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Abstract. We provide easily verifiable sufficient conditions for the existence of solutions to non-
linear ordinary differential equations subject to nonlocal boundary conditions. These conditions
are based on the solution space of the corresponding linear, homogeneous problem and on the
size of the nonlinear perturbation. The results presented here are more general nonlinearities
than those in [17] and [26].

1. Introduction

In this paper, we consider boundary value problems of the form

y(n)(t)+ · · ·+a1(t)y′(t)+a0(t)y(t) = f (y(t),y′(t))+ εG(y, · · · ,y(n−1))(t) (1)

subject to

n

∑
j=1

bi j(0)y( j−1)(0)+
n

∑
j=1

bi j(t1)y( j−1)(t1)+ · · ·+
n

∑
j=1

bi j(tN)y( j−1)(tN) = 0 (2)

for i = 1,2, · · · ,n, and for 0 � t � 1. The points tk for k = 0,1, · · · ,n are fixed and
0 = t0 < t1 < · · · < tN = 1.

We assume that f : R
2 → R is continuous and that the limits f (∞,∞), f (∞,−∞),

f (−∞,∞) and f (−∞,−∞) exist. The map G is a continuous, nonlinear operator
on the space of C(n−1) functions. Some examples for the nonlinear operator G in-
clude G(y,y′, · · · ,y(n−1))(t)= g(y(t),y′(t), · · · ,y(n−1)(t)), where g is a continuous, real-
valued mapping; and G(y,y′, · · · ,y(n−1))(t) =

∫ 1
0 k(t,s)H(y(s),y′(s), · · · ,y(n−1)(s))ds,

which would allow the reader to consider integro-differential equations.
We devote our study to problems where the corresponding linear, homogeneous

boundary value problem

y(n)(t)+ · · ·+a1(t)y′(t)+a0(t)y(t) = 0 (3)
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subject to (2) has a one dimensional solution space. For these problems, we provide
sufficient conditions for the existence of solutions to (1),(2). Our conditions are based
on the limiting behavior of the real valued function f , the properties of the solution
space of the linear homogeneous boundary value problem (3)-(2), and the behavior of
the nonlinear map G.

In [26], Rodriguez and Taylor approach a similar problem with less general non-
linearities using the Lyapunov-Schmidt Procedure. Due to the multipoint boundary
conditions, this approach required a Lipschitz condition on the nonlinear term. In [17],
Rodriguez was able to approach the problem in a more direct manner that allowed the
author to eliminate the need for a Lipschitz condition. The results we present here al-
low us to establish the solvability of boundary value problems that do not fall within
the scope of the results previously obtained by Rodriguez [17]. Approaches similar to
the one presented in this paper have been successfully used in the analysis of periodic
behavior in discrete and continuous dynamical systems [3], [4], [6], [9], [13], boundary
value problems for differential and difference equations [1], [7], [8], [12], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], and more general systems
[2], [10], [28].

2. Preliminaries

In order to analyze the boundary value problem (1),(2), we formulate it in system
form.

The matrix A(t) is defined by

A(t) =

⎡
⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

−a0(t) −a1(t) −a2(t) · · · −an−1(t)

⎤
⎥⎥⎥⎦ .

The vector

x =

⎡
⎢⎣

x1
...
xn

⎤
⎥⎦

is given by x1 = y, x2 = y′, · · · , xn = y(n−1) and the boundary matrices B0, B1, · · · ,
BN are given by

Bl = [bi j(l)].

Throughout this discussion, we will assume that the augmented n× n(N + 1) matrix
[B0|B1| · · · |BN ] has full rank. This condition is to ensure that the boundary conditions
are not redundant.

For

x =

⎡
⎢⎣

x1
...
xn

⎤
⎥⎦ ,
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F (x)(t) : R
n →R

n is defined by F (x)(t) =

⎡
⎢⎢⎢⎣

0
0
...

f (x1(t),x2(t))

⎤
⎥⎥⎥⎦ and G (x)(t) : R

n →R
n

is given by G (x)(t) =

⎡
⎢⎢⎢⎣

0
0
...

G(x(t))

⎤
⎥⎥⎥⎦ .

It is clear that the boundary value problem (1),(2) is equivalent to

ẋ(t) = A(t)x(t)+F (x(t))+ εG (x(t)),0 � t � 1 (4)

subject to
N

∑
k=0

Bkx(tk) = 0. (5)

The solution space to the corresponding linear problem

ẋ(t) = A(t)x(t) (6)

subject to boundary conditions (5) will play a crucial role in solving (4),(5).
Throughout the paper we will assume that f : R

2 → R is continuous and that it
has finite limits at (∞,∞), (∞,−∞), (−∞,∞), and (−∞,−∞). We write

f (∞,∞) = lim
(s,t)→(∞,∞)

f (s, t),

f (∞,−∞) = lim
(s,t)→(∞,−∞)

f (s,t),

f (−∞,∞) = lim
(s,t)→(−∞,∞)

f (s,t),

and
f (−∞,−∞) = lim

(s,t)→(−∞,−∞)
f (s,t).

For any integer p � 1 the space (C ([0,1],Rp) will denote

{φ : [0,1] → R
p : φ is continuous}.

The norm used on this space is the sup norm; this is, ‖φ‖∞ = sup{|φ(t)| : 0 � t �
1} where | · | denotes the Euclidean norm on R

p. For n � 2, let C (n−1)([0,1],Rp)
denote the collection of functions φ : [0,1] → R

p such that φ has n− 1 continuous
derivatives. We define ‖φ‖ = sup0�k�n−1{sup{|φ (k)(t)| : 0 � t � 1}}. The map G :
C (n−1)([0,1],Rn) → C (n−1)([0,1],R) is continuous.

We will denote the principal matrix solution at t = 0 of ẋ(t) = A(t)x(t) by Γ(t)
and we define the matrix D by

D =
N

∑
k=0

BkΓ(tk).
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We notate V as an arbitrary, fixed subspace of R
n so that

ker(D)⊕V = R
n.

It is well-known that x is a solution to (6), (5) if and only if

x(t) = Γ(t)v

where Γ(t) is the principal matrix solution of ẋ(t) = A(t)x(t) and v ∈ ker(D).
In this paper, we consider the case when the dimension of the solution space of (6),

(5) is one, or equivalently, dim(ker(D)) = 1. Since we are considering the case where
ker(D) is one-dimensional, we may assume that v spans ker(D) and

∫ 1

0
|Γ(t)v|2dt = 1.

The following construction appears in [23]. We define

Ψ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[(B1Γ(t1)+B2Γ(t2)+ · · ·+BNΓ(tN))Γ−1(t)]T c for 0 � t � t1,

[(B2Γ(t2)+ · · ·+BNΓ(tN))Γ−1(t)]T c for t1 < t � t2,
...

...

[BNΓ(tN)Γ−1(t)]T c for tN−1 < t � tN ,

where c ∈ ker(DT ) so that ∫ 1

0
|Ψ(t)|2dt = 1.

Except for minor details, the following proof is contained in [17]. We omit the
details.

PROPOSITION 1. For a fixed ε, and for each continuous function x : [0,1]→ R
n,

there exists a unique vx ∈V such that

Dvx = −
N

∑
k=1

BkΓ(tk)
∫ tk

0
Γ−1(s)[(F (x(s))+ εG (x(s)))

−
(∫ 1

0
ΨT (u)(F (x(u))+ εG (x(u)))du

)
Ψ(s)]ds.

Furthermore, if ε = 0, there is a constant K such that |vx|� K for all x∈C ([0,1],R,‖·
‖∞).

3. Fixed Points

Let Φ(t) = Γ(t)p, where p ∈ ker(D), and
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w(x(t)) = Γ(t)vx + Γ(t)
∫ t

0
Γ−1(s)[(F (x(s))+ εG (x(s)))

−
(∫ 1

0
ΨT (u)(F (x(u))+ εG (x(u)))du

)
Ψ(s)]ds.

We will use Φi(t), Ψi(t), and wi(t) to denote the ith entries of Φ(t), Ψ(t), and w(t),
respectively.

We define mappings

H1 : R×R× (C ([0,1],Rn),‖ · ‖∞) → (C ([0,1],Rn),‖ · ‖∞)
H2 : R×R× (C ([0,1],Rn),‖ · ‖∞) → R

H : R×R× (C ([0,1],Rn),‖ · ‖∞) → R× (C ([0,1],Rn),‖ · ‖∞)

by

H1(ε,α,x) = Γ(t)[α p+ vx]+ Γ(t)
∫ t

0
Γ−1(s)[(F (x(s))+ εG (x(s)))

−
(∫ 1

0
ΨT (u)(F (x(u))+ εG (x(u)))du

)
Ψ(s)]ds,

H2(ε,α,x) = α −
(∫ 1

0
Ψn(t) f (αΦ1(t)+w1(x(t),αΦ2(t)+w2(x(t))))dt

+ ε
∫ 1

0
Ψn(t)G(αΦ1(t)+w1(x(t)))dt

)
,

and
H(ε,α,x) = (H2(ε,α,x),H1(ε,α,x)).

The construction of the operators H1, H2, and H, as well as the following lemma,
stem from a proof found in [17]. This type of result appears either explicitly or implic-
itly in many papers dealing with resonant boundary value problems [2], [5], [6], [7],
[9], [12], [17], [21], [22].

LEMMA 1. If (ε0, α̃ , x̃) is a fixed point of H(ε,α,x), then x̃ solves the boundary
value problem

ẋ(t) = A(t)x(t)+F (x(t))+ ε0G (x(t)),0 � t � 1

subject to
N

∑
k=0

Bkx(tk) = 0.

The essential idea behind the proof of the preceding lemma is as follows. We first
use a variation of parameters formula to show a fixed point of H(ε,α,x) satisfies

ẋ(t) = A(t)x(t)+F (x(t))+ ε0G (x(t)).
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We then utilize Proposition 2.1 and the fact that we have a fixed point of H2(ε,α,x) to
show said fixed point satisfies the boundary conditions. To do this, we compute

N

∑
k=0

Bkx̃(tk) =
N

∑
k=0

BkΓ(tk)[α̃ p+ vx̃]

+
N

∑
k=0

BkΓ(tk)
∫ tk

0
Γ−1(s)(F (x̃(s))+ ε0G (x̃(s)))ds

= Dvx̃ +
N

∑
k=1

BkΓ(tk)
∫ tk

0
Γ−1(s)(F (x̃(s))+ ε0G (x̃(s)))ds

since p ∈ ker(D) and t0 = 0. Remembering that

Dvx̃ = −
N

∑
k=1

BkΓ(tk)
∫ tk

0
Γ−1(s)[(F (x̃(s))+ ε0G (x̃(s)))

−
(∫ 1

0
ΨT (u)(F (x̃(u))+ ε0G (x̃(u)))du

)
Ψ(s)]ds

and ∫ 1

0
ΨT (u)(F (x̃(u))+ ε0G (x̃(u)))du = 0,

we have that

N

∑
k=0

Bkx̃(tk) = Dvx̃ +
N

∑
k=1

BkΓ(tk)
∫ tk

0
Γ−1(s)(F (x̃(s))+ ε0G (x̃(s)))ds = 0. �

We will define A1 = {t ∈ [0,1] : Φ1(t) > 0} and A2 = {t ∈ [0,1] : Φ2(t) > 0}, and
we use the notation J1 and J2 as

J1 = f (∞,∞)
∫

A1∩A2

Ψn(t)dt + f (∞,−∞)
∫

A1∩([0,1]/A2)
Ψn(t)dt

+ f (−∞,∞)
∫

([0,1]/A1)∩A2

Ψn(t)dt + f (−∞,−∞)
∫

([0,1]/A1)∩([0,1]/A2)
Ψn(t)dt

and

J2 = f (−∞,−∞)
∫

A1∩A2

Ψn(t)dt + f (−∞,∞)
∫

A1∩([0,1]/A2)
Ψn(t)dt

+ f (∞,−∞)
∫

([0,1]/A1)∩A2

Ψn(t)dt + f (∞,∞)
∫

([0,1]/A1)∩([0,1]/A2)
Ψn(t)dt.

The result of the following lemma appears in [17], but we include a proof for the
benefit of the reader.
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LEMMA 2. Suppose that

(i) dim(∑N
k=0 BkΓ(tk)) = 1 ;

(ii) f : R
2 → R is continuous;

(iii) f (∞,∞), f (∞,−∞), f (−∞,∞), and f (−∞,−∞) exist;

(iv) J1J2 < 0;

(v) ε = 0.

Then H(0,α,x) has a fixed point.

Proof.
Since {t ∈ [0,1] : Φ1(t) = 0} and {t ∈ [0,1] : Φ2(t) = 0} have Lebesgue measure

zero, it follows that

∫ 1

0
Ψn(t) f (αΦ1(t)+w1(x(t)),αΦ2(t)+w2(x(t)))dt =∫

A1∩A2

Ψn(t) f (αΦ1 +w1(x(t)),αΦ2(t)+w2(x(t)))dt+∫
A1∩([0,1]/A2)

Ψn(t) f (αΦ1 +w1(x(t)),αΦ2(t)+w2(x(t)))dt+
∫

([0,1]/A1)∩A2

Ψn(t) f (αΦ1 +w1(x(t)),αΦ2(t)+w2(x(t)))dt+
∫

([0,1]/A1)∩([0,1]/A2)
Ψn(t) f (αΦ1 +w1(x(t)),αΦ2(t)+w2(x(t)))dt.

Since w1 and w2 are bounded, by the Lebesgue Dominated Convergence Theorem,

lim
α→∞

∫ 1

0
Ψn(t) f (αΦ1(t)+w1(x(t)),αΦ2(t)+w2(x(t)))dt =

f (∞,∞)
∫

A1∩A2

Ψn(t)dt + f (∞,−∞)
∫

A1∩([0,1]/A2)
Ψn(t)dt

+ f (−∞,∞)
∫

([0,1]/A1)∩A2

Ψn(t)dt + f (−∞,−∞)
∫

([0,1]/A1)∩([0,1]/A2)
Ψn(t)dt = J1.

Similarly,

lim
α→−∞

∫ 1

0
Ψn(t) f (αΦ1(t)+w1(x(t)),αΦ2(t)+w2(x(t)))dt =

f (−∞,−∞)
∫

A1∩A2

Ψn(t)dt + f (−∞,∞)
∫

A1∩([0,1]/A2)
Ψn(t)dt

+ f (∞,−∞)
∫

([0,1]/A1)∩A2

Ψn(t)dt + f (∞,∞)
∫

([0,1]/A1)∩([0,1]/A2)
Ψn(t)dt = J2.

Without loss of generality, we assume J2 < 0 < J1.
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Based on the above calculations, there is some α0 � m where m = sup{| f (s,t)| :
(s,t) ∈ R

2} and some J, such that for all α � α0,

∫ 1

0
Ψn(t) f (αΦ1(t)+w1(x(t)),αΦ2(t)+w2(x(t)))dt � J

and ∫ 1

0
Ψn(t) f (−αΦ1(t)+w1(x(t)),−αΦ2(t)+w2(x(t)))dt � −J.

Then for all t ∈ R, for α � α0 and x ∈ (C ([0,1],Rn),‖ · ‖∞),

H2(0,α,x) = α −
(∫ 1

0
Ψn(t) f (αΦ1(t)+w1(x(t)),αΦ2(t)+w2(x(t)))dt

)
� α − J

� α.

Similarly, for α � α0 and x ∈ (C ([0,1],Rn),‖ · ‖∞), H2(0,−α,x) � −α.
Clearly, since ε = 0, there exists constants M1,M2 such that for all (α,x) ∈ R×

(C ([0,1],Rn),‖ · ‖∞),
‖H1(α,x)‖∞ � M1|α|+M2.

Letting δ = α0 + (m + J), define B = {(α,x) ∈ R × (C ([0,1],Rn),‖ · ‖∞) : |α| �
δ and ‖x‖∞ � M1δ +M2}.

Now if α ∈ [α0,δ ], for all x ∈ (C ([0,1],Rn),‖ · ‖∞), we have

H2(0,α,x) = α −
∫ 1

0
Ψn(t) f (αΦ1(t)+w1(x(t)),αΦ2(t)+w2(x(t)))dt

� α −
∫ 1

0
|Ψn(t)|| f (αΦ1(t)+w1(x(t)),αΦ2(t)+w2(x(t)))|dt

� α −m

� α −α0

� −J

� −δ

and

H2(0,−α,x) = −α −
∫ 1

0
Ψn(t) f (αΦ1(t)+w1(x(t)),αΦ2(t)+w2(x(t)))dt

� −α +
∫ 1

0
|Ψn(t)|| f (αΦ1(t)+w1(x(t)),αΦ2(t)+w2(x(t)))|dt

� −α +m

� −α + α0

� J

� δ .
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Thus, for all x ∈ (C ([0,1],Rn),‖ · ‖∞) and α ∈ [α0,δ ], H2(0,α,x), H2(0,−α,x) ∈
[−α,α] ⊆ [−δ ,δ ].

Furthermore, if 0 � α < α0, for all x ∈ (C ([0,1],Rn),‖ · ‖∞),

|H2(0,±α,x)| � |±α|+
∫ 1

0
|Ψn(t)|| f (αΦ1(t)+w1(x(t)),αΦ2(t)+w2(x(t)))|dt

� α0 +m

� δ + J.

We have shown that H2 maps [−δ ,δ ]× (C ([0,1],Rn),‖ · ‖∞) into [−δ ,δ ]. From this
it follows that H(B) ⊆ B. For if (α,x) ∈ B, then H2(0,α,x) ∈ [−δ ,δ ], while

|H1(0,α,x)| � M1|α|+M2

� M1δ +M2.

Since H maps B into itself, H(0,α,x) has a fixed point by Schauder’s Fixed Point
Theorem. �

4. Solvability of (1), (2)

Recall that we define A1 = {t ∈ [0,1] : Φ1(t)> 0} and A2 = {t ∈ [0,1] : Φ2(t)> 0},
and we use the notation J1 and J2 as

J1 = f (∞,∞)
∫

A1∩A2

Ψn(t)dt + f (∞,−∞)
∫

A1∩([0,1]/A2)
Ψn(t)dt

+ f (−∞,∞)
∫

([0,1]/A1)∩A2

Ψn(t)dt + f (−∞,−∞)
∫

([0,1]/A1)∩([0,1]/A2)
Ψn(t)dt

and

J2 = f (−∞,−∞)
∫

A1∩A2

Ψn(t)dt + f (−∞,∞)
∫

A1∩([0,1]/A2)
Ψn(t)dt

+ f (∞,−∞)
∫

([0,1]/A1)∩A2

Ψn(t)dt + f (∞,∞)
∫

([0,1]/A1)∩([0,1]/A2)
Ψn(t)dt.

THEOREM 1. Suppose that

(i) dim(∑N
k=0 BkΓ(tk))= 1 where Γ(t) is the principal matrix solution of ẋ(t)= A(t)x(t);

(ii) f : R
2 → R is continuous;

(iii) f (∞,∞), f (∞,−∞), f (−∞,∞) and f (−∞,−∞) exist;

(iv) J1J2 < 0;

(v) G : C (n−1)([0,1],Rn) → C (n−1)([0,1],R) is continuous.
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Then, there exists an ε0 such that for ε ∈ [0,ε0], there is at least one solution of

y(n)(t)+ · · ·+a1(t)y′(t)+a0(t)y(t) = f (y(t),y′(t))+ εG(y,y′, · · · ,y(n−1))(t)

that satisfies

n

∑
j=1

bi j(0)y( j−1)(0)+
n

∑
j=1

bi j(t1)y( j−1)(t1)+ · · ·+
n

∑
j=1

bi j(N)y( j−1)(1) = 0

for i = 1,2, · · · ,n.

Proof.
As above, we define mappings

H1 : R×C ([0,1],Rn,‖ · ‖∞)×R → C ([0,1],Rn,‖ · ‖∞)
H2 : R×C ([0,1],Rn,‖ · ‖∞)×R → R

H : R×C ([0,1],Rn,‖ · ‖∞)×R → C ([0,1],Rn,‖ · ‖∞)×R

by

H1(ε,α,x) = Γ(t)[α p+ vx]+

Γ(t)
∫ t

0
Γ−1(s)[[F (x(s))+ εG (x(s))]− (

∫ 1

0
ΨT (u)[F (x(u))+ εG (x(u))]du)Ψ(s)]ds,

H2(ε,α,x) = α − (
∫ 1

0
Ψn(t) f (αΦ1(t)+w1(ε,x(t),αΦ2(t)+w2(εx(t))))dt+

ε
∫ 1

0
Ψn(t)g(αΦ1(t)+w1(ε,x(t)))dt),

and
H(ε,α,x) = (H1(ε,α,x),H2(ε,α,x)).

It is evident that for ε = 0, there exists constants M1 and M2 so that

‖H1(0,α,x)‖∞ � M1|α|+M2.

By the proof of Lemma 2, defining α0 � m+J and δ = α0 +m+J for some fixed real
number J, we can create a nonempty, convex set B = {(α,x) ∈ R

2 ×C ([0,1],Rn,‖ ·
‖∞) : |α| � δ and ‖x‖∞ � M1|δ |+M2 + J} such that, when ε = 0, the following hold
true:

(i) for all α � α0, H2(0,α,x) � α − J and H2(0,α,x) � −α + J;

(ii) for α ∈ [α0,δ ], H2(0,α,x) � −J and H2(0,α,x) � J;

(iii) for 0 � α < α0, |H2(0,α,x)| � δ + J; and

(iv) ‖H1(0,α,x)‖∞ � M1δ +M2.

It follows that
inf(α ,x)∈Bdist(H(0,α,x),∂B) > 0;
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that is, when ε = 0, there is a positive distance between the boundary of the set B and
the set of H(0,α,x) for (α,x)∈B. Since {Φ(·)α +w(x(·))|(α,x)∈B} is equicontin-
uous and uniformly bounded, it is compact by Arzela-Ascoli’s Theorem. This implies
that if we choose a positive value, ε̃, so that we restrict ε to the interval [0, ε̃] , the map
(ε,α,x) 	→ H(ε,α,x) is uniformly continuous on B. From this it follows that there
exists ε0 such that if |ε| � ε0,

H(ε,α,x) ∈ B

for all (α,x) ∈B. The solvability of (1), (2) is now a consequence of Schauder’s Fixed
Point Theorem. �

5. Example

We now present an example to illustrate the main theorem of this paper. We con-
sider the differential equation

y′′ +3y′+2y = f (y(t),y′(t))+
∫ t

0
w(t,s)g(s,y(s),y′(s))ds (7)

subject to boundary conditions

y(0)+ y′(0)+ y

(
J−1

2

)
+ y′

(
J−1

2

)
= 0,

y(J)+ y′(J) = 0, (8)

where J � 1.
In system form, (7),(8) becomes

x′(t) = A(t)x(t)+F(x(t))+G(x(t))

B0x(0)+BJ−1
2

x

(
J−1

2

)
+BJx(J) = 0 (9)

where x1(t) = y(t), x2(t) = y′(t),

A(t) =
[

0 1
−2 −3

]
for all t,

B0 =
[

1 1
0 0

]
, BJ−1

2
=
[

1 1
0 0

]
, BJ =

[
0 0
−1 −1

]
,

F(x(t)) =
[

0
f (x(t))

]
, and G(x(t)) =

[
0∫ t

0 w(t,s)g(s,x(s))ds

]
.

It is easy to verify that

Γ(t) =
[

e−2t(−1+2et) e−2t(−1+ et)
−2e−2t(−1+ et) −e−2t(−2+ et)

]
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and

B0 +BJ−1
2

Γ
(

J−1
2

)
+BJΓ(J) =

[
1+ e1−J 1+ e1−J

−e−2J −e−2J

]
,

which gives

ker

(
B0 +BJ−1

2
Γ
(

J−1
2

)
+BJΓ(J)

)
= span

{[
1
−1

]}
.

From this, we conclude that

φ(t) = Γ(t)
[

1
−1

]
=
[

e−t

−e−t

]
.

It follows that A1 = {t ∈ [0,J] : φ1(t) > 0}= [0,J] and A2 = {t ∈ [0,J] : φ2(t) > 0}= /0.
The computations above give

ψ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
−e2t

−e2t

)
for 0 � t � J−1

2 ,(
−e2t − e2t+1−J

−e2t − e2t+1−J

)
for J−1

2 < t � J.

,

J1 = f (∞,−∞)
(

1− 1
2
e2J − 1

2
eJ+1

)
,

and

J2 = f (−∞,∞)
(

1− 1
2
e2J − 1

2
eJ+1

)
.

It can easily be shown that if J � 1 and f (∞,−∞) f (−∞,∞) < 0, we are guaran-
teed that J1J2 < 0. Then, according to the proof of Theorem 1, if

∫ t
0 |w(t,s)g(s)|ds <

min{|J1|, |J2|} for all t ∈ [0,J], (7), (8) will have a solution.
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