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KIRCHHOFF–TYPE EQUATION WITH BOUNDARY DISSIPATION
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(Communicated by Mervan Pašić)

Abstract. In this paper, we consider the initial-boundary value problem for nonlinear Kirchhoff-
type equation

utt −ϕ(‖∇u‖2
2)Δu−aΔut = b|u|β−2u,

where a,b > 0 and β > 2 are constants, ϕ is a C1 -function such that ϕ(s) � λ0 > 0 for all
s � 0 . Under suitable conditions on the initial data, we show the existence and uniqueness of
global solution by means of the Galerkin method and the uniform decay rate of the energy by an
integral inequality.

1. Introduction

In this paper, we consider the problem⎧⎪⎪⎨⎪⎪⎩
utt −ϕ(‖∇u‖2

2)Δu−aΔut = b|u|β−2u inΩ× (0,∞),
u(x,t) = 0 onΓ1× (0,∞),
ϕ(‖∇u‖2

2)
∂u
∂ν +a ∂ut

∂ν = g(ut) onΓ0× (0,∞),
u(x,0) = u0,ut(x,0) = u1 inΩ,

(1.1)

where Ω is a bounded domain of Rn(n � 1) with smooth boundary Γ := ∂Ω such that
Γ = Γ0 ∪Γ1 and Γ0,Γ1 have positive measures, ν is the unit outward normal on ∂Ω ,
and ∂

∂ν is the outward normal derivative on ∂Ω .
The case of n = 1, Eq.(1.1) describes the nonlinear vibrations of an elastic string.

The original equation is

ρhutt −aΔut =
(
p0 +

Eh
2L

∫ L

0
(ux)2dx

)
uxx + f

for 0 < x < L, t � 0, where u = u(x,t) is the lateral displacement at the space coordi-
nate x and the time t , E the Young modulus, ρ the mass density, h the cross-section
area, L the length, p0 the initial axial tension, a the resistance modulus, and f the
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external force. When a = f = 0, the equation is firstly introduced by Kirchhoff [18],
and is called the Kirchhoff string after his name.

Physically, the first integro-differential equation in (1.1) occurs in the study of vi-
brations of damped flexible space structures in a bounded domain in Rn . The term aΔut

is the internal material damping of Kelvin-Voigt type of the structure. In fact, the most
common class for the suppression of vibrations of elastic structure is of passive type
which absorbs vibration energy. On the other hand, the internal damping mechanism is
always present, however small it may be, in real materials so long as the system vibrates
(see [11]). The boundary conditions considered here are of mixed Dirichlet and Neu-
mann type. When g(s)s � 0, the term g(ut) exhibit a boundary dissipative effect, and
we may expect certain decay properties of the solutions under suitable assumptions.
Moreover, the difficulty increases in the case that the blow-up term f (u) = b|u|β−2u
appears because semilinear wave equations including blow-up terms may cause certain
blow-up phenomena. Our central aim is to show the uniform decay rate of the energy
under suitable assumptions on g , β and initial energy.

The homogeneous Dirichlet boundary value problems for Kirchhoff-type equa-
tions have been considered by many mathematicians (see [1, 14, 27, 28, 30, 33] and
[2, 6, 12, 16, 17, 26, 29, 32, 35, 36, 37, 38, 39, 40]). K. Nishihara and Y. Yamada [27]
considered the global solvability of the homogeneousDirichlet boundary value problem
for

utt −a
(∫

Ω
|∇u|2dx

)
Δu+2γut = 0 inΩ× [0,∞)

and showed the global existence, uniqueness and asymptotic decay of solutions pro-
vided that the initial datas u0 (u0 �= 0) and u1 are small and u1 is much smaller than
u0 in some sense. M. Aassila and A. Benaissa [1] extended the global existence part
of [11] to the case where ϕ(s) > 0 with ϕ(‖∇u0‖2) �= 0 and the nonlinear dissipative
term |ut |α−2ut . K. Ono [28] and Ye [33] obtained the global existence of the solution
to the homogeneous Dirichlet boundary value problem for

utt −ϕ(‖∇u‖2
2)Δu−aut = b|u|β−2u inΩ× (0,∞),

where a,b > 0 and β > 2 are constants, ϕ(s) is a C1 -class function on [0,+∞)
satisfying

ϕ(s) � m0, sϕ(s) �
∫ s

0
ϕ(τ)dτ, ∀s ∈ [0,∞)

with m0 � 1. Using Galerkin method, K. Ono and K. Nishihara [30] proved the global
existence and decay structure of solutions of the homogeneousDirichlet boundary value
problem for

utt −ϕ(‖∇u‖2
2)Δu−aΔut = b|u|β−2u inΩ× (0,∞)

without small condition of data. Applying the Banach contraction mapping principle,
Li et al. [14] obtained the local existence of the solution to the homogeneous Dirichlet
boundary value problem for the higher-order nonlinear Kirchhoff-type equation

utt +M(‖Dmu(t)‖2
2)(−Δ)mu+ |ut|q−2ut = |u|p−2u,
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where p > q � 2,m � 1.

The mixed Dirichlet and Neumann homogenous boundary value problems for
Kirchhoff-type equations have also been considered, for example [5, 15, 20, 23, 25].
Ganesh C. Gorain [15] studied the uniform stability of two mixed Dirichlet and Neu-
mann homogenous boundary value problems for

utt +2δut =
(
a2 +b

∫
Ω
|∇u|2dx

)
Δu inΩ× (0,∞)

and

utt =
(
a2 +b

∫
Ω
|∇u|2dx

)
Δu+2λ Δut inΩ× (0,∞).

Li [20] and Salim A. Messaoudi et al. [25] investigated global existence and blow-up
properties of the solution for the following higher-order Kirchhoff-type equation with
Dirichlet and Neumann homogenous boundary conditions

utt +
(∫

Ω
|Dmu|2dx

)q(−Δu)m +ut |ut |r = |u|pu, x ∈ Ω, t > 0.

With m > 1 is a positive integer and q, p,r > 0 are positive constants, Li [20] obtained
that the solution exists globally if p � r , while if p > max{r,2q} , then for any initial
data with negative initial energy, the solution blows up at finite time in Lp+2 norm.
With m � 1 and q, p,r � 0, Salim A. Messaoudi et al. [25] established a blow-up
result for certain solutions with positive initial energy.

Besides, Vitillaro [34] considered the following problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

utt −Δu = 0in Ω× (0,∞),
u = 0 on Γ0 × (0,∞),
∂u
∂ν

+ |ut |m−2ut = |u|p−2u, on Γ1× (0,∞),

u(x,0) = u0, ut(x,0) = u1 in Ω

and proved local existence of the solution in the energy space when m > r
r+1−p or

n = 1,2, where r = 2(n−1)
n−2 , and global existence when p � m or the initial data was

chosen suitably. Cavalcanti and Guesmia [8] considered the following system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

utt −Δu+F(x,t,u,∇u) = 0in Ω× (0,∞),
u = 0 on Γ0 × (0,∞),

u(x,t) = −
∫ t

0
g(t− s)

∂u
∂ν

on Γ1 × (0,∞),

u(x,0) = u0, ut(x,0) = u1 in Ω.
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Cavalcanti et al. [9] studied a problem of the form⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

utt −Δu+
∫ t

0
g(t− τ)Δu(τ)dτ = 0in Ω× (0,∞),

u = 0 on Γ0× (0,∞),
∂u
∂ν

−
∫ t

0
h(t− τ)

∂u
∂ν

dτ +h(ut) = 0 on Γ0 × (0,∞),

u(x,0) = u0(x), ut(x,0) = u1(x) in Ω

(1.2)

for g,h specific functions and established uniform decay rate results under quite restric-
tive assumptions on both the damping function h and the kernel g . In fact, the function
g had to behave exactly like e−mt and the function h had a polynomial behavior near
zero. For more general assumptions on g and h , Cavalcanti et al. [10] proved the uni-
form stability of (1.2) provided that g(0) and ‖g‖L1(0,+∞) are small enough. They also
established explicit decay rate results for some special cases. Lu et al. [24] considered
the following wave equation with nonlinear viscoelastic term⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

utt −Δu+
∫ t

0
g(t− τ)Δu(τ)dτ = 0in Ω× (0,∞),

u = 0 on Γ0× (0,∞),
∂u
∂ν

−
∫ t

0
h(t− τ)

∂u
∂ν

dτ + |ut |m−2ut = |u|pu on Γ1 × (0,∞),

u(x,0) = u0(x), ut(x,0) = u1(x) in Ω

with m � 2, p � 2. Under some appropriate assumptions on g and with certain ini-
tial data, global existence of solutions and a general decay for the energy have been
established. Li et al. [21] considered the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

utt −Δu+
∫ t

0
h(t− τ)div

(
a(x)∇u(τ)

)
dτ + |u|γu = 0in Ω× (0,∞),

u = 0 on Γ1 × (0,∞),
∂u
∂ν

−
∫ t

0
h(t− τ)

(
a(x)∇u(τ)

) ·νdτ +g(ut) = 0 on Γ0× (0,∞),

u(x,0) = u0(x), ut(x,0) = u1(x) in Ω.

They proved the existence and uniqueness of global solution by means of the Galerkin
method, and showed the uniform decay rate of the energy under suitable conditions on
the initial data and the relaxation function.

Motivated by the above work, we intend to study the global existence of the so-
lution and the decay estimate of the energy for problem (1.1). By using the potential
well method, we prove that under some conditions on ϕ , g and β , the solution exists
globally and the general decay rate is obtained. The main contributions of this paper
are: (a) the problem considered in this paper is nonlinear equation with mixed inhomo-
geneous boundary dispassion and this problem is representative; (b)the estimates are
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precise and the proofs are understood easily; (c)the method to prove the existence of
the global solution in [21] can not be applied directly to the case in the problem (1.1).

The rest of this paper is organized as follows. In Section 2, we give the prelimi-
naries and our main results. In Section 3, we prove the existence of a global solution to
problem (1.1). Section 4 is devoted to prove the decay result.

2. Preliminaries and main results

In this section, we present some notations and the general hypotheses that will be
used throughout the paper, and then we state the main results.

Let Hm(Ω) denote the Sobolev space with the norm

‖u‖Hm(Ω) = ∑
|α |�m

‖Dαu‖2
L2(Ω).

For simplicity of notations, hereafter we denote by ‖ · ‖p the Lebesgue space Lp(Ω)
norm, ‖ · ‖ the Lebesgue space L2(Ω) norm. Moreover, C, Ci (i = 1,2 · ··) denote
various positive constants and they may be different at each appearance. Throughout
this paper, we define

V := H1
Γ1

(Ω) = {u|u ∈ H1(Ω),u = 0onΓ1},
and the following scalar products

(u,v) =
∫

Ω
u(x)v(x)dx, (u,v)Γ0 =

∫
Γ0

u(x)v(x)dΓ.

In order to define the energy functional E of the problem (1.1), we give the fol-
lowing computation. Multiplying the first equation in (1.1) by ut and integrating the
result over Ω and adding Green’s formula, we get∫

Ω
ut

(
utt −ϕ(‖∇u‖2)Δu−aΔut −b|u|β−2u

)
dx

=
1
2

d
dt
‖ut‖2−

∫
Γ
utϕ(‖∇u‖2)

∂u
∂ν

dΓ+
∫

Ω
ϕ(‖∇u‖2)∇u∇utdx−

∫
Γ
aut

∂ut

∂ν
dΓ

+
∫

Ω
a∇ut∇utdx− b

β
d
dt
‖u‖β

β

=
1
2

d
dt

{‖ut‖2 +
∫ ‖∇u‖2

0
ϕ(s)ds− 2b

β
‖u‖β

β
}

+a‖∇ut‖2− (ut ,g(ut))Γ0 = 0. (2.1)

Then (2.1) inspires us to define the energy functional as

E(u; t) = ‖ut‖2 +
∫ ‖∇u‖2

0
ϕ(s)ds− 2b

β
‖u‖β

β =: ‖ut‖2 + J(u), (2.2)

where

J(u) =
∫ ‖∇u‖2

0
ϕ(s)ds− 2b

β
‖u‖β

β .
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Clearly,

E(u;0) = ‖u1‖2 +
∫ ‖∇u0‖2

0
ϕ(s)ds− 2b

β
‖u0‖β

β .

In order to establish our results, we apply the potential well theory. Define

W =
{
u ∈V |I(u) =

∫ ‖∇u‖2

0
ϕ(s)ds−b‖u‖β

β > 0,J(u) < d
}∪{0},

where

d = inf
{

sup
λ>0

J(λu),u ∈V \ {0}}.

Remark 1. We call that the constant d is saddle point value of functional J . �
Before stating the general hypotheses, we firstly give the following Lemma.

LEMMA 1. If 2 � q � 2n
n−2(n > 2) or 2 � q < ∞(n = 1,2) holds, then there exists

a positive constant C∗ depending on Ω and q such that

‖u‖q � B‖u‖V � C∗‖∇u‖L2(Ω),∀u ∈V.

Proof. In fact, by the Sobolev embedding theorem, we get V ↪→ Lq(Ω) and ‖u‖q �
B‖u‖V . And by Poincaré inequality, we know that ‖u‖V is equivalent to ‖∇u‖L2 . Then
the result follows. �

Now the general hypotheses are as follows. �
(A1) ϕ : ϕ ∈C1([0,∞);R+) is a function satisfying

ϕ(s) � λ0 > 0, sϕ(s) �
∫ s

0
ϕ(θ )dθ

for all s � 0. For example, ϕ(s) = λ0 + sr , r � 1.
(A2) g is a non-increasing continuous differentiable function with bounded deriva-

tive and satisfies that there exists a positive constant C such that

sg(s) � 0, |g(s)| � C|s|
for all s ∈ R .

(A3) β satisfies

2 < β � 2n−2
n−2

(n > 2) or 2 < β < ∞(n = 1,2).

(A4) E(u;0) satisfies

ρ :=
b

λ
β
2

0

Cβ
∗ · ( β

β −2
E(u;0)

) β−2
2 < 1 and E(u;0) < d,
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where C∗ is the constant in Lemma 1. �
Remark 2. It is clear that assumption |g(s)| � C|s| implies g(0) = 0; moreover,

as it is supposed in (A2) , if g is differentiable with bounded derivative and g(0) = 0,
then integrating −M � g′(s) � M over [0,s] , we obtain −Ms � g(s) � Ms , that is,
|g(s)| � C|s| . So it is enough in (A2) to assume g(0) = 0.

LEMMA 2. Let u ∈V . If (A1),(A3) hold, then d > 0 .

Proof. Since

J(u) =
∫ ‖∇u‖2

0
ϕ(s)ds− 2b

β
‖u‖β

β � λ0‖∇u‖2− 2b
β
‖u‖β

β ,

we only need to prove
sup
λ>0

Ĵ(λu) > 0 ,∀u ∈V \ {0},

where

Ĵ(u) = λ0‖∇u‖2− 2b
β
‖u‖β

β .

Let d
dλ Ĵ(λu) = 0, then λ1 =

(
λ0

‖∇u‖2

b‖u‖β
β

) 1
β−2 . A simple calculation and using Lemma 1,

we get

d2

dλ 2 Ĵ(λu)
∣∣∣
λ=λ1

< 0,

and

Ĵ(λu)|λ=λ1
=

(
1− 2

β
)(λ β

0

b

)2/(β−2)(‖∇u‖
‖u‖β

)2β/(β−2)

�
(
1− 2

β
)(λ β

0

b

)2/(β−2)(C∗)−2β/(β−2) > 0,

where C∗ is the constant in Lemma 1. �

LEMMA 3. Assume Ω is bounded and ∂Ω is C1 . Then

‖u‖Lp(∂Ω) � C‖u‖W1,p(Ω)

for each u ∈W 1,p(Ω) , with the constant C depending only on p and Ω .

Proof. The proof can be found in [13]. �
We state our results as follows.
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THEOREM 1. Let (u0,u1) ∈
(
W ∩H2

)×V . If the hypotheses (A1)-(A4) hold,
then there exists a unique solution u(x,t) of the problem (1.1) satisfying

u ∈ L∞
loc(0,∞;V ∩H2), ut ∈ L∞

loc

(
0,∞;V

)
, utt ∈ L2

loc

(
0,∞;L2(Ω)

)
.

Moreover, we have

u ∈C
(
[0,∞);V

)
, ut ∈C

(
[0,∞);L2(Ω)

)
.

THEOREM 2. Let (u0,u1) ∈ (W ∩H2)×V . If the hypotheses (A1)-(A4) hold,
then the global solution of problem (1.1) has the following exponential decay property

E(u;t) � E(u;0)e1− t
C ,

where C > 0 is a constant.

3. Proof of Theorem 1

In this section, using the Galerkin method(a reference for this method, for instance,
the book by professor J. L. Lions [22]), we show the existence and uniqueness of the
global solution to the problem (1.1). We choose a basis {wk} (k = 1,2, · · ·) in V ∩
H2(Ω) which is orthonormal in L2(Ω) and let Vm the subspace of V ∩H2(Ω) generated
by the first m vectors.

Define

um(t) =
m

∑
k=1

dk
m(t)wk, (3.1)

where um(t) is the solution of the following Cauchy problem(
u′′m(t),wk

)
+

(
ϕ(‖∇um(t)‖2)∇um(t),∇wk

)
+a

(
∇u′m(t),∇wk

)
=

(
g(u′m(t)),wk

)
Γ0

+(b|um(t)|β−2um(t),wk), (3.2)

with the initial conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
um(0) =

m

∑
k=1

(um(0),wk)wk → u0 inV ∩H2(Ω),

u′m(0) =
m

∑
k=1

(u′m(0),wk)wk → u1 inV.

(3.3)

Note that we can solve the system (3.2)-(3.3). In fact the problems (3.2)-(3.3) have a
unique continuous solution on some interval [0,Tm) . The extension of the solution to
the whole interval [0,∞) is a consequence of the estimates which we are going to prove
below. �

Step 1. (The first priori estimate) Multiplying dk
m
′(t) on both sides of equation

(3.2) and summing up the resulting equations from k = 1 to k = m , we have(
u′′m(t),u′m(t)

)
+

(
ϕ(‖∇um(t)‖2)∇um(t),∇u′m(t)

)
+a

(
∇u′m(t),∇u′m(t)

)
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=
(
g(u′m(t)),u′m(t)

)
Γ0

+(b|um(t)|β−2um(t),u′m(t)),

that is

d
dt

(1
2
‖u′m(t)‖2 +

1
2

∫ ‖∇um(t)‖2

0
ϕ(s)ds− b

β
‖um(t)‖β

β
)
+a‖∇u′m(t)‖2

=
(
g(u′m(t)),u′m(t)

)
Γ0

. (3.4)

So by the hypothesis (A2) and a > 0, we have d
dt E(um; t) � 0, i.e., E(um; t) is non-

increasing respect to t .
Integrating (3.4) over (0,t) and owing to (A2) ,

1
2
‖u′m(t)‖2 +

1
2

∫ ‖∇um(t)‖2

0
ϕ(s)ds− b

β
‖um(t)‖β

β +a
∫ t

0
‖∇u′m(s)‖2ds

=
1
2
‖u′m(0)‖2 +

1
2

∫ ‖∇um(0)‖2

0
ϕ(s)ds− b

β
‖um(0)‖β

β +
∫ t

0

(
g(u′m(s)),u′m(s)

)
Γ0

ds

� 1
2
‖u′m(0)‖2 +

1
2

∫ ‖∇um(0)‖2

0
ϕ(s)ds− b

β
‖um(0)‖β

β . (3.5)

In order to perform the prior estimation, we give the following lemma.

LEMMA 4. Assume (A1)-(A4) ,
(
u0,u1

)∈ (W ∩H2)×V. Then um(x, t)∈W. That
is,

J(um) < d, I(um) =
∫ ‖∇um‖2

0
ϕ(s)ds−b‖um‖β

β > 0

for each t ∈ [0,∞) .

Proof. Firstly, we prove J(um) < d. In fact, since E(u;0) < d , there exists a suf-
ficient small constant ε0 such that E(u;0)+ ε0 < d . For ε0 mentioned above, by (3.3)
and the continuity of E(um;0) , we have

E(um;0) � E(u;0)+ ε0 < d

for sufficient large m . So, owing to the definition of J(um) and E(um; t) is non-
increasing respect to t , for each t ∈ [0,∞) ,

J(um) =
∫ ‖∇um‖2

0
ϕ(s)ds− 2b

β
‖um‖β

β � E
(
um; t

)
� E(um;0) < d. (3.6)

Now we prove I(um) > 0. In fact, fix T > 0 arbitrarily. By (3.3) and I(u0) > 0,
we have I(um(0)) > 0 for sufficient large m . Considering again the continuity of um

respect to t , we have

I(um(t)) > 0, for some interval near t = 0, (3.7)
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that is, there exists tm (tm < T ) such that (3.7) holds on [0,tm] .
Note that

J(um) =
∫ ‖∇um‖2

0
ϕ(s)ds− 2b

β
‖um‖β

β =
2
β

I(um)+
β −2

β

∫ ‖∇um‖2

0
ϕ(s)ds

�β −2
β

∫ ‖∇um‖2

0
ϕ(s)ds, t ∈ [0,tm].

Hence, we have ∀t ∈ [0,tm] ,

λ0‖∇um‖2 �
∫ ‖∇um‖2

0
ϕ(s)ds � β

β −2
J(um) � β

β −2
E(um; t) � β

β −2
E(um;0).

And then

b‖um‖β
β � bCβ

∗ ‖∇um(t)‖β

=
b

λ
β
2

0

Cβ
∗
(
λ0‖∇um(t)‖2) β

2

� b

λ
β
2

0

Cβ
∗ · ( β

β −2
E(um;0)

) β−2
2

∫ ‖∇um‖2

0
ϕ(s)ds

<

∫ ‖∇um‖2

0
ϕ(s)ds, ∀t ∈ [0,tm].

Therefore I(um) > 0 on [0,tm] . By repeating this procedure, and using the fact that

lim
t→tm

b

λ
β
2

0

Cβ
∗ · ( β

β −2
E(um;t)

) β−2
2 < 1,

for sufficient large m , tm is extended to T . Owing the arbitrarity of T , we get the
conclusion. The proof of Lemma 4 is completed. �

Remark 3. The idea of proof in Lemma 4 can reference Lemma 4.2 in [7]. �
From Lemma 4, we have

1
2
‖u′m(t)‖2 +

1
2

∫ ‖∇um(t)‖2

0
ϕ(s)ds− b

β
‖um(t)‖β

β

=
1
2
‖u′m(t)‖2 +

1
β

I
(
um(t)

)
+

β −2
2β

∫ ‖∇um(t)‖2

0
ϕ(s)ds

� 1
2
‖u′m(t)‖2 +

β −2
2β

∫ ‖∇um(t)‖2

0
ϕ(s)ds. (3.8)

By (3.3), (3.5) and (3.8), we have

1
2
‖u′m(t)‖2 +

β −2
2β

∫ ‖∇um(t)‖2

0
ϕ(s)ds+a

∫ t

0
‖∇u′m(s)‖2ds
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� 1
2
‖u′m(0)‖2 +

1
2

∫ ‖∇um(0)‖2

0
ϕ(s)ds− b

β
‖um(0)‖β

β � K1,

that is

1
2
‖u′m(t)‖2 +

β −2
2β

λ0‖∇um(t)‖2 +a
∫ t

0
‖∇u′m(s)‖2ds � K1, (3.9)

where K1 is a constant independent of m . �

Step 2. (The second priori estimate) Multiplying dk
m
′′(t) on both sides of equation

(3.2) and summing up the resulting equations from k = 1 to k = m , we have(
u′′m(t),u′′m(t)

)
+

(
ϕ(‖∇um(t)‖2)∇um(t),∇u′′m(t)

)
+a

(
∇u′m(t),∇u′′m(t)

)
=

(
g(u′m(t)),u′′m(t)

)
Γ0

+
(
b|um(t)|β−2um(t),u′′m(t)

)
,

that is,

‖u′′m(t)‖2 +
(
ϕ(‖∇um(t)‖2)∇um(t),∇u′′m(t)

)
+

a
2

d
dt
‖∇u′m(t)‖2

=
(
g(u′m(t)),u′′m(t)

)
Γ0

+
(
b|um(t)|β−2um(t),u′′m(t)

)
. (3.10)

On the other hand,(
ϕ(‖∇um(t)‖2)∇um(t),∇u′′m(t)

)
=

d
dt

(
ϕ(‖∇um(t)‖2)∇um(t),∇u′m(t)

)
−2ϕ ′(‖∇um(t)‖2)∣∣(∇u′m(t),∇um(t)

)∣∣2−ϕ
(‖∇um(t)‖2

2

)‖∇u′m(t)‖2 (3.11)

and(
g(u′m(t)),u′′m(t)

)
Γ0

=
d
dt

(
g(u′m(t)),u′m(t)

)
Γ0
− (

g′(u′m(t))u′′m(t),u′m(t)
)

Γ0
. (3.12)

Thus (3.10)-(3.12) imply

‖u′′m(t)‖2 +
d
dt

(
ϕ(‖∇um(t)‖2)∇um(t),∇u′m(t)

)
+

a
2

d
dt
‖∇u′m(t)‖2

= 2ϕ ′(‖∇um(t)‖2)|(∇um(t),∇u′m(t)
)|2 + ϕ(‖∇um(t)‖2)‖∇u′m(t)‖2

+
d
dt

(
g(u′m(t)),u′m(t)

)
Γ0
− (

g′(u′m(t))u′′m(t),u′m(t)
)

Γ0
+

(
b|um(t)|β−2um(t),u′′m(t)

)
.

(3.13)

From (3.9) and the hypothesis (A1) ,

2ϕ ′(‖∇um(t)‖2)|(∇um(t),∇u′m(t)
)|2 � C1‖∇u′m(t)‖2;

ϕ
(‖∇um(t)‖2)‖∇u′m(t)‖2

2 � C2‖∇u′m(t)‖2. (3.14)
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The hypothesis (A2) and Lemma 3 imply∣∣(g′(u′m(t))u′′m(t),u′m(t)
)

Γ0

∣∣ � C3
∣∣(u′′m(t),u′m(t)

)
Γ0

∣∣
� C4‖u′m(t)‖Γ0‖u′′m(t)‖Γ0

� C5‖u′m(t)‖‖u′′m(t)‖
� θ (ε1)‖u′m(t)‖2 + ε1‖u′′m(t)‖2. (3.15)

Since H1(Ω) ↪→ L2(β−1)(Ω) , from the Hölder inequality, Sobolev-Poincaré inequality,
Cauchy inequality and (3.9),(

b|um(t)|β−2um(t),u′′m(t)
)

� b‖um(t)‖β−2
2(β−1)‖um(t)‖2(β−1)‖u′′m(t)‖

� C6‖∇um(t)‖‖u′′m(t)‖
� θ (ε2)‖∇um(t)‖2 + ε2‖u′′m(t)‖2. (3.16)

Thus (3.13)-(3.16) imply

‖u′′m(t)‖2 +
d
dt

(
ϕ(‖∇um(t)‖2)∇um(t),∇u′m(t)

)
+

a
2

d
dt
‖∇u′m(t)‖2

� (C1 +C2)‖∇u′m(t)‖2 +
d
dt

(
g(u′m(t)),u′m(t)

)
Γ0

+ θ (ε1)‖u′m(t)‖2 + ε1‖u′′m(t)‖2 + θ (ε2)‖∇um(t)‖2 + ε2‖u′′m(t)‖2. (3.17)

Integrating (3.17) over (0,t) and using (3.9), (A2) ,∫ t

0
‖u′′m(s)‖2ds+

(
ϕ(‖∇um(t)‖2)∇um(t),∇u′m(t)

)
+

a
2
‖∇u′m(t)‖2

�
(
ϕ(‖∇um(0)‖2)∇um(0),∇u′m(0)

)
+

a
2
‖∇u′m(0)‖2

+(C1 +C2)
∫ t

0
‖∇u′m(s)‖2ds+

(
g(u′m(t)),u′m(t)

)
Γ0
− (

g(u′m(0)),u′m(0)
)

Γ0

+CT +(ε1 + ε2)
∫ t

0
‖u′′m(s)‖2ds

�
(
ϕ(‖∇um(0)‖2)∇um(0),∇u′m(0)

)
+

a
2
‖∇u′m(0)‖2 +(C1 +C2)

∫ t

0
‖∇u′m(s)‖2ds

+CT − (
g(u′m(0)),u′m(0)

)
Γ0

+(ε1 + ε2)
∫ t

0
‖u′′m(s)‖2ds,

that is,∫ t

0
‖u′′m(s)‖2ds+

a
2
‖∇u′m(t)‖2

� −(
ϕ(‖∇um(t)‖2)∇um(t),∇u′m(t)

)
+

(
ϕ(‖∇um(0)‖2)∇um(0),∇u′m(0)

)
+

a
2
‖∇u′m(0)‖2
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+(C1 +C2)
∫ t

0
‖∇u′m(s)‖2ds+CT

− (
g(u′m(0)),u′m(0)

)
Γ0

+
(
ε1 + ε2

)∫ t

0
‖u′′m(s)‖2ds (3.18)

for all t ∈ [0,T ] with arbitrary fixed T .
On the other hand, by Cauchy inequality and (A1) , we have∣∣(ϕ(‖∇um(t)‖2)∇um(t),∇u′m(t)

)∣∣ � θ (ε3)‖∇um(t)‖2 + ε3‖∇u′m(t)‖2. (3.19)

Therefore, from (3.9), (3.18) and (3.19), for sufficient small ε1, ε2 , ε3 , we have that

1
2

∫ t

0
‖u′′m(s)‖2ds+

a
3
‖∇u′m(t)‖2

�C7 +
(
ϕ(‖∇um(0)‖2)∇um(0),∇u′m(0)

)
+

a
2
‖∇u′m(0)‖2

+(C1 +C2)
∫ t

0
‖∇u′m(s)‖2ds− (

g(u′m(0)),u′m(0)
)

Γ0
. (3.20)

By (3.3) and (3.9), ∣∣(ϕ(‖∇um(0)‖2)∇um(0), ∇u′m(0)
)∣∣ � C8,

a
2
‖∇u′m(0)‖2 � C9,

∫ t

0
‖∇u′m(s)‖2ds � C10. (3.21)

Noting (A2) and using Hölder inequality, Lemma 3,∣∣(g(u′m(0)),u′m(0)
)

Γ0

∣∣ � C11‖u′m(0)‖2
Γ0

� C12‖u′m(0)‖2. (3.22)

Therefore, from (3.20)-(3.22), we have

1
2

∫ t

0
‖u′′m(s)‖2ds+

a
3
‖∇u′m(t)‖2 � K2, (3.23)

where K2 is a positive constant independent of m .
Step 3. (Limiting process) By (3.9) and (3.23), we have

1
2
‖u′m(t)‖2 +

β −2
2β

λ0‖∇um(t)‖2 +a
∫ t

0
‖∇u′m(s)‖2ds

+
1
2

∫ t

0
‖u′′m(s)‖2ds+

a
3
‖∇u′m(t)‖2 � K1 +K2. (3.24)

Thus, ⎧⎪⎨⎪⎩
{um} is bounded in L∞(0,T ;V ∩H2),
{u′m} is bounded in L∞(0,T ;V ),

{u′′m} is bounded in L2(0,T ;L2(Ω)
)
.

(3.25)
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Therefore, we can extract a subsequences in {um} (denote still by the same symbol )
such that ⎧⎪⎪⎨⎪⎪⎩

um
∗
⇀ u weak-star in L∞(0,T ;V ∩H2),

u′m
∗
⇀ u′ weak-star in L∞(0,T ;V ),

u′′m ⇀ u′′ weakly in L2(0,T ;L2(Ω)
)
,

(3.26)

which combining with Aubin-Lions compactness lemma (see [21]) imply{
um → u strongly in C([0,T ];V ∩H2),

u′m → u′ strongly in C
(
[0,T ];L2(Ω)

)
.

(3.27)

These results are sufficient to pass to the limit in the linear terms of problem (3.2). Next
we are going to consider the nonlinear ones. By (3.25) and H1(Ω) ↪→ L2(β−1)(Ω) (see
[4]), we obtain

{b|um|β−2um} is bounded in L∞(0,T ;L2(Ω)).

Using trace theorem (see [3]) and (A2) , we deduce

{g(u′m)} is bounded in L∞(
0,T ;L2(Γ0)

)
.

Therefore, we can extract a subsequences in {um} (denote still by the same symbol )
such that {

|um|β−2um
∗
⇀ |u|β−2u weak-star in L∞(

0,T ;L2(Ω)
)
,

g(u′m) ∗
⇀ g(u′) weak-star in L∞(

0,T ;L2(Γ0)
)
.

(3.28)

By (3.26), (3.28) and letting m → ∞ in (3.2), we see that u satisfies the equation. Now
we discuss the initial conditions. Using (3.3), (3.27) and the simple inequality

‖u−u0‖V � ‖u−um‖V +‖um−um(0)‖V +‖um(0)−u0‖V ,

we get the first initial condition immediately. In the similar way, we can show the
second initial condition.
Step 4. (Uniqueness of the solution) Let u1,u2 be two weak solutions of problem (1.1)
such that

ui ∈ L∞(0,T ;V ∩H2),u′i ∈ L∞(0,T ;V ),u′′i ∈ L2(0,T ;L2(Ω)
)
, i = 1,2. (3.29)

Then u = u1−u2 satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(u′′(t),wk)+

(
ϕ(‖∇u1(t)‖2)∇u1(t)−ϕ(‖∇u2(t)‖2)∇u2(t),∇wk

)
+a

(
∇u′(t),∇wk

)
=

(
(g(u′1(t)−g(u′2(t)),wk

)
+b

(|u1(t)|β−2u1(t)−|u2(t)|β−2u2(t),wk
)
,

u(0) = u′(0) = 0,

u ∈ L∞(0,T ;V ∩H2),u′ ∈ L∞(0,T ;V ),u′′ ∈ L2(0,T ;L2(Ω)
)
.

(3.30)
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Multiplying dk
m
′(t) on both sides of the first equation in (3.30) and summing up the

resulting equations respect to k , we have(
u′′(t),u′(t)

)
+

(
ϕ(‖∇u1(t)‖2)∇u1(t)

−ϕ(‖∇u2(t)‖2)∇u2(t),∇u′(t)
)
+a

(
∇u′(t),∇u′(t)

)
=

(
(g(u′1(t)−g(u′2(t)),u

′(t)
)
+b

(|u1(t)|β−2u1(t)−|u2(t)|β−2u2(t),u′(t)
)
,

that is

1
2

d
dt
‖u′(t)‖2 +a‖∇u′(t)‖2

= −(
ϕ(‖∇u1(t)‖2)∇u1(t),∇u′(t)

)
+

(
ϕ(‖∇u2(t)‖2)∇u2(t),∇u′(t)

)
+

(
(g(u′1(t)−g(u′2(t)),u

′(t)
)
+b

(|u1(t)|β−2u1(t)−|u2(t)|β−2u2(t),u′(t)
)
. (3.31)

On the other hand,

d
dt

(
ϕ(‖∇u1(t)‖2)‖∇u(t)‖2)

= 2ϕ ′(‖∇u1(t)‖2)
(
∇u1(t),∇u′1(t)

)‖∇u(t)‖2 +2ϕ(‖∇u1(t)‖2)
(
∇u(t),∇u′(t)

)
= 2ϕ ′(‖∇u1(t)‖2)(∇u1(t),∇u′1(t)

)‖∇u(t)‖2

+2ϕ(‖∇u1(t)‖2)
(
∇u1(t)−∇u2(t),∇u′(t)

)
. (3.32)

Thus (3.31) and (3.32) imply

d
dt

(‖u′(t)‖2 + ϕ(‖∇u1(t)‖2)‖∇u(t)‖2)+2a‖∇u′(t)‖2

= 2
(
ϕ(‖∇u2(t)‖2)−ϕ(‖∇u1(t)‖2)

)(
∇u2(t),∇u′(t)

)
+2ϕ ′(‖∇u1(t)‖2)

(
∇u1(t),∇u′1(t)

)‖∇u(t)‖2 +2
((

g(u′1(t)−g(u′2(t)
)
,u′(t)

)
+2b

(|u1(t)|β−2u1(t)−|u2(t)|β−2u2(t),u′(t)
)
. (3.33)

The hypotheses (A1) and (3.29) yield

∣∣ϕ(‖∇u2(t)‖2)−ϕ(‖∇u1(t)‖2)
∣∣ �

∣∣∫ ‖∇u2(t)‖2

‖∇u1(t)‖2

∣∣ϕ ′(s)
∣∣ds

∣∣
� C13|‖∇u1(t)‖2−‖∇u2(t)‖2|
� C13

(‖∇u1(t)‖+‖∇u2(t)‖
)‖∇u(t)‖

� C14‖∇u(t)‖. (3.34)

From (3.29) and (3.34), we have

2
(
ϕ(‖∇u2(t)‖2)−ϕ(‖∇u1(t)‖2)

)(
∇u2(t),∇u′(t)

)
� 2C14‖∇u(t)‖‖∇u2(t)‖‖∇u′(t)‖
� θ (η1)‖∇u(t)‖2 + η1‖∇u′(t)‖2. (3.35)
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Again from (3.29), we have

2ϕ ′(‖∇u1(t)‖2)(∇u1(t),∇u′1(t)
)‖∇u(t)‖2 � C15‖∇u(t)‖2. (3.36)

Using the hypothesis (A2) , we know(
g
(
u′1(t)

)−g
(
u′2(t)

)
,u′(t)

)
=

(
g′(ξ )

(
u′1(t)−u′2(t)

)
,u′(t)

)
� 0, (3.37)

where ξ ∈ {min{u′1(t),u′2(t)},max{u′1(t),u′2(t)}}.
From Lemma 1 and Hölder inequality, we get

2b
∣∣(|u1(t)|β−2u1(t)−|u2(t)|β−2u2(t),u′(t)

)∣∣
� 2b

∣∣((|u1(t)|β−2 + |u2(t)|β−2)u(t),u′(t)
)∣∣

� 2b
(‖u1(t)‖β−2

2(β−1) +‖u2(t)‖β−2
2(β−1)

)‖u(t)‖2(β−1)‖u′(t)‖
� C16‖∇u(t)‖‖∇u′(t)‖ � θ (η2)‖∇u(t)‖2 + η2‖∇u′(t)‖2. (3.38)

Considering (3.33)-(3.38), for sufficient small η1, η2 , we have

d
dt

(‖u′(t)‖2 + ϕ
(‖∇u1(t)‖2)‖∇u(t)‖2)+a‖∇u′(t)‖2 � C17‖∇u(t)‖2,

which implies

d
dt

(‖u′(t)‖2 + ϕ
(‖∇u1(t)‖2)‖∇u(t)‖2)

� C18
(‖u′(t)‖2 + ϕ

(‖∇u1(t)‖2)‖∇u(t)‖2). (3.39)

Let

Z(t) = ‖u′(t)‖2 + ϕ
(‖∇u1(t)‖2)‖∇u(t)‖2.

From (3.29) and (3.39), we have

d
dt

Z(t) � CT Z(t) with Z(0) = 0,

which with Gronwall’s inequality and Poincaré inequality imply Z(t) ≡ 0 i.e. u1 = u2 .
The proof of Theorem 1 is completed.

4. Proof of Theorem 2

In this section, we prove the exponential energy decay property for Eq.(1.1). Firstly
we give some Lemmas as follows.

LEMMA 5. Let u(t,x) be the solution of problem (1.1). Then E(u;t) is a non-
increasing functional for t > 0 and

d
dt

E(u;t) = −2a‖∇ut‖2 +2(ut,g(ut))Γ0 � 0.
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Proof. By (2.1) and the hypothesis (A2) , it is easy to see that

d
dt

E(u;t) = −2a‖∇ut‖2 +2(ut,g(ut))Γ0 � 0.

Therefore, E(u; t) is a non-increasing functional. �

LEMMA 6. Let E(u;t) be a nonnegative decreasing function defined on [0,∞) . If∫ +∞

s
E(u;t)dt � CE(u;s), ∀s � s0,

for some constants s0,C > 0 . Then

E(u;t) � E(u;0)e1− t
s0+C , ∀t � 0.

Proof. The proof can be found in [9, 10]. �
Now we show the proof of Theorem 2.
Under the conditions in Theorem 2, we have u(x, t) ∈ W similar to Lemma 4.

Thus,

J(u) =
∫ ‖∇u‖2

0
ϕ(s)ds− 2b

β
‖u‖β

β � β −2
β

∫ ‖∇u‖2

0
ϕ(s)ds � β −2

β
λ0‖∇u‖2. (4.1)

Therefore, we have from (4.1) that

‖ut‖2 +
β −2

β
λ0‖∇u‖2 � ‖ut‖2 + J(u) = E(u; t) � E(u;0) < d. (4.2)

Multiplying the first equation in (1.1) by u and integrating the result over Ω× [0,T ) ,
we obtain

0 =
∫ T

s

∫
Ω

u
(
utt −ϕ(‖∇u‖2

2)Δu−aΔut −b|u|β−2u
)
dxdt, (4.3)

where 0 � s � T < ∞ . Since∫ T

s

∫
Ω

uuttdxdt =
∫

Ω uutdx|Ts − ∫ T
s

∫
Ω |ut |2dxdt

=
∫

Ω uutdx|Ts − ∫ T
s ‖ut‖2dxdt. (4.4)

So substituting (4.4) into (4.3), we get

0 =
∫ T

s

(‖ut‖2 + ϕ(‖∇u‖2
2)‖∇u‖2− 2b

β
‖u‖β

β
)
dt−

∫ T

s

∫
Ω

(
2|ut |2−a∇ut∇u

)
dxdt

+
∫

Ω
uutdx|Ts +

( 2
β
−1

)
b

∫ T

s
‖u‖β

βdt−
∫ T

s
(u,g(ut))Γ0dt. (4.5)
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We derive from (A1) that

∫ ‖∇u‖2

0
ϕ(s)ds � ϕ

(‖∇u‖2)‖∇u‖2. (4.6)

Combining (4.5), (4.6) and noting (2.2), we have∫ T

s
E(u; t)dt �

∫ T

s

∫
Ω

(
2|ut |2 −a∇ut∇u

)
dxdt

−
∫

Ω
uutdx|Ts − ( 2

β
−1

)
b

∫ T

s
‖u‖β

βdt +
∫ T

s
(u,g(ut))Γ0dt. (4.7)

Now, we estimate respectively the terms on the right side of (4.7).
We get from Lemma 1, Lemma 5 and (A2) that

2
∫ T

s

∫
Ω
|ut |2dxdt = 2

∫ T

s
‖ut‖2dt � 2C2

∗
∫ T

s
‖∇ut‖2dt

= −C2∗
a

(
E(u;T )−E(u;s)

)
+

2C2∗
a

∫ T

s
(ut ,g(ut))Γ0dt

� C2∗
a

E(u;s). (4.8)

It follows from (4.2) that

‖∇u‖2 � β
(β −2)λ0

E(u;t) � β
(β −2)λ0

E(u;0). (4.9)

Applying Young inequality, (4.8) and (4.9), we deduce that

∣∣−a
∫ T

s

∫
Ω

∇ut∇udxdt
∣∣ �a

∫ T

s

(
ε1‖∇u‖2 +

1
4ε1

‖∇ut‖2)dt

� aβ ε1

(β −2)λ0

∫ T

s
E(u; t)dt +

1
8ε1

E(u;s). (4.10)

From Lemma 1 and (4.2), we have that∣∣∣∣∫Ω
uutdx|Ts

∣∣∣∣ =
∣∣∣∣(∫

Ω
uutdx

)
T
−

(∫
Ω

uutdx
)

s

∣∣∣∣ �
∣∣∣∣∫Ω

uutdx
∣∣
T +

∣∣∫
Ω

uutdx

∣∣∣∣
s

�
(1

2
‖u‖2 +

1
2
‖ut‖2

)
T

+
(1

2
‖u‖2 +

1
2
‖ut‖2

)
s

�
( βC2∗

(β −2)λ0
· (β −2)λ0

2β
‖∇u‖2 +

1
2
‖ut‖2

)
T

+
( βC2∗

(β −2)λ0
· (β −2)λ0

2β
‖∇u‖2 +

1
2
‖ut‖2

)
s

� max
( 2βC2∗

(β −2)λ0
,1

)
E(u;T )+max

( 2βC2∗
(β −2)λ0

,1
)
E(u;s)
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� 2max
( 2βC2∗

(β −2)λ0
,1

)
E(u;s). (4.11)

Applying Lemma 1 and (4.9), we arrive at

‖u‖β
β �Cβ

∗ ‖∇u‖β = Cβ
∗ ‖∇u‖β−2‖∇u‖2 < Cβ

∗
( β

(β −2)λ0
E(u;0)

) β−2
2 ‖∇u‖2,

which with (4.2) imply

b
(
1− 2

β

)
‖u‖β

β � bCβ
∗
( β

(β −2)λ0
E(u;0)

) β−2
2 β −2

β
‖∇u‖2

� bCβ
∗
( β

(β −2)λ0
E(u;0)

) β−2
2 β −2

β
β

(β −2)λ0
E(u; t)

=
bCβ

∗
λ0

( β
(β −2)λ0

E(u;0)
) β−2

2
E(u; t). (4.12)

Using Lemma 3 (for p = 2) and Poincaré inequality, we have ‖u‖Γ0 � C‖∇u‖ ,
∀u∈V , which with Hölder inequality, Cauchy inequality, (A2), (4.2), (4.8) and Lemma
1 imply ∫ T

s
(u,g(ut))Γ0dt �

∫ T

s
‖u‖Γ0‖g(ut)‖Γ0dt

�
∫ T

s

(
ε2‖u‖2

Γ0
+

1
4ε2

‖g(ut)‖2
Γ0

)
dt

� C
∫ T

s

(
ε2‖∇u‖2 +

1
4ε2

‖∇ut‖2)dt

� Cβ ε2

(β −2)λ0

∫ T

s
E(u;t)dt +

C
8aε2

E(u;s). (4.13)

Substituting the estimate (4.8), (4.10)-(4.13) into (4.7), we conclude(
1− bCβ

∗
λ0

( β
(β −2)λ0

E(u;0)
) β−2

2 − aβ ε1

(β −2)λ0
− Cβ ε2

(β −2)λ0

)∫ T

s
E(u; t)dt

� C2∗
a

E(u;s)+
1

8ε1
E(u;s)+2max

( 2βC2∗
(β −2)λ0

,1
)
E(u;s)+

C
8aε2

E(u;s). (4.14)

By the hypothesis (A4) , for sufficient small ε1 and ε2 ,

bCβ
∗

λ
β
2

0

( β
β −2

E(u;0)
) β−2

2 +
aβ ε1

(β −2)λ0
+

Cβ ε2

(β −2)λ0
< 1.

Then, we have from (4.14) that∫ T

s
E(u;t)dt � CE(u;s). (4.15)
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Let T → +∞ in (4.15) , ∫ +∞

s
E(u;t)dt � CE(u;s). (4.16)

Thus, by (4.16) and Lemma 6, E(u;t)�E(0)e1− t
C , t ∈ [0,+∞). The proof of Theorem

2 is completed.
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