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OSCILLATION OF DELAY DYNAMIC EQUATIONS

WITH OSCILLATING COEFFICIENTS

BAŞAK KARPUZ AND ÖZKAN ÖCALAN

(Communicated by Ondrej Došlý)

Abstract. In this paper, we study the following delay dynamic equation

xΔ(t)+ p(t)x(τ(t)) = 0 for t ∈ [t0,∞)T ,

where t0 ∈ T , supT = ∞ , p ∈ Crd([t0,∞)T,R) alternates in sign infinitely many times and
τ ∈ Crd([t0,∞)T,T) is a strictly increasing unbounded function satisfying τ(t) � t for all t ∈
[t0,∞)T . Our results extend recent results for arbitrary time scales.

1. Introduction

In 1988, Hilger introduced the theory of time scales in order to unify continuous
and discrete calculus in his Ph.D. thesis (see [9]). This theory received attention by
the researchers studying differential and difference equations. For the fundamentals of
the time scale theory the readers are referred to the books [3, 4], which summarize and
organize much of the time scale calculus.

In the papers [2, 5, 6, 7, 10, 11, 16], the readers may find studies on the oscillation
and nonoscillation of the following type of delay dynamic equations

xΔ(t)+ p(t)x(τ(t)) = 0 for t ∈ [t0,∞)T, (1)

where t0 ∈ T , supT = ∞ , p ∈ Crd([t0,∞)T,R+) and τ ∈ Crd([t0,∞)T,T) is a strictly
increasing unbounded function satisfying τ(t) � t for all t ∈ [t0,∞)T .

If T = R , then xΔ = x′ (the usual derivative), while if T = Z , then xΔ = Δx
(the usual forward difference). On a time scale, the forward jump operator and the
graininess function is defined as follows

σ(t) := inf(t,∞)T and μ(t) := σ(t)− t,

where (t,∞)T := (t,∞)∩T and t ∈ T .
A function f : T → R is called positively regressive if f ∈ Crd(T,R) and 1 +

μ(t) f (t) > 0 for all t ∈ T , and such a function is represented as f ∈ R+(T,R) . It is
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well known that if f ∈ R+([t0,∞)T,R) , then there exists a positive function x satisfy-
ing the initial value problem

xΔ(t) = f (t)x(t) with x(t0) = 1,

where t0 ∈ T and t ∈ [t0,∞)T , and it is called the exponential function and denoted by
e f (·,t0) , another definition for the exponential function is

e f (t,s) := exp

{∫ t

s
ξμ(η)( f (η))Δη

}
,

where s, t ∈ [t0,∞)T and the cylinder transformation is defined by

ξh(λ ) :=

⎧⎨
⎩

λ , h = 0
1
h
Log(1+hλ ), h > 0

for λ ∈ R and h ∈ R
+ . For useful properties of the exponential function, the readers

may refer to [3, Theorem 2.36].
Unlike the previously mentioned papers, in this work, we study (1) with the fol-

lowing primary assumptions:

(H1) τ : [t0,∞)T →T is a strictly increasing unbounded function, which satisfies τ(t)�
t for all t ∈ [t0,∞)T ,

(H2) p ∈ Crd([t0,∞)T,R) is allowed to oscillate,

(H3) {ϑk}k∈Z,{ζk}k∈Z ⊂ [t0,∞)T are strictly increasing divergent sequences satisfying
the following three conditions:

(i) p(t) � 0(�≡ 0) for all t ∈⋃i∈N[ϑi,ζi]T ,

(ii) p(t) � 0 for all t ∈ [t0,∞)T\
⋃

i∈N(ϑi,ζi)T ,

(iii) sup I1 = ∞ , where

Ik :=
∞⋃

i=k

[τ−2(ϑi),ζi]T for k ∈ N and τ−2 := τ−1 ◦ τ−1.

The three properties in (H3) imply that ζk ∈ [ϑk,ϑk+1]T and ϑk ∈ [ζk,ζk+1]T hold
for all k ∈ N . From now on, we always suppose without furthermore mentioning that
(H1)–(H3) hold.

For delay differential equations with oscillating coefficients, the readers are re-
ferred to the paper [13], and for delay difference equations with oscillating coefficients,
the readers are refereed to the papers [12, 14, 15].

Set t−1 := τ(t0) . As is customary, by a solution of (1), we mean a real valued
rd-continuous function, which is defined on [t−1,∞)T and has a rd-continuous delta-
derivative on [t0,∞)T and identically satisfies (1). A solution is called oscillatory if it
alternates in sign infinitely many times; otherwise, it is called nonoscillatory.
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2. Main Results

In this section, we give our main results.

THEOREM 1. Assume that

lim
k→∞

sup
t∈Ik

∫ σ(t)

τ(t)
p(η)Δη > 1, (2)

then every solution of (1) is oscillatory.

Proof. Suppose that x is a nonoscillatory solution of (1), which can be assumed to
be eventually positive without loss of generality since (1) is linear. Let x(t),x(τ(t)) > 0
for all t ∈ [t1,∞)T for some fixed t1 ∈ [t0,∞)T , and pick k1 ∈ N satisfying

∞⋃
i=k1

[ϑi,ζi]T ⊂ [t1,∞)T.

From (1), we get

xΔ(t) = −p(t)x(τ(t)) � 0 for all t ∈
∞⋃

i=k1

[ϑi,ζi]T, (3)

which indicates that x is nonincreasing on [ϑk,ζk]T for all k ∈ [k1,∞)Z . For any
k ∈ [k1,∞)Z , let t ∈ Ik1 , then we learn that x is nonincreasing on [τ2(t),τ(t)]T since
[τ2(t),τ(t)]T ⊂ [τ−2(ϑk),ζk]T ⊂ [ϑk,ζk]T and p � 0 on [τ(t),t]T ⊂ [τ−2(ϑk),ζk]T ⊂
[ϑk,ζk]T . Therefore, integrating (1) from τ(t) to σ(t) , where t ∈ Ik1 for some k ∈
[k1,∞)Z , we get

0 =x(σ(t))− x(τ(t))+
∫ σ(t)

τ(t)
p(η)x(τ(η))Δη

(3)
�x(σ(t))+

(∫ σ(t)

τ(t)
p(η)Δη −1

)
x(τ(t)),

which proves ∫ σ(t)

τ(t)
p(η)Δη < 1 for all t ∈ Ik1 . (4)

Clearly, (4) contradicts (2). The proof is therefore completed. �
Next, we give another theorem.

THEOREM 2. Assume that

lim
k→∞

inf
t∈Ik

inf
λ>0

−λ p∈R+([τ(t),t)T,R)

{
1

λe−λ p(t,τ(t))

}
> 1, (5)

then every solution of (1) is oscillatory.
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Proof. Suppose that x is a nonoscillatory solution of (1), and without loss of gen-
erality let x be an eventually positive solution. Say x(t),x(τ(t)) > 0 for all t ∈ [t1,∞)T

for some fixed t1 ∈ [t0,∞)T , and let k1 ∈ N satisfy
⋃∞

i=k1
[ϑi,ζi]T ⊂ [t1,∞)T . From (3),

we learn that x is nonincreasing on [ϑk,ζk]T for all k ∈ [k1,∞)T . Set

y(t) :=
x(τ(t))
x(t)

for t ∈ Jk1 , (6)

where

Jk :=
∞⋃

i=k

[τ−1(ϑi),ζi]T for k ∈ N

Then, from (1) and (6), we get

xΔ(t)+ p(t)y(t)x(t) = 0 for all t ∈ Jk1 . (7)

Integrating (7) from t to σ(t) , where t ∈ Jk1 , we see that

0 = x(σ(t))− x(t)+ μ(t)p(t)y(t)x(t) > −x(t)
[
1− μ(t)y(t)p(t)

]
, (8)

which proves −yp ∈ R+(Jk1 ,R) . From (7), we see that

x(t) = e−yp(t,t1)x(t1) for all t ∈ Jk1 . (9)

Substituting (9) into (6), we obtain

y(t) =
1

e−yp(t,τ(t))
for all t ∈ Jk1 . (10)

Now, set
z(t) := inf

{
y(η) : η ∈ [τ(t),t)T

}
for t ∈ Ik2 , (11)

where t2 ∈ [τ−1(t1),∞)T and Ik2 ⊂ [t2,∞)T . It is obvious that −z(t)p∈R+([τ(t),t)T,R)
for all t ∈ Ik2 . We deduce that

y(t)
(10),(11)

� 1
e−z(t)p(t,τ(t))

=
1

z(t)e−z(t)p(t,τ(t))
z(t) (12)

holds for all t ∈ Ik2 . Now, we prove

lim
k→∞

inf
t∈Ik

y(t) = ∞. (13)

Note that
liminf
k→∞

inf
t∈Ik

y(t) � liminf
k→∞

inf
t∈Jk

y(t) � 1 (14)

holds because of the nondecreasing nature of x on [ϑk,ζk]T for all k ∈ [k1,∞)N and the
definition of y in (6). Clearly, if

lim
k→∞

inf
t∈Ik

y(t) < ∞ (15)
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holds, then we obtain

lim
k→∞

inf
t∈Ik

y(t)
(12)
� lim

k→∞
inf
t∈Ik

(
1

z(t)e−z(t)p(t,τ(t))
z(t)
)

�
(

lim
k→∞

inf
t∈Ik

1
z(t)e−z(t)p(t,τ(t))

)(
lim
k→∞

inf
t∈Ik

z(t)

)

(11)=

(
lim
k→∞

inf
t∈Ik

1
z(t)e−z(t)p(t,τ(t))

)(
lim
k→∞

inf
t∈Ik

y(t)

)
, (16)

which yields

1
(14),(16)

� lim
k→∞

inf
t∈Ik

1
z(t)e−z(t)p(t,τ(t))

� lim
k→∞

inf
t∈Ik

inf
λ>0

−λ p∈R+([τ(t),t)T ,R)

{
1

λe−λ p(t,τ(t))

}
. (17)

This indicates that (13) holds since (17) is contradicts (5).
To complete the proof, it suffices to prove that (15) holds. Consider (5) and let

t ∈ Ik2 , where k2 ∈ [k1,∞)Z satisfies Ik2 ⊂ [t2,∞)T and

1
e−p(t,τ(t))

� α (18)

for some fixed real α > 1 since z(t) � 1 holds by the nonincreasing nature of x and
this implies −p ∈ R+([τ(t),t)T,R) . From (18) and [5, Lemma 2], for all t ∈ Ik2 , we
get ∫ t

τ(t)
p(η)Δη � 2β , where β :=

1
2

(
1− 1

α

)
. (19)

For each k∈ [k2,∞)Z , let t ∈ [τ−2(ϑk),ζk]T , and define the function Ψk : [τ(t),σ(t))T →
R

+ by

Ψk(s) :=
∫ s

τ(t)
p(η)Δη −β . (20)

Therefore, there exists ςk ∈ [τ(t),σ(t))T such that Ψσ
k (ςk) � 0 and Ψk(ςk) � 0 hold

for all k ∈ [k2,∞)Z and all t ∈ [τ−2(ϑk),ζk]T . Then, we see that

∫ σ(ςk)

τ(t)
p(η)Δη � β (21)

and

∫ σ(t)

ςk

p(η)Δη (20)=
∫ σ(t)

τ(t)
p(η)Δη − (Ψk(ςk)+ β

) (19)
� 2β − (Ψk(ςk)+ β

)
� β (22)
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hold for all t ∈ Ik2 . Moreover, for each k ∈ [k2,∞)N and all t ∈ [τ−2(ϑk),ζk]T , we see
that x is nonincreasing on [τ2(t),τ(t)]T since

[τ2(t),τ(t)]T ⊂ [ϑk,τ(ζk)]T ⊂ [ϑk,ζk]T.

Thus, for each k ∈ [k2,∞)N and all t ∈ [τ−2(ϑk),ζk]T , we can deduce

x(ςk) � x(ςk)− xσ (t) = −
∫ σ(t)

ςk

xΔ(η)Δη (1)=
∫ σ(t)

ςk

p(η)x(τ(η))Δη

(3)
� x(τ(t))

∫ σ(t)

ςk

p(η)Δη � βx(τ(t))
(22)
� β

(
x(τ(t))− xσ (ςk)

)
= −β

∫ σ(ςk)

τ(t)
xΔ(η)Δη = β

∫ σ(ςk)

τ(t)
p(η)x(τ(η))Δη

(3)
� βx(τ(ςk))

∫ σ(ςk)

τ(t)
p(η)Δη

(21)
� β 2x(τ(ςk)), (23)

which indicates that

y(ςk)
(6),(23)

� 1
β 2 for all t ∈ Ik2 . (24)

Clearly, (24) proves (15) but this contradicts (13). This completes the proof. �

3. Applications

In this section, we give some applications to illustrate the applicability of our re-
sults.

EXAMPLE 1. Let T = Z , τ(t) = t−1, and p(5k) =−1, p(5k+1)= p(5k+2)=
0 and p(5k + 3) = p(5k + 4) = 3/4 for k ∈ N in (1) to obtain the following delay
difference equation

Δx(t)+ p(t)x(t−1) = 0 for t ∈ N. (25)

For this equation, letting ϑk = 5k + 1 and ζk = 5k + 4 for k ∈ N , we see that all
assumptions of Theorem 1 hold. In fact, we have

lim
k→∞

sup
t∈⋃∞

i=k[5k+3,5k+4]Z

t

∑
i=t−1

p(i) = lim
k→∞

5k+4

∑
i=5k+3

p(i) =
3
2

> 1.

Thus, every solution of (25) oscillates.

EXAMPLE 2. Let T = R , τ(t) = t − π/3 and p(t) = sin(t) in (1) to obtain the
following delay differential equation

x′(t)+ sin(t)x(t −π/3) = 0 for t ∈ R
+. (26)
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For this equation, letting ϑk = 2kπ and ζk = 2kπ + π for k ∈ N , we see that all as-
sumptions of Theorem 2 hold since

lim
k→∞

inf
t∈⋃∞

i=k[2kπ+2π/3,2kπ+π ]R
inf

λ∈R

{
1
λ

exp

{
λ
∫ t

t−π/3
p(η)dη

}}

= lim
k→∞

inf
t∈⋃∞

i=k[2kπ+2π/3,2kπ+π ]R
e
∫ t

t−π/3
p(η)dη

= lim
k→∞

e
∫ 2kπ+π

2kπ+2π/3
p(η)dη =

e
2

> 1.

Thus, every solution of (26) oscillates.

EXAMPLE 3. Let q ∈ (1,∞)R , T = qZ ∪{0} , τ(t) = t/q and

p(q4k) = −α/((q−1)q4k), p(q4k+1) = 0,

p(q4k+2) = α/((q−1)q4k+2), p(q4k+3) = 0 for k ∈ N0,

where α is a positive constant, in (1) to obtain the following delay q -difference equa-
tion

Dq x(t)+ p(t)x(t/q) = 0 for t ∈ qN0 , (27)

where

Dq x(t) :=
x(qt)− x(t)

(q−1)t
.

For this equation, letting ϑk = q4k+1 and ζk = q4k+3 for k ∈ N , we deduce

lim
k→∞

inf
t∈⋃∞

i=k[q
4k+3,q4k+3]qZ∪{0}

inf
λ>0

1−(q−1)t p(t/q)/q>0

{
1

λ (1−λ (q−1)t p(t/q)/q)

}

= lim
k→∞

inf
λ>0

1−αλ>0

{
1

λ (1−λ (q−1)q4k+3p(q4k+3/q)/q)

}

= inf
λ>0

1−αλ>0

{
1

λ (1−αλ )

}
� inf

λ>0

{
1

λ (1−αλ )

}
= 4α

Therefore, by Theorem 2, every solution of (27) oscillates provided that α > 1/4.

4. Final Comments

In § 2, we extended the results in [5, 6, 11, 16] to (1), where p alternates in sign
infinitely many times. However, when p is eventually positive, we see that (H3)(iii)
does not hold. In such a case, we see that Theorem 1 reduces to [11, Theorem 2.4] and
Theorem 2 reduces to [5, Theorem 1], [6, Theorem 2(n0 = 1)] and [16, Theorem 1].
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It must be mentioned here that the respective conditions

limsup
t→∞

∫ t

τ(t)
p(η)dη > 1 and liminf

t→∞

∫ t

τ(t)
p(η)dη >

1
e

of Theorems 1 and 2 for the case T = R with p(t) � 0 for t ∈ [t0,∞)R are known
to be critical (see [1, Theorem 2.9]), i.e., for any constant c ∈ (1/e,1) , there exists a
nonoscillatory solution of (1) for the case T = R with p(t) � 0 for t ∈ [t0,∞)R such
that

sup
t�t0

∫ t

τ(t)
p(η)dη = c.

The monotonicity of the delay function in the proof of Theorem 1 is essential since
we require the monotonicity of x◦ τ , when the nonoscillatory solution x is monotonic.
However, this can be removed by using the technique introduced in the recent paper [8]
for differential and difference equations.

In the paper [2], the results in [5, 16] for (1) are extended to following type of
delay dynamic equations including several coefficients:

xΔ(t)+
n

∑
i=1

pi(t)x(τi(t)) = 0 for t ∈ [t0,∞)T, (28)

where pi ∈Crd([t0,∞)T,R+) and τi ∈Crd([t0,∞)T,T) are strictly increasing unbounded
functions satisfying τi(t) � t for all t ∈ [t0,∞)T and all i ∈ [1,n]Z . One can easily
extend our results in § 2 given for (1) to (28), where pi are allowed to oscillate for all
i ∈ [1,n]Z , by applying very similar arguments to that in the proofs of our main results.
In this case, the results may require the maximal delay (τmax(t) := maxi=1,2,··· ,n τi(t) ,
t ∈ [t0,∞)T ) together with a common interval of positivity of all coefficients.
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