EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

JUNICHI HARADA

(Communicated by Philippe Souplet)

Abstract. We study finite blow-up solutions of the heat equation with nonlinear boundary con-
ditions. We provide a sufficient condition for the single point blow-up at the origin and a precise
spacial singularity of the blow-up profile.

1. Introduction

We study positive solutions of the heat equation with nonlinear boundary condi-

tions:
diu = Au, (x,1) e R < (0,T),

ovu = ul, (x,1) € IR x (0,T), (P)
u(x,0) =up(x), xeRY,
where up >0, R = {x € R";x, >0}, dy =—0d/dx, and l <g<n/(n—2)if n>3.
We are concerned with finite time blow-up solutions and their asymptotic behavior. We
call a solution u(x,t) blow-up in a finite time, if there exists 7 > 0 such that

limsup |[u(2)|| oo (rn ) = o°.
msup (1) - a1

Moreover for a finite blow-up solution u(x,#), if a limit

Ux)= lin% u(x,t) € 10,
11—
exists for any x € R, we call U(x) a blow-up profile of u(x,?). The blow-up profile
of positive solutions of the semilinear heat equation:

du=Au+u? inR"x(0,T) (F)

for pe (1,(n+2)/(n—2)) is well studied ([2]-[4], [7], [1 1], [14]-[16], [20]-[23]). For
a one dimensional case, the blow-up profile of solutions of (F) is completely classified
by Herrero-Veldzquez [14]-[16]. Let n =1 and u(x,7) be a positive solution of (F)
which blows up at the origin. Then they proved that the blow-up profile of u(x,7)
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satisfies one of the following two cases:

2 1/(p=1)
(i) there exists ¢, > 0 such that lim | —— U(x) =cp,
x—0 ‘ 10gx|

(ii) there exist ¢ > 0 and an even number m > 4 such that lin(l)x’”/ P-Dyx)=c.
X—

The blow-up profile of solutions of (F) for a higher dimensional case was also studied
([23]), however the situation is different from that of one dimensional case since the
blow-up set is not always isolated (see [10]).

Recently, the author in [13] studied the blow-up profile of solutions of (P). To
study the asymptotic behavior of blow-up solutions, we introduce a rescaled function:

0(ns) = (T =)/ Du(T — ) Px1), 5= —log(T 1),

where T > 0 is a blow-up time. This rescaled function @(y,s) solves (s = —log(T —
1)
%o =Ap—2-Vo— T (35) €RL x (s7,%0),
2 2(qg—1)
e = o7, (3,5) € IR X (s7,00).

Chlebik-Fila in [5], [6] (see also [19]) proved that ¢(y,s) is uniformly bounded on
R X (s7,00) and
lim @(y,s) = @o(yn)

§—ro0

uniformly any compact set on R", where ¢y(y,) is the unique positive bounded solu-
tion of
S ®

n,S 0 _
®o + 2(/)0 2(6]—1) Ov éeR-‘m
8V(P0:(P(l)17 520.

From this fact, the original solution u(x,7) asymptotically behaves like
u(x,t) ~ (T =) 2 Vo (T —1)" ), 1~ T,

By virtue of the asymptotic formula of @y(&): @p(E) ~ ¢, E~1/@71 (see p.202 [9]),
this asymptotic formula gives the spacial singularity of the blow-up profile U (x), that
is U(x) ~ cgxn Y(@=1  However this formula of the blow-up profile has no meaning on
the boundary JR’| since x, =0 on JR’ . In order to investigate the blow-up profile

on the boundary dR" , we need more precise asymptotic behavior of

v(y,s) = @(y,5) — @o(y)- (1.1)

Then v(y,s) satisfies

y 1%
dv=Av—3-Vv— -1 (3:5) € RY X (s7,00),

v =qol v+ 00?), (y,5) € OR™ X (s7,0).
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A corresponding eigenvalue problem is given by

—(Ae—2 Ve ! e):)te inR",
(1.2)

2 2(g—1)
dve=qol e on JR”.

Let e;(y) € Ly (R") be the i-th eigenfunction of (1.2), where Ly (R ) is a weighted
L?-space defined by

n n — 72
L;(R}) = {veleoc(l&); V12 ey ;:/R v(y)[Pe P! /4dy<°°}.

n
Then v(y,s) behaves as one of the following two cases (see [13]):

(I) there exists ¢ # 0 depending only on n, g such that ||v(s) —cs ™ 'e; HL% R = o(s™hy,
(1) there exist ¢ > 0 and y > 0 such that HV(S)HL’ZJ(M) <ce P,

Moreover we proved in [13] that if the case (I) occurs, then the blow-up profile for
X, -axial symmetric solutions with x’- V'ug < 0 is given by

1 / 1/2(q—1)
U(x/,0)~c<| (|)§|)2C|) on JR}.

However we did not clarify when the case (I) occurs. Our goal of this paper is to provide
sufficient conditions on the initial data for the case (I). To state our result, we define

BC!(RT) = {ue C (R ):u, |Vl € L~ (RY)}.

THEOREM 1. Let ug(x) € BC'(R™) be x,-axial symmetric and satisfy x'-V'ug <
0, duup < 0. If a solution u(x,t) blows up in a finite time, then u(x,t) blows up only
on the origin and behaves as (1).

REMARK 1. As for the case (F), if the initial data is radially symmetric and mono-
tone decreasing, then these properties are preserved for # > 0. Therefore the solution
has a unique local maximum point at the origin for # > 0 and no local minimum points
for ¢ > 0. From the view point of this geometry of the solution, it is easily proved that
the rescaled solution ¢(y,s) satisfies the asymptotic formula (i). However this kind of
observation can not be applicable to solutions of (P), since solutions treated here are
not radially symmetric but x,, -axial symmetric.

The rest of paper is organized as follows. In the Section 2, we show a single point
blow-up of solutions of (P) by using methods given in [12]. In section 3, we provide a
sufficient condition for the case (I). In particular, we mainly study the singularity of the
blow-up profile.

Throughout this paper, for simplicity we set

m=1/2q—1), B=g(0).



274 JUNICHI HARADA

2. Single point blow-up
2.1. Blow-up profile along x,, = |x|cos 6

In this subsection, we provide a blow-up profile along x, = |x|cos 0 for fixed 0 €
[0,7/2). At the formal level, the blow-up profile U (x) is given by U (x) ~ cgx, Vla=1)
as is stated in Introduction. Here we provide a rigorous proof of this formula.

PROPOSITION 1. Let u(x,t) be a finite time blow-up solution at x = xy. Then
there exists ¢4 > 0 such that

u(x+x0,T) = cg(1+0(1))(cos @) " |x| 72"

along x, = |x|cos 0 for any fixed 6 € [0,7/2).

Proof. Without loss of generality, we can assume that xo = 0. It is known (cf. p.
173 in [8]) that u(x,#) is expressed by

) = /]R Gy (& 0)uo(&)dE + /0 T /]R Gy &= Tu(E,0,7)1d¢!
=: J1 :rf—.]27

where Gy(x,&,1) is given by
G (x,&.1) = 75 (,&/.1) (o7l g mlot i),
G, E 1) = (D2 =8 P
By changing variables: &' —x' =/t — 7.7, we see that

4 !
b = / (1 — 1) 12 5/4-D) gy / le—\z%( =77 2,0, 7)9d7
0 R

2
¢ efxn/4(tf‘r)d,r
_ —|Z/4 Vit 0,7) Y a7
[) (t—T)l/z(T— ) /R" l { ( Z+x T} Z.

7)™

Since T > t, we note that

2\ M 2\
(T — 1) ~Mae=53/40-0) _ (7 _ g)-ma ( X ) (%) B /4—T)

4(r—1) -1

_ mq
< Cx—2mq -1 e—x,zl/S(t—T) <ex; 2mqe x2/8(t— T)
" T—r

Therefore, since (7 —1)"||u(t)|| = ) is uniformly bounded for ¢ € (0,T) (see Section
3 in [5]), by the Lebesgue dominant convergence lemma, we obtain for x,, > 0

T o=5/4T-17) g )
lim J =/ 577/ 1e"Z |2/4{(T—T)’”u(\/m.z’—kx’,o,r)}qdz’
0 R—

1—T T — 1)ma+1/2
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—x2/4(T 7|z’|2/4 . ¥ q /
_/ T—1) mq+1/2 /]R" 1 (P<Z +m,0,—log(T—1)> dz,

where ¢(y,s) = (T —1)"u(/T — 7-y,s) and s = —log(T — 7). We divide this integra-
tion into three parts:

T-RWP  T-RPWP T B /A1) g
lim J, = / n / N / e /4T -Dgg
1—T 2 0 T—R2|Y|? T—R-2|¥|? (T—T)m’i+1/2

/ q
P4 [ * _ _ /

x T .0, —log(T — 1) | dz
/R'He ¢ (Z VT -1 gl )> ¢

= K+ K +Kj.
Now we fix 6 € [0,7/2) and
Xp = |x|cos O, |X'| = |x|sin 6.

Since ¢(y,s) is uniformly bounded on R’ x (s7,%0), by mq—1/2 =m, we verify that
T R2 2
K1(6) < C/ (T _ T)_(’nq+l/2)df < CR—2m|xn‘—2m _ CR_2m(COSO)_2m‘x‘_2m.
0

Since g(&) =Ee % <ce /2 for £ € Ry, K3 is estimated by

2 —
T e n/4T-17) dt <Cx72(mq+1/2 /T e—xn/S(T Ddr
n T—R2x|2

K;3(0) < c/

T-r-22 (T — T)ma+1/2
< eR72x, 2" = ¢R™%(cos 0) 2" |x| 2.

Finally we calculate K. By changing variables: T — T = x2/u, we see that

K2(9) _ x72m ”mq 3/2 — /4d”

2\\?
x/ e IZP/4 (Z +\/—< - )sin0,0,—log (—”)) d7
R | u

= A(R,x,)x;, 2™ = A(R,x,)(cos 8) 2" |x| =",

Then, since @(y',0,5) — ¢(0) = B in Ly (dR"), it holds that

R? ,
lim A(R,x,) = B ( umq—3/2e—u/4du> (/ el |2/4dZ/) .
xp—0 R2 Rr—1

Moreover, since mq —3/2 = —1+m, we see that

Igim <hm A(R, xn)> — B4 (/mumq3/2e“/4du> (/ lez/2/4dzl) —A
oo \Xn— 0 R
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Therefor we obtain

lim x[>"J, = lim x> (K1 (0) +K2(6) +K3(0)) = As(cos 0) 2"

for any fixed 6 € [0,77/2). As a consequence, it follows that
u(x,T) = Aw(1+0(1))(cos 8) 2" |x| 2"

along x, = |x|cos 6 for any fixed 6 € [0,7/2), which completes the proof. [J

2.2. Single point blow-up

In this subsection, we provide a sufficient condition on initial data for a single
point blow-up. For the case where Q is the unit ball and n = 2, a single point blow-up
was proved in [ 18], however our argument is different from that of [18]. Let u(x,7) be
a x, -axial symmetric function. Then u(x,?) is written by

ulx,t) =U(r,z,t) (r=|¥|, z=x).
For simplicity of notations, we set
J=(0,00) X (0,00), I=(0,00) x {0}, J.=(0,7)x(0,r).
Equation (P) is rewritten in the coordinate (r,z,7) by

-2
Ut:Urr+l1TUr+U2m (r,Z)EJ,tE(O,T),
WU = U9, (rz) €1, t€(0,T), (R)
U(r,Z,O):U()(V,Z) = u()()C), (V,Z) eJ.

In this subsection, we impose the following monotonicity conditions on initial data:
d;Up <0, d-Up < 0. (2.1)

To apply a technique given in [12], we prepare several lemmas.

LEMMA 1. Let ug(x) € BC'(R") be x,-axial symmetric and satisfy 9,Uy < 0.
Then it follows that 0,U <0 for t € (0,T).

Proof. Differentiating (R) with respect to r and set y(r,z,t) = d,U(r,z,t), then
we obtain

n—2 n—2
G e (R (nz) €J,t€(0,T),
dvx =qUi y, (rz)el, te(0,T).
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Now we set j(r,z,1) = e~ V14742 y(r,z.1). Then it is verified that

n—2_ _ n—2_

X=Xt - Xr+XZZ_r—2X+G? (rnz) €J,1€(0,T),
dx=qU" 1, (nz) €1, 1€(0.7).

where G is given by
G= al(hz)ﬂeraz(”»Z)fr +a3(rvz)iz
with some bounded coefficients a;(r,z) (i =1,2,3). Since up € BC'(R".), we note that
X €C([0,T);H), where
H={UcLL () |U|n <=} with |U|2 :/O dz/o U(r2)>r2dr.
Then, since
7(rz,0) = e V420U (r,2) <0 for (rz) € J,

a comparison argument shows that y <0 in J x (0,7T), which completes the proof. [

LEMMA 2. Let ug be as in Lemma 1. Then for any to > 0 there exists € > 0 such
that
—U(r,z,t) =2 &r, (rnz) €Ji,t € (t,T).

Proof. We set v(r,z,t) = —U,(r,z,t)/r. Then v(r,z,1) satisfies
n
Vi =V + ;vr—l—vZZ7 (rnz) €J, 1€ (0,T),
v = qui~ly, (rnz) €l,t€(0,T).

Since U,,(r,z,t) is uniformly bounded on J x (8,7 — &) for any 6 € (0,T), v(r,z,1)
is uniformly bounded on J x (8,7 — §). Hence a parabolic regularity theory shows
that v(r,z,7) is a classical solution. Since v > 0, by a strong maximum principle, there
exists & > 0 such that

v(rnz,00/2) 2 €& inJs.

Let #(r,z,¢) be the solution of

Vi =V + gv,—l—vzz, (r,z) € Jp, t € (0,00),

dyv=0 (rz) €(0,2) x {0}, € (0,°0),

v=0, (V7Z)€{2} (0,2)U(0,2) x {2}»Z€(O»°°)7
v(r,z,0) = eoxy, , (r,z) € Ja,

where xy, (r,z) =1 if (r,z) € J; and x;, =0 if (r,z) ¢ J;. From a strong maximum
principle, there exists £ > 0 such that

i(rz,t) > e, (nz)edi, te(t/2,T).



278 JUNICHI HARADA

Then by a comparison argument, we see that
v(rz,t) 2 v(rz,t —t9/2), (rz) €, t € (to/2,T).

Therefore the proof is completed. [J

Here for simplicity, we set
Br={xeR;|x| <R}, Dr={xcdR;[x| <R}, Sgp={xeR%;[x|=R}.

LEMMA 3. Let uy be x,-axial symmetric and satisfy (2.1). Then for t; € (0,T)
there exist ci,cp > 0 such that

—dnu(x,t) = cru(x,t)?,  (x,t) € By x (11,T).
Moreover it holds that

w(x,t) < ey 1V (nr) € By gy x (11, T).

Proof. Let @i(x) >0 and y; > 0 be the first eigenfunction with || |;=,) = 1
and the first eigenvalue of

—Ap=u¢ inB;, dy¢=0 onD;, ¢=0 onS.
We set
Wwa(x,1) = —adyu(x,t) (a>0), g(x,t) =e My (x)u(x,1)9.

Then it is verified that
ow,—Aw, =0

and

g —Ag (_“1¢1uq+quq—l¢lu[) et
—((Ag1)u? +2V oy - Vul 4 ¢y (Aut)) e 11!
=—(2Ve - Vul +q(q— l)d)luq*z\VuF) et
A standard comparison argument with (2.1) implies that d,u < 0. Moreover, by Lemma
1, we note that U, < 0. Therefore we obtain

dg —Ag<O0.

By a boundary condition, we note that w, = au? on D; x (0,T). Hence it is verified
that for a > 1
g<ul<aul=w,, (x,t) €Dy x(0,T).

Since g =0 on §; x (0,T), it is clear that

8 < Wq, (.X,l) € Sl X (OaT)
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Moreover by a strong maximum principle, we see that w,(x,#;) > & in B; for some
& > 0. Hence we take a > 1 large enough, then we get

glx,11) <we(x,n), x€By.

Therefore, by a comparison argument, we obtain g(x,7) < wg(x,#) in By x (11,7T),
which implies that —d,u(x,t) > cu(x,t)? for (x,t) € By, x (t1,T). Finally integrating

both sides, we obtain u(x,t) < cxn 7Y for (x,¢) € Byjo x (t1,T), which completes
the proof. [J

PROPOSITION 2. Let uy be as in Lemma 3. If the solution u(x,t) blows up in a
finite time, then the solution blows up only on the origin.

Proof. Suppose that the blow-up set is larger than % := {(r,0) € J;0 < r < ro}
for some ry > 0. By using the same idea as in the proof of Theorem 2.4 in [12], we
compare —U, and U?. We set

Va(r,z,t) = —aU,(r,z2,1), W(r,z,t) =d(r)U(r,z,t),

where d(r) > 0 is chosen later. Then V,(r,z,¢) is a solution of

-2 -2
MV = OVat =20V, + 92V~ 55V, (n2) €, 1€(0,T),
r &
oWV, =qui 1V, (rnz)€l, t€(0,T).
Moreover we find that
-2 -2
LW = W — 2w — “=Zo,w — 92w + =w
r r

n—2 n—2 _1 2 2 -2
:—<d”+Td’— > d)U‘f—qd’U,Uq —qlg—1)d (Ur+UZ) U™

From Lemma 3, there exists ¢y > 0 such that
qlg—DUUT? > U2, (rz) €y, t € (11,T).

We set
Uy =A{(r,z2,t) € T x(0,T);Vy(r,2,1) <W(rz,1)}.

Then we see that for (r,z,t) € %,

_Uqu—lz E Uil < Y Uil = i U1
a a a

Hence we obtain for (r,z,t) € %, (r,z) €J1), and t € (#1,T)

) 2
W< — (d”+ iy "—zd) U+ |aaua! — ca U2,
r I a
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Let ry =min{ry/2,1/2} and d(r), i be the first eigenfunction and the first eigenvalue
of

r r

d=0, re{0,r}.

) -2
_<d~+”—d’>+” r-d=pud, re(0.n),

Since the proof for the case n =2 is easier than that of the case n > 3, here we give a
proof only for the case n > 3. Then d(r) and u are explicitly expressed by

d(r) = (VE) ™" p(VEn),  w=23)r,

where Jy(r) is the v-th Bessel function and Z; > 0 is the first zero of Jy,_1)/»(r).
Then we obtain for (r,z,¢) € %, and a > 1

LW < (,ulU’z(‘f’l) +gld'|UaD — co> du®=2 re(0,r), z€(0,1/2). (22)
Since (r1,0) € A is a blow-up point, from Proposition 1, it follows that
U, T) = ¢g(1+0(1))7 2",

Since Jy(r) = cr¥ +o(rV) and 9,Jy(r) = cvr¥~ ! +o(r'~1), there exist c1,c, > 0 such
that
d(r)=cir+o(r), d'(r) =cy+o(1). (2.3)

Hence there exists z; > 0 such that
wU(r1,z1,T) "2 4 gld' | U (r1,21,T) 7Y < /4.

From Lemma 3, we note that (r1,z;) € J is not a blow-up point. Hence by a parabolic
regularity theory, u(ry,z;,¢) is continuous on (0,7]. As a consequence, there exists
t; € (0,T) such that

WU (r,z21,0) 29D 4 gld' U (r1,21,0) "9 <o /2, te(n,T).
Since U,,U, < 0, it follows that
WU (r,2,0) 729D 4 g|d'|U (r,2,0) 97V < co/2, 7(0,r1), z€ (0,21), 1 € (11, T).
This implies that for (r,z,t) € %, and a > 1
LW <0, re(0,r),z€(0,z1), 1€ (t,,T).

Now we set
J1=(0,r1) x (0,z1), 01 =J1 x (1n,T).

By (2.3), we note that W (r,z,t) ~ rU(r,z,t)?. Therefore, from Lemma 2, there exists
a; > 1 such that

Vo (rz,n) 2 W(nzn), (rnz) €Ji. (2.4)
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Moreover, by Proposition 2, we find that V;, (r,z1,#) and W(r,z;,r) are continuous
functions on {(r,¢);r € [0,r1],7 € [0,T]}. Therefore there exists az > a; such that

Vo, (,z1,t) 2 W(nzi,t), re(0,r), 1€ (n,T). (2.5)
Furthermore, since W (ry,z,#) = 0, it is clear that
Vao (r1,2,8) 2 W(ri,z,t), z€(0,z1), 1€ (t,T). (2.6)

Since L(W —V,,) <0 in Qi N%,,, multiplying both sides by (W —V,,) "2 and
integrating over J/ , we obtain by (2.5) and (2.6)

AW Vi) [y < €ll W Vi)

Hence applying the Gronwall inequality with (2.4), we obtain (W —V,,)+ =0 in Oy,
which implies that
d(l")U(I",Z,[)q < _a2Ur(r7Z7t) in Ql~

By (2.3), we obtain
U(r,0,1) < cr 2a) — ptm e 0,r), 1€ (t,T),

which contradicts definition of 2. Hence a single point blow-up is assured. [

3. Sufficient condition for the case (I)

This section is a main part of this paper. Before going to the proof of Theorem 1,
we recall several facts studied in [13]. Let u(x,7) be a finite time blow-up solution of
(P) and v(y,s) be defined by (1.1). Then v(y,s) satisfies

&vv:Av—g-Vv—mv, (v,8) € R X (s7,00), G
owv=gBT v+ f(v),  (3s) € IRY X (s7,0),
where we recall that B = @y(0) and f(v) is given by
FO) =+ 90)! — o —q9f .
We define wight functions:
p) =e A p)y=e VA fory = (v ).

From this definition, it is clear that p ‘BR’i = p. Moreover we define functional spaces:
het) = {ve thu @ [ poirptiar<e).
+
HA(RY) = {v € L3(R%); D% € L3(R") forany o = (01, -, s,) satisfying o] < k} ,

LhoRY) = {v €L @R [ OO <o)
+
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The norm is given by

Mg g =/Rn ORIy, IVl Z ID*VI172 e

+ |or|<k

My ) = g MOOIB0 Y

and the inner product on le, (R%) is naturally defined by
(2= [ 00y
+

For simplicity, the norm of le) (R7%) is denoted by |- ||, = || - || () Moreover we
define a functional space whose element is y,-axial symmetric function.

Liymp(®Y) = {v € LI (R ):v(y) = v(Iy'l.ya)}-
To study the asymptotic behavior of v(y,s), we introduce a linear operator A related to
3.D).
Av = Av— % -Vv —my,
D(A) = {v€ H*(R);dyv = gB? 'v on JR" }.

Since the operator A: D(A) — L2 o (IR.) is self-adjoint and has a compact inverse from
L12> (R%) to L12> (R%) (see Appendlx [13]), Lsym o (R%) is spanned by y, -axial symmet-
ric eigenfunctions of

A—=-V—m)e=Ae inR",
( ) - (3.2)
dve = qu le on JR’.

Let K;(r) and o; be the i-th eigenfunction with
(EN2,—IEP /4 g
L, KlE e g =1

and the i-th eigenvalue of

2
. (K” TRy O %K’) — 6K, re(0,0).
r

Then it is known that 6; =i— 1 and K;(r) is the 2(i — 1)-th polynomial. Let /;(&) and
K; be the j-th eigenfunction with

/ 1(&)e S aE =1
0
and the j-th eigenvalue of

—(I”—%I/) =xI inR., 3‘,]:(]3’1*1[ on {0}.
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It is known that x; = —(m+1) and x; > 0 (see Lemma 2.2 [13]). Then eigenfunctions
and their eigenvalues of (3.2) are completely given by
eij([Y'[yn) = Ki(Y D), Aij=(—1)+Kj+m  (i,j€N). (3.3)

3.1. Dynamical system

As is stated in Introduction, the author studied the asymptotic behavior of v(y,s)
and obtained the following result in [13].

PROPOSITION 3. (Proposition 3.1, Proposition 3.3 [13]) Let ug be x,,-axial sym-
metric. Then v(y,s) satisfies one of two cases

(I) there exists co >0 such that ||v(s) + cos ea]|p = o(s™1),
(I1) |lv(s)|lp decays to zero exponentially.

In this subsection we consider the case (II) and derive a precise decay rate of

v(s)llp-

PROPOSITION 4. Let uy be x,-axial symmetric and satisfy x' - V'ug < 0. If the
case (II) in Proposition 3 occurs, then one of two cases holds.

(i) [[v(s)p < cye™™ forany y>0,
(ii) there exist (i1, j1), (ia,j2) € N>\ {(1,1),(2,1)} such that

v(s)= Y au(s)en+h(s) inLy(RY) (3.4)
Qt,kl<)l,,'2j2
where
\akl (S) — (Xkleilk’| < Ckl7£ei2(l"1f1 78)‘: Hh(s) HP < 6‘8672(&'1]1 75)3‘

with o j, 70 and oy =0 if Ay < Ai, j, . Moreover expansion (3.4) holds in C120c (}RT_D

Proof. We assume the case (II) in Proposition 3. Then there exists y > 0 such that
v(s)llp < ce™ ™. (3.5)
We set
vij(y,5) = aij(s)eij(v),  aij(s) = (v(s)eij)p

and
hij(v,8) =v(y,8)— Y va(,s).

Ma<Aij

Form (3.1), we verify that
ajj = —lijaij-l-/aRn f(v)eijﬁdyl’
| ' (3.6)
2 _ 12 12 =117..1|12 AV
3l = =l = 1+ il o+ [, FOIB .
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To estimate the last term of (3.6), here we provide a pointwise estimate of v(y,s). By
Lemma 1, we note that x’ - V'u(x,r) <0 for ¢ € (0,T). Therefore, since v(y,s) =
O (y,5) — @o(yn), we see that v(y,s) < v(0,s) for y € dR',, s € (s7,°). By a parabolic
regularity theory with (3.5), we get v(0,s) < ce” ¥ for s € (s7,o0). Therefore we obtain

v(y,s) <ce ', (y,s) € IRY X (s7,00).

Next we derive a lower estimate of v(y,s). Put b(y,) = I;(v,)/I;(0) and w(y,s) =
v(y,s)/b(yy,). Then w(y,s) satisfies

y 20
&vw:Aw—§~VW—|— > Iw+w, (y,5) €RYL X (s7,00),
aVW :f(W), (y,S) € 3R{l}- X (ST7°°)'

Let S(s)wp be a solution of

y 20
dsw = Aw — > -Vw+ > dw,  (v,5) € R x (0,00),
2w =0, (1,5) € R x (0,09)
W(y,O) :WO(y)7 yER}i

Since f(v) > 0, by a representation formula (28) in [13], we obtain
w(s) = e 08 (s — so)w(so).
By Lemma 2.9 in [13], the right-hand side is estimated by

e 50 |y2

e 08 (s —s0)|w(so)| < ce’exp (W

) Iw(s0)b(yn)llp  on IR

Therefore we obtain
S—50 S—80—YS0 ei(S7S0) |y|2 n
e 08 (s —s0) [w(so)| < ce exp m on JR’.

We fix € € (0,7/4) such that 2(y—€) € {Ai;}; jjene and choose 5o € (0,s) such that
50— (M)HEH_S - (L)
T \i+y " \i+y
<= (s—s0) — Y50 =—(y—¢€)s.
Hence it follows that

5=, —(y—¢)s e—es/(l+y)|y|2 n
W(y7s) 2 —e OS(S— S())|W(S())| 2 —ce 4 exp m on (9R+
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Here we note that v(y,s) is uniformly bounded and [f(v)| < ¢v?.

v(y,s) =w(y,s) on IR, we see that

Therefore, since

Y /o Y ! ey /
/am Jepdy = /|y'|<ees/z<1+y> Fw)eijp dy -+ flw)eisp dy

Iy/|>e£s/2(1+y)

<ee 20 [ leylpay +c elpdy.
IR"

Iy/‘>esx/2(l+}’)

Since ¢;;(y") = Ki(|y'|)1;(0) on JR’. and K; is the 2(i — 1)-th polynomial, there exists
¢ij > 0 such that |e;;(Y')|p () < cije 1"/ Hence we get

/ FWeipdy < cijee 070",
OR".
Therefore, by (3.6), there exists ¢;; € R such that
Jaij () = aue ™| < cijee T, (i) €N (3.7)

Next we provide a estimate of 7;;. Since |f(v)h;j| < Bh%» + 871 f(v)?, form (3.6), we
verify that

1
Eﬁsllhijllf) < —||Vhijl|5 —ml|hijl| 5
g—1 2 1 2= 4
+ @B+ 8) i g + 6 /mf(vmdy.
Let I1;; be a subspace defined by

I ={ec H;(Rﬁ);(e,ekl)p =0 for any (k,1) € N? such that Ay < Aij}

Then it is known that

(IIVellf, +mlel3 —qu‘llleLg@m))

ii = in
T ey H€||%)
We set
2 2 -
((1velZ+mlel}) = (@B + 8)llell 2 e
7L,-,-(5) = inf B
eell;; lell5

From definition of 4;;(8), we get

1 _ _
Ssllhislly < =i (8)|hijllp + 871 [ f(v)Ppay.
IR

By the same way as above, it holds that

(v)2;5dy/ < 68674(77‘9)5‘.
IR,
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Hence we obtain
ijllp < cije (72070 4@}, (3.8)

First we assume that o;; = 0 for any (i, j) € N?. Then by (3.7) and (3.8), if ||v], <
ce™, it holds that ||v]|, < ce 2(=8)s. Therefore by induction, for any y > 0 there
exists ¢y > 0 such that ||v||, < cye™ ", which implies the case (i). Next we consider
the case o, j, # 0 and oy = 0 if Ay < A;;,. Then we choose (i2,j2) € N? such
that A;,;, > 24;,j, . Since lims_4;;(8) = A;;, there exists 6 > 0 such that A;,,(5) >
2Ai, j, - Therefore by (3.7) and (3.8), we obtain a conclusion. [J

3.2. Spacial singularities
First we list lower eigenvalues of (3.2) below (see (3.3) and Appendix).
AMi=—-1,An>m+ 1/27 Mz >m+1,
M1 =0, Ap> m+3/2, Az >m+2,
A1=1, Azn>m+5/2, A33 >m+3,
A1 =2, Ap>m+7/2, daz > m+4.
In this subsection, v(y,s) stands for a y,-axial symmetric function defined by (1.1).

Since v(y,s) is y,-axial symmetric, v(y,s) is expressed by v(y,s) =V(r,z,s) (r=1|y],
Z=yn). Since there is no confusion, we denote V (r,z,s) by v(r,z,s).

LEMMA 4. Let ugy be as in Theorem 1. Assume that the case (1) in Proposition 3
and the case (ii) in Proposition 4 occurs. Then expansion (3.4) holds with i) € {1,2},
J1=2.

Proof. From Lemma 1, it follows that
drv(r,0,1) <0, re(0,00).
By assumption, it holds that
9v(r,0,5) = 06:'1/16_“3&'1;1 (r,0) —l—o(e_)”), re(0,r9)
for any fixed ro € (0,00). If ij & {1,2}, then by the shape of K;(r), there exists r; >0

such that d,K;(r1) > 0. However, since dr¢;, j, (1,0) = 9,K;, (r)1;,(0), this contradicts
dyv < 0. Therefore the proof is completed. [

LEMMA 5. Assume the same condition as in Lemma 4. If expansion (3.4) holds
with iy = 1, ji =2 and put ai>(s) = (v(s),e12)p, then there exists y > 1 such that

v(s) =ana(s)ern+0(e” ) in le) (R7).
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Proof. For the case Ajp > 1, from Proposition 4, this lemma is trivial. Now we
assume that Ajp < 1. Since A;p > 1/2, we can fix € > 0 such that 2(1;, —€) > 1. Put
h(s) = v(s) — Zh<iny (v(s),ex )ex - Then by Proposition 4, we get

Iv(s) —ana(s)ena|| = lann(s)1* +laaa(s)P + X lau(s)]® + [[A(s)llp

112<)LM <7L,'2_,'2

< 2 2 a]gle—z)l,“s + Ce—4(}l,12—£)s> .

M2<Apg<Ainjy

From a list of eigenvalues, we see that Ay > 1 if (k,/) ¢ {(1,1),(1,2),(2,1),(3,1)}.
Therefore it is sufficient to show that oz = 0. Suppose that oz; # 0. Then, since
az1(s) = oz1e 4+ O(e™ ") for some y > 1, it holds that

v(s) =ap(s)ern+ozre te31+0(e™ ™)  in Lf, (R%) ne,. (M)
for some y > 1. Differentiating with respect to r, we get from d,ej; =0

drv(r,0,s) = aja(s)drern(r,0) + oz1e *dres; (r,0) + O (e_ys)
= oz1e ' dre3n (r, 0) +0 (eiys) .

Hence, by the shape of e3;(r,0), there exist r; > 0 and s = s; such that
8;«\)(7'1,0,51) > Oa

which contradicts d,v < 0. Therefore oz; =0 is assured, which completes the proof. [

LEMMA 6. If v(s) satisfies
Iv(s)llp < ce™
for some y > 1, then the blow-up profile satisfies

lim r*"u(r,0,T) = +oo.

r—0

Proof. Let b(y,) and S(s) be as in the proof of Proposition of 4. Since f(v) >0,
a representation formula (28) in [13] gives

v(s) = €08 (s — o) (V(Z‘))) on JR".

Applying Lemma 2.9 in [13], we obtain

sto-s0) (252) | < cex (%) Mol

< Cexp M e_YSO on aRn .
= 4(1 + 67(‘Y7‘Y0)) +
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We choose sy € (0,s) such that
l1+¢ Y—¢€
so=(——|s<=s—so=(+— s
I+vy l+y
< (s—s50) — Yso = —€s.
Then it holds that
V(V,O,S) > e’ 010 — —Ceiss, r< e()/fs)s/2(l+ )
By (1.1), this implies that
@(r,0,5) =>B—ce &, r<er7e/204n), (3.9)

We set
2ge(s) = V7802047,

Following [13] (originally [15]), we introduce (r,z >0, 7 € (0,1))
Us(r,z,t) = e ™ u(e™2r+ e 2ge(s),2,T + (1 — 1)e ™),

where s > s7 is a parameter. We consider a rescaled function wy(r,z,7) defined by
(yeRL, teRy)

wy(r,z,T) = e "™ U (e_f/zr,e_f/zz7 1-— e_T>

_ e—m(17+s)u <e—(‘r+s)/2r+e—s/2g£ (S)’e—(‘l:+s)/2Z7T _ e—(T+S)>

(0 <r+ e’/zgs(S),z,TJrS) :
From (3.9), there exists s; > 0 such that for s > sy
ws(r,0,0) = @(r+ge(s),0,s) > B/2, re(0,1).

From Lemma 2.1 in [13], we recall that |V¢| is uniformly bounded. Hence there exists
z1 > 0 such that for s > 51

ws(r,z,0) > B/4, re(0,1,), z€(0,z1).

Since wq(r,z,T) > 0, by the way as in the proof of Proposition 5.1 (lower bound) in
[13], there exist ¢g > 0 and 1) € (0,°) such that for s > s, and T € (17,)

ws(0,0,7) = coe ™.
Hence it follows that for s > s and 7 € (7y,00)

u <e_5/2g£ (5),0,T — e_(T”)) > coe™.
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Taking T — oo, we obtain for s > s
u (ef“'/zgg (s),0, T) > cpe™.
Let §(b) be an inverse function defined by
2h — 2675/2& (5) = e~ (148)5/2(147)
Thus there exists b; > 0 such that for b € (0,b;) and r € (1 —e™™,1)
u(b,0,T) > c)p~21+1m/(1+e)

Since 2(1+y) > 4 if y > 1, the proof is completed. ]

LEMMA 7. Let ug and v(s) be as in Lemma 5. Then the blow-up profile satisfies

lin(l) P (r,0,T) = oo

Proof. From Lemma 5, we note that v(s) — aja(s)e;p = O(e™ ") in le) (R7%) for
some y > 1. For the case A > 1, this lemma is reduced to Lemma 6. Therefore
we assume that Ajp < 1. We repeat arguments given in the proof of Lemma 6. A
representation formula shows that

=e08(s—s0) (76112(2))612) + ¢ 708 (s — s50) (M) .

Since S(s—s0)(e12/b) = e~ (2+1)(s=s50) (e12/b) (see the proof of Lemma 4.3 [13]), we
obtain

<V§9—s>> = alz(so)e’l”("‘“) (%) + %08 (s — s0) (—V(S()) —ablz(so)elz) .

By the same argument as in the proof of Lemma 6, we choose so such that (14 7y)sy =
(I +¢€)s, then we see that

S0 (s — 50) (V(SO) — al2(S0)€12)

; <ce ® r< e(Y—S)S/Z(H'Y), z=0.

)

Therefore, since a2 (so) = (012 +0(1))e 2% and b= 1 on IR, it holds that
v(s) = (ona+o0(1))e M2epy —ce®,  r<eVE2040 2=

Here we note that ej2(y) = Ki([y'|)12(0) on dR”. and K;(r) is a positive constant
function. Therefore the rest of proof follows from that of Lemma 6, which completes
the proof. [J

Proof. (Proof of Theorem 1) We prove by contradiction. Suppose that the case
(II) in Proposition 3 occurs. Hence, from Proposition 4 and Lemma 4-35, there are two
possibilities:
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Q) [[v()]lp <e™™ (y>1), (ii) v(s) ~ apeM2s (oup #0).
For the both cases, from Lemma 6—7, it follows that

lim r*""u(r,0,T) = co. (3.10)

r—

Now we use the same technique given in Proposition 2 to derive a contradiction. We
set
Va(rz,t) = —aUx(rz,t),  W(nzt)=d(r;n)U(rzt)7,

d(rir) = (Var)" 321, p(VEP),  wln) =23/,

where Jy(r) is the v-th Bessel function and Z; > 0 is the first zero of Jy,_1)/»(r).
Moreover we set

Ua =A{(r,2,1) € x(0,T);Va(r,z,t) <W(rz1)}.
Repeating arguments in Proposition 2, we obtain (2.2), that is
1w < (p(r)U 297V 4 glg,d(rsr)|U~07) — ¢ ) dU2
for (r,z,t) € U, r€(0,r1), z€ (0,1/2) and a > 1. Here we note that
r VR (D) IR0, p () <6, re(0.21).

Hence we see that

aratrin)l < ("5 ) VEWED 4 a( V)

VRV (Vi)
<cayu,  re(0,r).

Therefore, it follows that for (r,z,t) € %,,a>1, r€ (0,r;),and z € (0,1/2),

2
LW < ((é) U—2a-1 Ny (é) U~ _CO> dU392.
r r

From (3.10), it holds that

lim rlilU("l,O,T)f(qfl) < lim rfo(rl’O’T)*(qfl) —0.

rl —0 r —0

Hence there exists r{ > 0 such that

2
Z Z
(r—l) U(ri,0,7)72@ D 4 ¢ (r—l) U(ri,0,7)"7) < ¢/2.
1 1
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From Proposition 2, u(x,#) blows up only on the origin. Hence by the continuity, there
exist z; > 0 and #; > O such that

2
V4 Z
(r—l) u(rt,z,0) 2 ¢ (r—1> u(ri,z,0) 9 <ep,  z€(0,21), 1€ (11,7T).
1 1

Hence by 0.U,d,.U < 0, we obtain

2
N A P
1 1

for r € (0,77), z€ (0,z1), t € (#1,T). This implies that for (r,z,#) € %, and a > 1
LW <0, re(0,r),z€(0,z1), 1€ (n,T).

Hence by the same way as in the proof of Proposition 2, we find that there exists a; > 1
such that

—ay(du) =d(r;r))ul, re(0,r),z€(0,z1), 1€ (11,T),
which implies that
u(r,0,0) <cr ™ re(0,r}), t€(1,T).
As a consequence, a blow-up profile satisfies
u(n,0,T) <cr ™, re(0,r}),

which contradicts (3.10). Thus the proof is completed. [

A. Appendix

A.1. Eigenvalue problems

In this section, for simplicity, we denote NU {0} by Ny. We study the following

eigenvalue problem:
— (u”— %u’) =puu inRy,

dvu = Ku on {0},

(A.1)

where K > 0. It is known that the first eigenvalue ; is negative and u; (i > 2)
is positive. Here we give precise estimate of positive eigenvalues of (A.1). To find
two linearly independent fundamental solutions of (A.1), we consider ODE problem
without a boundary condition:

W — 20 = —uu. (A.2)
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We put v(€) = u(2+/E). Then v(£) satisfies Kummer’s equation:
EV'+(b—EW —aw=0, (A.3)

where a=—p and b=1/2. Since b=1/2 ¢ N, two linearly independent fundamental
solutions of (A.3) are given by (see p.504 [1])
EVAM(—u+1/2,3/2,8) if2u € Ny,

where M(a,b,&) (Kummer’s function) and U (a,b,&) are given by

at+1)---(a+k—1)&"
b+1)--(b+k—1)k!

(—=b ¢ No),

Ulab,6) = <sinn7tb> @I((;;?(b ) (~a,£b,~d', = ¢ No),

where @ =1+a—b, b =2—b. Forthe case a = —n (n € N), M(a,b,&) is the n-th
polynomial:

T(a)T(V)

—n+1)---(—nt+k-1)&"
(b+1)---(b+k—1) k!

M(—n,b,&) = 1+i _"ZE (—b & No).
k=1

Moreover for the case —a & Ny, the asymptotic formulas of M(a,b,&) and U(a,b,&)
for large & > 0 are given by (see p. 504 [1])

M(a,b.£) = %655“"’(1 LOE™Y)  (ca—bgNy), "

U(a,0,§)=E""(1+0(E7")  (~a,£b,~d,~b' ¢ Ny),

where @’ = 1+a—b, b’ =2 —b. Then, since u(&) = v(E?/4), the original equation
(A.2) has two linearly independent fundamental solutions given by

: .
ui(E) = M(~k,1/2,E2/4), u2<é>={EM(‘““/2’3/2’52/4> if2p & No.

U(—.LL71/27€2/4) if 21 ¢ No.

Then by virtue of asymptotic formula (A.4), we find that a solution u(x,z) of (A.2) in
L3 (R, ) is given by

M(—k,1/2,E2/4)  if u =k € Ny,
up(E) =c-{ EM(—k,3/2,E%/4) ifu—1/2=ke Ny,
U(—u,1/2,E%2/4) if2u €N
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for some constant ¢ # 0. Since u;,(0) =0 if u € Ny and uo(0) =0 if u—1/2 € N, if
u is a solution of (A.1) in le, (Ry), it holds that 2u & N. Therefore to find all positive
eigenvalue of (A.1), it is sufficient to find all value pt > 0 such that

/ " 2
uo(0) 2¢—0\  U(-u,1/2,8)
Then it is known that asymptotic formulas for & ~ 0 are given by (see p. 508 [1])
I'(l1-0)
I'(a’)
ERXCEDY)
- Ia)

) (2u ¢ No). (A.5)

U(a7b7é): +0(‘§|1_b) (—a,—c/gZNO,bE(O,l)),

Ula,b,&) EP10(1)  (—a,—d €Ny,be(1,2)),

where @’ =1+a—b. Since U'(a,b,&) = —aU(a+1,b+1,&) (see p.507 [1]), we see

that
) (e 1/2,&2/4>) _ur(-p+1/2)

lim
-0

Since
TNuwIr(l—u)=mr/sinty and T(u+1/2)T(—pu+1/2)=mn/cosnpu,

it holds that T(—p+1/2) ()
ur(—p H
Mi—p) 1/ #enms)

Therefore (A.5) is reduced to

K= —%(# tanzpt)  (2p & No). (A.6)

Since T'(§) > 0 if £ > 0, the roots of (A.6) are in ey (k—1/2,k). Here we fix k € N.
Now we claim that (A.6) has a unique root in (k— 1/2,k). Put

G(u) =T(u)/T(u+1/2) and f(u)=ptanmy.

It is known that G'(it) < 0 for u > 0 (see p.4 [17]). Moreover we see that

b T 1 .
f(n) =tanmu + (costi)? ~ (cosap)? (cosmu -sinmp + wu)
1
1
>W(—l+ﬂ/2)20, [,l>k—l/2

Therefore, since G(1) > 0 and f(u) <0 for u € (k—1/2,k), we obtain

d

@(G(u)f(u)) =G' (W) f(W)+Gu)f(u) >0, pek—1/2k).
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As a consequence, since

lim Gf) = GRS =0,

there exists a unique [ (K) € (k—1/2,k) such that —K = G(t) f (). This proves
the claim. Therefore we obtain the following result.

LEMMA 8. Let . (k € N) be the k-th eigenvalue of (A.1). Then it follows that

<0 and € (k—3/2,k—1) ifk>2 (ke N).
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