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UNIFORMLY STABLE SOLUTION OF A NONLOCAL PROBLEM
OF COUPLED SYSTEM OF DIFFERENTIAL EQUATIONS

A.M.A EL-SAYED, R.O. ABD-EL-RAHMAN AND M. EL-GENDY

(Communicated by Mervan Pasic)

Abstract. In this paper we are concerned with a nonlocal problem of a coupled system of dif-
ferential equations. We study the local existence of the solution and its continuous dependence.
The global existence and its uniform stability is being studied.

1. Introduction

Problems with nonlocal conditions have been extensively studied by several au-
thors in the last decades. The reader is referred to ([1]-[16]) and ([18]-[19]) and refer-
ences therein.

In [14] the authors studied the uniformly stable positive monotonic solution of a
nonlocal Cauchy problem

X = f(t,x(t)), t €[0,T]

S bjx(n)) =x1, nj € (0,a) € [0,7].
=1

Here we are concerned with the nonlocal problem of the coupled system of differential
equations of the type

dx
E:fl(tvy(t))v IG(O,T} (11)
d
d—f = h(t.x(1)), t€(0,T], (1.2)
with the nonlocal conditions
x(0)+ Y ax(t) =x0, ax >0, % € (0, T) (1.3)
k=1
2. biy(nj) =0, bj>0,n;€ (0, T). (1.4)

¥(0)+
J=1
The local and global existence of solutions of the nonlocal problem (1.1)-(1.4) is
proved. The continuous dependence on xg,yo and the uniform stability are studied.
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2. Integral Representation

Let X be the class of all columns vectors (i) , X,y € C(0,T] with the norm
X
|G| =t 1mi= s 15001+ sup 15601
y 1€[0,7] 1€[0,7]

Let N > 0 be given, 1) = max{t,n;}, and let Y be the class of all column

vectors <x> x,y € Cltp, T] with the norm

H( )H I Il = sup e k() [+ sup M [3(6)].
Y

t€ty,T] t€lty,T]

Throughout the paper we assume that the following assumptions hold:

(H1) f;:]0,T] xR— R, i=1,2 are continuous.;
(H2) f; satisfy the Lipschitz condition with Lipschitz constant /

‘ﬁ(t7x)_ﬁ(t7y) ‘gl ‘x_y| .

Now we have the following lemma.

LEMMA 1. The solution of the nonlocal problem (1.1)-(1.4) can be expressed by
the system of the integral equations

w0 ] (535 —a 3 ] fils.y(6))ds

t m nj
byo—l—gfz(&x(s))ds—b Zlbj(j)‘fz(s,x(s))ds
j=

Proof. Integrating equation (1.1), we obtain

0)+ [ fils,y(s))ds
0
Then .
x(3) = 2(0)+ [ fi(s.y(9)d
0
and
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n n %
x0-%(0) = X ax(0) + X ar [ fils.y(s))ds
k=1 k=1
0

1+ a0 =x-3 a / Fils,y(s)) ds.
k=1 k=1 0

Hence

Similarly, we can obtain

v = (3030 [ falsxtods | + [ ),

-1 -1
<1+Zak> =a,<1+2b,~> =b.
k=1 =

Thus, the proof is completed. [

~.
Il
—_
=}
=}

where

Now, define the operator F' by

axo—l—({tfl (s,y(s))ds—akilak ffl (s,y(s))ds
x(1)) - _( Fuy(@)
P ) _— - (700)

byo—i-gt‘fz(s,x(s))ds—b 2 b; gfg(s,x(s))ds

Jj=1

LEMMA 2. F: X —X.

Proof. Let x,y € C(0,T], t1,t € (0,T]. Then from assumption (H1) and for
every € >0, 6 >0s.t |n—1|<8,wehave

| Fiy(n) — Fiy(n) |< /f1 (5,9(s))ds < £/2.

5l

Similarly

| Byx(ta) — Box(n) | < / Plsix(s))ds < €/2.

5l

Then F|,F, :C[0,T] — C[0,T]. Hence F: X — X.
Thus, the proof is completed. [

By the same way, we can prove the following lemma



358 A.M.A EL-SAYED, R.O. ABD-EL-RAHMAN AND M. EL-GENDY

LEMMA 3. F:Y —Y.

3. Local existence

THEOREM 1. Consider that assumptions (H1)-(H2) are satisfied, if 2IT < 1,
then the nonlocal problem (1.1)-(1.4) has a unique solution z € X .

Proof. Let

axop+ ({tfl (s,y1(s))ds — aélak (jffl (s,y1(s))ds

bm+£ﬁ@m<»m aﬁbfﬁ@xm»d

j=1

U3

am+£ﬁ@dﬂ)ﬂs aZauvusn<»d

t m nj
byo+gf2(s,x2(s))ds—a ‘Zlbj gfg(s,xz(s))ds
j=

then
FU(t)—FV(t) =

({t[fl (s,31(5)) = fi1(s,y2(s5))]ds — aélak Z[fl (s,51(5)) = f1(s,y2(s))]ds

N———
Il
~_ ;/ \_/

gﬁ@m@»—ﬁ@m<mw b%be@xm» fals.xa(s)))ds

j=1

Now

HM:

/fl $,91(5)) = f1(s,32(s))ds — /fl 5,y1(5)) — f1(s,2(s))]ds
0 0

/|f1sy1 — fi(sy2(s))] | ds
+M|Z\%\/Hﬁ@m@ﬁ—ﬁ@m@le

t
<l/\y1 —ya(s |ds+a2akl/\y1 5) | ds
0
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n
<Uivi—nIT+aY ad |y =y | T
=1

=IT | y1—y2 || [ +aZak 2T | y1 =y | -

Similarly

1

[1h(sxi(9) = hlsxa(o)lds

0

nj
+b2b /f2 5,%1(5)) = fals,x2(s))]ds| < 20T || x1 = || -

Hence
|FU=FV|x< 2T || y1—y2 [| +2UT [[x1 —x2 |[K 2T [| U =V [[x .
Then F is a contraction [17] and there exists a unique solution z € X of the nonlocal
problem (1.1)-(1.4).
Thus, the proof is completed. [

4. Continuous dependence

Consider the nonlocal problem of the system of equations (1.1) and (1.2) with
the nonlocal conditions

0)+ Y ax() = %o, % € (0,T), (4.1)
k=1

0)+ Y bjy(n)) = o, n; € (0,T). 4.2)
j=1

Here, we study the continuous dependence (on the data xg,yo) of the solution of the
coupled system of differential equations (1.1) and (1.2).

Let (1) = <;8> be the solution of the the nonlocal problem (1.1), (1.2), (4.1)
and (4.2).
DEFINITION 1. The solution of the nonlocal problem (1.1)-(1.4), z € X is con-

tinuously dependent (on the data xg,yp) if Ve >0, 36 > 0 such that | xg — % |< /2
and |yg— o |< 6/2 impliesthat || z—Z|x<e€

THEOREM 2. Consider that assumptions (H1)-(H2) are satisfied. Then the so-
lution of the nonlocal problem (1.1)-(1.4) is continuously dependent.
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Proof. Let
@0t [ Als,y()ds —a 3 ac ] fils,y(5))ds
vo-(30)-| Y
by0+gf2(s7x(s))ds—b ‘21 b; gfz(s,x(s))ds
j=
be the solution of the nonlocal problem (1.1)-(1.4) and
~ @St [ fi(s5(6))ds —a 5, ax | fi(s.5(5))ds
on-(30)-| S
b}70+0ff2(5’f(5))d5— b Zlbj ({fz(syf(s))ds
i=

be the solution of the nonlocal problem (1.1), (1.2), (4.1) and (4.2). Then

Wi-a a ;fk[fl (5,3(5)) — fi s, (5))lds

Ut)-U(t) =
m nj
V)b 3 b [11205:x(5) = fols,5(5))s
where
Vi(e) = alao—0) + [ [fi(s.3(5)) = f (3(5))Jds, 43)
0
Va(t) = bl =50) + | [fa(s.x(5)) = fols.5(5)ds. @4
0
Now
—a S a K} K ds
k;ko/fl (5) = fi(5,5(5))]
|

< |a(xo — Xo)

/m(s,y( )= s Sslds +a Y. a / Fi(5,3(5) — fi5,3(5))ds

0
<ad/242l||y—¥| T.
Similarly

Valt)=b X by [ 1ls,5(6) = als 7)lds

Jj=1 0

<b&/2+2T | x—5|.




Differ. Equ. Appl. 5 (2013), 355-365, doi:10.7153/dea-05-22 361

Therefore
) Vi(r) - ikIMQy(» fi(5,5(5)))ds
-0 x = S
Valt) =B 3 by [a(s,x(5)) — fls 5)) s
- X
< || Va(e) aiak/fl (5,5(5)) = f1(s,5(s))]ds
k=1 0

be/fzsx ) — fals.%(s))ds
0

<(a+b)(8/2)+2T | U-T |x,
where V;(7) and V,(r) are defined in (4.3) and (4.4). Hence
|U—U|x< (a+b)(8/2)/(1—2IT) < 8/(1-2T) =¢.

Thus, the proof is completed. [

5. Global existence

THEOREM 3. Ifassumptions (H1)-(H2) are satisfied, then the nonlocal problem
(1.1)-(L.4) has a unique solution z € Y.

Proof. Let
axo+ ({tfl (s,y1(s))ds — aél a ({kfl (s,y1(s))ds

Jj=1

byo+({tf2(s,x1( $)ds—a 3. b, ffz(s 21 (s))ds

T

aXO+£f1(S’Y2( 5))ds —a Z akffl(s y2(s))ds

t m nj
byo—|—0ff2(s,x2(s))ds—a Y b ({fg(s,xz(s))ds

j=1
then
FU(t)—FV(t) =

53109 = A (592065 —a £ T (531(6)) = (5320

[ﬁ@n@»—ﬁ@m<mw—b§bfmwxm» Fols,xa(s))lds

o o
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Now

/fl 5,91(8)) = f1(s,32(s))]ds — az,ak/fl 5,y1(8)) — f1(s,32(s))]ds

0

< M Il = ilsna() | ds
0

Flal X el [ i)~ filswa(s)] | ds
k=1 0

t

<1 [N supe ™ [1(s) = y2(s) | ds
0

+a2akl/ “NENS supe ™S |y (s) — ya(s) | ds

k=1
t o
< H Yi—»m H* /67N[+Nsds+azakl H Y=y ”* /ethJrNst
k=1
0 0

<Ly =y2 I ™™ /N]y +a Zak Uy =y2 " [N

SN Iyi=y2lIF[L—e ™+ (al/N) | yi =y |I* Zak Ni—m) _ =N
k=1

SN Iy =y I [1=e ™+ (al/N) || y1 = y2 |I* zak N(—10) _ =]
k=1

<SUN) 31 =92 |7 L=+ N 1 -3 | Y
k=1

SUN) [y =y " [1—e™ 1+a2ak (2/N) [ yr=y2 [I" -

Then

n *

/[fl(S,yl( ) — fi(s,y2(s))]ds +a Z /fl $,¥1(5)) = f1(s,32(s))]ds

0 k= 0

< QUN) [Ty =y2 1"
Similarly

1

nj
[1h(sxi() = hs.2(6) ds+bzlb i [ a1 (s)) = folsxa(s))lds
J 0

0

*
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S (2/N) | x—x2|]"

Andso ||FU—FV ||y<(2U/N)||U-V |y .

Choose N large enough such that 2//N < 1. Then F is a contraction [17] and
there exists a global solution z € Y.

Thus, the proof is completed. [l

6. Stability of the solution

Here, we study the uniform stability of the solution z € Y of the nonlocal problem

(1.1)-(1.4).

DEFINITION 2. The solution z € Y of the nonlocal problem (1.1)-(1.4) is uni-
Sformly stable if Ve > 0,36 > 0 such that | xg — X |< 8/2 and | yo— Yo |< /2 implies
that || z—Z[[y<e.

THEOREM 4. Consider assumptions (H1)-(H2) are satisfied, then the solution
z €Y of the nonlocal problem (1.1)-(1.4) is uniformly stable.

Proof. Let

w0 ] (535 —a 3 ] ils.(6))ds

x(1)
Ut) = = t m ]
<y<f>> byo+ [ o(sx(5))ds —b 3 b 1 (sx(9)ds

J=1 0

be the solution of the nonlocal problem (1.1)-(1.4). Now

a%xo -+ ({tfl (s,9(s))ds — aélak ffl (s,3(s))ds

. X(1)
Ut)=| " = t m J
<y(t)> by0+g“f2(S,)Z(s))ds—b Elbj2f2(57f(5))ds

J=

be the solution of the nonlocal problem (1.1),(1.2),(4.1) and (4.2), then

Mi-ata g"m(s,y(s)) ~ fils.5(5))Mds
Ut)-U(t) = :

m nj

Va(r) — bglbjof[fz(M(S)) — fa(s,%(s))lds

where Vi () and V() are defined in (4.3) and (4.4), and

U =0 |ly<la(xo—o)]
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+ /[fl (s,9(5)) = f1(s5,3(s))]ds —a iak/[fl (5,5(5)) = fi(s,5(s))]ds ||
0 k=179

+ |b(yo — o) |
! m nj

+ /[fz(s’x(s)) —fz(s,i(s))]ds—bij/[fz(&x(s))—fz(S’f(S))}dS [
0 =1

0
<ad/2+ Q2I/N) || y1 —=y2 [|" +66/24 (2/N) || x1 —x2 ||* .

Then

Thu
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IU—=0Ully<(a+0)(8/2)/(1-21/N)< 8/(1-2I/N)=&.
s, the proof is completed. [l
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