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ON SENSITIVITY OF QUASILINEAR ELLIPTIC BOUNDARY

VALUE PROBLEMS USING FRIEDRICHS CONSTANT

KARL DVORSKY AND JOACHIM GWINNER

(Communicated by Jean-Pierre Gossez)

Abstract. We treat nonresonance of quasilinear elliptic equations with nonlinear boundary con-
ditions via Friedrichs constant c� . Here we give a sensitivity result for nonlinear perturbations
of the right hand side and provide an explicit estimate for c� in convex domains. Finally, to
illustrate our results we discuss the p -Laplacian case.

1. Introduction

Let Ω ⊂ R
2 be a bounded domain with a smooth boundary Γ . Consider the

Dirichlet eigenvalue problem −Δu = λ u in Ω ; u = 0 on Γ and for given ρ ∈ R

the related Dirichlet problem Pρ ,dir : For given f , find u such that there holds

−Δu = ρ u+ f in Ω ; u = 0 on Γ . (1.1)

The problem Pρ ,dir is called nonresonant, if for every f ∈ H−1(Ω) there exists at least
one solution u ∈ H1(Ω) ; otherwise it is resonant. Since the seminal paper of Landes-
man and Lazer [12] there was much work dealing with existence conditions for resonant
and nonresonant elliptic boundary value problems. Let us state some existence results
for quasilinear elliptic Dirichlet problems

Qu = f in Ω; u = ϕ on Γ (1.2)

from literature. Sufficient conditions for nonresonance are presented e.g. in [14, 15, 11]
in the semilinear case and in [2, 8] for the p -Laplacian. [3] investigates nonresonance
to the right of the first eigenvalue of the one dimensional p -Laplacian. Existence con-
ditions at resonance are given by [12, 17] for semilinear problems and by [5, 9] for the
p -Laplacian.

In [10] De Figueiredo and Gossez deal with nonresonance below the first eigen-
value in the semilinear case. We will focus on this type of nonresonance in the following
note.

Consider the linear problem (1.1) again. The Lax-MilgramTheorem and Friedrichs’
inequality tell us that there is a nonresonant state of (1.1) if ρ < λ1 ; where λ1 is the
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principal eigenvalue of
(−Δ,H1

0 (Ω)
)
. Alternatively, nonresonance below λ1 can be

described by the associated Friedrichs constant

cF(Ω) = sup
u∈H1

0 (Ω)\{0}

‖u‖L2(Ω)

‖∇u‖L2(Ω)
=

1√
λ1

,

i.e. the optimal constant in Friedrichs’ inequality ‖u‖L2(Ω) � cF ‖∇u‖L2(Ω) for u ∈
H1

0 (Ω) . Observe that the relation ρ � λ1 yields uniform ellipticity of the operator in
the variational form of (1.1). In the nonlinear case (1.2) uniform ellipticity is more
restrictive than nonresonance below the first eigenvalue presented e.g. in [10]. One the
other hand we are able to state sufficient conditions not only for the existence solutions,
but also for uniqueness. Moreover, we obtain explicit a priori bounds and sensitivity
results with respect to nonlinear perturbations of the right hand side. We will apply this
concept to the following quasilinear boundary value problem Pρ in divergence form
with a nonlinear boundary condition:

div
(
A( · ,∇uρ)

)
= ρ α(·,uρ)+ f in Ω (1.3)

−A( · ,∇uρ)n = β (·,uρ) on Γ .

Here, A, α, β are Carathéodory functions satisfying certain growth conditions. The ex-
istence of solutions to such problems under general conditions is provided by [1] in the
semilinear case. [13, 19] treat the behaviour of (1.3) for the p -Laplacian at resonance.
Our aim is to complement investigations on (1.3) by an explicit sensitivity estimate for
nonlinear perturbations of the right hand side of (1.3).
The paper is organized as follows. In section 2 we define the Friedrichs constant c�

induced by a problem specific norm ‖ · ‖� on W 1,p(Ω) . Then we give sufficient con-
ditions for uniform ellipticity of (1.3) in terms of ‖ · ‖� and c� and provide an explicit
bound on uρ in the norm ‖ ·‖� . We call this state of (1.3) subresonant. In section 3 we
study the sensitivity of subresonant solutions for ρ → 0. An explicit estimate for c� in
convex domains shows the dependence of the sensitivity on parameters of the boundary
value problem. In particular we reveal the antagonistic character of the flow β over
the boundary Γ and the source term α in Ω . This is -to our knowledge- a new result.
Section 4 concludes with the p -Laplace operator to illustrate the obtained results. For
physical applications we refer to [6, 7].

2. Formulation of the subresonance conditions

2.1. Setup of the boundary value problem

Let Ω ⊂ R
d , d � 2 be a bounded domain with a Lipschitz boundary ∂Ω =: Γ .

For given ρ ∈ R , p∈ (1,∞) and f ∈ (
W 1,p(Ω)

)∗
we consider the following nonlinear

boundary value problem Pρ in divergence form:

−div
(
A( · ,∇uρ)

)
= ρ α(·,uρ)+ f in Ω (2.1)

−A( · ,∇uρ)n = β (·,uρ) on Γ
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where n denotes the outer normal on Γ . We assume that A : Ω ×R
d → R

d is a
Carathéodory map that satisfies the growth condition

∃CA < ∞ : |A(x,ζ )| � CA
(
gA(x)+ |ζ |p−1 )

for almost every x∈ Ω ; ∀ζ ∈R
d (2.2)

for some gA ∈ Lp′(Ω) , p′ = p
p−1 , and the monotonicity condition

∃cA > 0 :
(
A(x,ζ1)−A(x,ζ2)

)(
ζ1− ζ2

)
� cA |ζ1− ζ2|p for a.e. x ∈ Ω and ζ1,ζ2 ∈ R

d . (2.3)

Further we assume that α : Ω×R → R is a Carathéodory map that satisfies α(·,0) =
0 and a Lipschitz-condition

∃Lα < ∞ : |α(x,s1)−α(x,s2)| � Lα |s1− s2|p−1 for a.e. x ∈ Ω ; s1,s2 ∈ R . (2.4)

Finally we assume that β : Γ×R → R is a Carathéodory map that satisfies the growth
condition

∃Cβ < ∞ : |β (x,s)| � Cβ
(
gβ (x)+ |s|p−1 )

for a.e. x ∈ Ω and every s ∈ R . (2.5)

for given gβ ∈ Lp′(Γ) ; and the monotonicity condition

∃cβ > 0 :
(
β (x,s1)−β (x,s2)

)
(s1 − s2)

� cβ |s1 − s2|p for a.e. x ∈ Γ and s1,s2 ∈ R . (2.6)

Setting of an adaquate norm on W 1,p(Ω) In order to get concise terms for the following
estimates we define the norm

‖v‖p
� := ‖∇v‖p

Lp(Ω) +
cβ

cA
‖v‖p

Lp(Γ) .

Note that ‖ · ‖� is equivalent to the canonical W 1,p -norm. We refer to a paper of
Mikhlin, [16].

2.2. Existence and uniqueness in W 1,p(Ω)

Variational form of Pρ . For u,v ∈ W 1,p(Ω) , we define the nonlinear operator Aρ
by 〈

Aρu , v
〉

=
∫
Ω

A(x,∇u)∇vdx+
∫
Γ

β (x,u)vdσx −ρ
∫
Ω

α(x,u)vdx (2.7)

where 〈 · , · 〉 denotes the duality pairing between
(
W 1,p(Ω)

)∗ and W 1,p(Ω) . The
growth conditions on A and β in (2.2), (2.5) and the Lipschitz-condition on α in (2.4)
imply the mapping property Aρ : W 1,p(Ω) → (

W 1,p(Ω)
)∗

. Hence the variational
form of (2.1) reads: Find uρ ∈W 1,p(Ω) such that〈

Aρuρ , v
〉

= 〈 f , v〉 , ∀v ∈W 1,p(Ω). (2.8)
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Well-posedness of Pρ . Next we formulate a sufficient condition for subresonance of
Pρ . To this end we define the Friedrichs constant

c� := sup
v∈W1,p(Ω)\{0}

(‖v‖Lp(Ω)/‖v‖�

)

and the dual norm ‖ f‖∗ = sup
‖v‖��1

|〈 f ,v〉| .

PROPOSITION 1. Let |ρ | < cA
Lα cp

�
. Then, for all f ∈ (

W 1,p(Ω)
)∗

there exists a

unique solution uρ ∈W 1,p(Ω) of (2.1) which is bounded by

(
cA −|ρ |Lα cp

�

)‖uρ‖p−1
� � ‖ f‖∗ +‖A( · ,0)‖Lp′(Ω) + p

√
cA

cβ
‖β (·,0)‖Lp′ (Γ) .

Proof. (i) Existence and uniqueness. It follows from the Theorem of Browder
and Minty for monotone operators, [20], in virtue of the uniform ellipticity of Aρ for
|ρ | < cA

Lα cp
�
:

〈
Aρu−Aρv , u− v

〉
� cA ‖∇(u− v)‖p

Lp(Ω) + cβ ‖u− v‖p
Lp(Γ) −|ρ |Lα ‖u− v‖p

Lp(Ω)

�
(
cA −|ρ | Lα cp

�

)‖u− v‖p
� ∀u,v ∈W 1,p(Ω) .

(ii) boundedness. We have
〈

f , uρ
〉

� ‖ f‖∗ ‖uρ‖� ; and on the other hand

〈
Aρ uρ , uρ

〉
� cA ‖∇uρ‖p

Lp(Ω) −‖A( · ,0)‖Lp′(Ω) ‖∇uρ‖Lp(Ω)

+ cβ ‖uρ‖p
Lp(Γ)−‖β (·,0)‖Lp′(Γ) ‖uρ‖Lp(Γ)−|ρ |Lα ‖uρ‖p

Lp(Ω).

By the definition of ‖ · ‖� and ‖ · ‖Lp(Ω) � c� ‖ · ‖� we arrive at

〈
Aρ uρ , uρ

〉
�

(
cA−|ρ | Lα cp

�

)‖uρ‖p
�−

(‖A( · ,0)‖Lp′ (Ω)+ p

√
cA

cβ
‖β (·,0)‖Lp′ (Γ)

)‖uρ‖�

which implies the assertion. �

REMARK 1. If - in addition - the Carathéodory map α satisfies the monotonicity
condition (

α(x,s1)−α(x,s2)
)(

s1 − s2
)

� 0 for a.e. x ∈ Ω ; s1,s2 ∈ R

then problem (2.1) is well posed for every ρ < cA
Lα cp

�
. The bound on ‖uρ‖� in Proposi-

tion 1 holds for every ρ < cA
Lα cp

�
and reads as

cA ‖uρ‖p−1
� � ‖ f‖∗ +‖A( · ,0)‖Lp′(Ω) + p

√
cA

cβ
‖β (·,0)‖Lp′ (Γ) for ρ � 0 .



Differ. Equ. Appl. 5 (2013), 367–375, doi:10.7153/dea-05-23 371

3. Approximation of subresonant solutions

In this section we study the approximation of P0 by Pρ , i.e. of

−div
(
A( · ,∇u0)

)
= f in Ω ; −A( · ,∇u0)n = β (·,u0) on Γ

and give an error estimate in the norm ‖ · ‖� .

3.1. Sensitivity results

PROPOSITION 2. Let uρ , u0 denote the solutions of the boundary value problems

Pρ , P0 , respectively. Then there holds limsup
ρ→0

(|ρ | 1
1−p ‖uρ −u0‖�

)
< ∞ .

Proof. Consider the difference in the variational equations of Pρ and P0 , i.e.

〈
Aρuρ −A0u0 , v

〉
= 0 ∀v ∈W 1,p(Ω) .

This reads as

∫
Ω

(
A(x,∇uρ)−A(x,∇u0)

)
∇vdx+

∫
Γ

(
β (x,uρ)−β (x,u0)

)
vdσx

= ρ
∫
Ω

α(x,uρ )vdx . (3.1)

Set v = uρ −u0 and we obtain cA ‖uρ −u0‖p
� � ρ

∫
Ω

α(x,uρ )(uρ −u0)dx. The Lipschitz-

continuity of α and Hölder’s inequality imply

cA ‖uρ −u0‖p
� � |ρ | Lα ‖uρ‖p−1

Lp(Ω) ‖uρ −u0‖Lp(Ω) .

This gives cA ‖uρ − u0‖p−1
� � |ρ |Lα cp

� ‖uρ‖p−1
� . Using the upper bound on ‖uρ‖p−1

�

for ρ → 0 from Proposition 1 concludes the proof. �

If the solution u0 is explicitly known, the following estimate becomes useful.

PROPOSITION 3. Let uρ , u0 denote the solution of Pρ , P0 , respectively. Then, for
|ρ | < cA

Lα cp
�
, there holds

(
cA −|ρ |Lα cp

�

)‖uρ −u0‖p−1
� � |ρ |Lα cp

� ‖u0‖p−1
� .

Proof. As in the proof of Proposition 2 we have

cA ‖uρ −u0‖p
� � |ρ |

∫
Ω

∣∣α(x,uρ)
∣∣ ∣∣uρ −u0

∣∣ dx.
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Using the triangle inequality for the right hand side yields

cA ‖uρ −u0‖p
� � |ρ |

∫
Ω

(∣∣α(x,uρ)−α(x,u0)
∣∣+ |α(x,u0)|

) ∣∣uρ −u0
∣∣ dx .

Lipschitz-continuity of α gives |α(x,u0)|� Lα |u0|p−1 and Hölder’s inequality implies

cA ‖uρ −u0‖p
� � |ρ |Lα ‖uρ −u0‖p

Lp(Ω) + |ρ | Lα ‖u0‖p−1
Lp(Ω) ‖uρ −u0‖Lp(Ω) .

Using ‖ · ‖Lp(Ω) � c� ‖ · ‖� yields the estimate . �

3.2. An explicit estimate for c� on convex domains

To arrive at a more precise approximation in Proposition 2, we establish

THEOREM 1. (Inhomogeneous Friedrichs inequality in W 1,p(Ω)) Assume that the
set Ω ⊂ R

d is bounded and convex and p ∈ [
1,∞

)
. Then, for u ∈W 1,p(Ω) we have

‖u‖p
Lp(Ω) � 2p−1

(
diam(Ω)

d
‖u‖p

Lp(Γ) +
diam(Ω)p

p
‖∇u‖p

Lp(Ω)

)
.

Proof. Assume u ∈ C1(Ω) ∩C(Ω) and 0 = x0 ∈ Γ . Otherwise translate x̃ :=
x− x0 . The Mean value theorem for integration allows to choose x0 ∈ Γ such that

|u(x0)|p =
∣∣∣∣ 1
|Γ|

∫
Γ

udσ
∣∣∣∣
p

� 1
|Γ|

∫
Γ

|u|p dσ =
1
|Γ| ‖u‖

p
Lp(Γ) . (3.2)

The estimate follows by Jensen’s inequality.

For every x ∈ Ω define the line segment Lx = {t x ; t ∈ (0,1)} ⊂ Ω . Then there holds

|u(x)−u(0)|=
∣∣∣∣
∫ 1

0

d(u ◦ γ)(t)
dt

dt

∣∣∣∣ �
∫ 1

0
|〈∇u(γ(t)), γ̇(t)〉|dt

�
∫ 1

0
|∇u(γ(t))| |γ̇(t)|dt =

∫
Lx

|∇u|dγ
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where γ : [0,1] → Lx denotes a parametrization of Lx , thus |u(x)| � |u(0)|+∫
Lx
|∇u|dγ .

The finite form of Jensen’s inequality gives

|u(x)|p � 2p−1(|u(0)|p +
(∫

Lx

|∇u|dγ
)p)

.

The general form implies

|u(x)|p � 2p−1
(
|u(0)|p + |Lx|p−1

∫
Lx

|∇u|p dγ
)

. (3.3)

By Ωs := s
diam(Ω) Ω , s ∈ (0,diam(Ω)) , with its boundary Γs , we denote a homotopic

contraction of Ω to x0 = 0. This contraction exists since Ω is convex. Since s =
diam(Ωs) , we have

|Γs| = |Γ|
diam(Ω)d−1 sd−1.

As x ∈ Γs implies |Lx| = |x| � s and since Ωs is convex, an integration of (3.3) over
Γs yields ∫

Γs

|u|p dσ � 2p−1
(
|Γs|u(0)p + sp−1

∫
Ωs

|∇u|p dx

)
.

Using
∫

Ωs
|∇u|p dx � ‖∇u‖p

Lp(Ω) , an integration over s provides via Cavalieri’s princi-
ple

‖u‖p
Lp(Ω) � 2p−1

( |Γ| |u(0)|p
diam(Ω)d−1

∫ diam(Ω)

0
sd−1 ds +

diam(Ω)p

p
‖∇u‖p

Lp(Ω)

)
.

Now (3.2) and an extension via density to arbitrary u ∈ W 1,p(Ω) finally imply the
assertion. �

The definition of ‖ · ‖� and Theorem 1 give the following

COROLLARY 1. (Estimate of c� via scaling) Let the assumptions of Theorem 1
hold. Moreover, assume that Ω is scaled with diam(Ω) = 1 . Then, for every u ∈
W 1,p(Ω) , we have

‖u‖p
Lp(Ω) � 2p−1 max

(
cA

d cβ
,
1
p

)
‖u‖p

� ; hence c� � p

√
2p−1 max

( cA

d cβ
,
1
p

)
.

REMARK 2. Sharpness investigations on Theorem 1 are outstanding. Consider
the case u ∈ H1

0 (Ω) . Then Theorem 1 reads as ‖u‖L2(Ω) � diam(Ω)‖∇u‖L2(Ω) . Due
to a classical result of Payne and Weinberger [18] there even holds

‖u‖L2(Ω) � diam(Ω)
π

‖∇u‖L2(Ω).

This indicates that the estimate in Theorem 1 is not sharp. On the other hand it is
possible to extend the result of Theorem 1 to non-convex domains, [7]. Hence it is
fairly related to the result in [18] where we assume more restrictively

∫
Ω udx = 0 and

the convexity of the domain Ω .
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4. The p -Laplace equation with monotone boundary conditions - an example

In this section we consider the p -Laplace equation with monotone boundary con-
ditions as an example for the problem Pρ ,

−div
(|∇uρ |p−2 ∇uρ)

)
= ρ α(·,uρ)+ f in Ω (4.1)

−|∇uρ |p−2 ∇uρ n = β (·,uρ) on Γ .

Thus we have A(ζ ) = |ζ |p−2 ζ . The growth condition (2.2) is fulfilled. Following [4],
condition (2.3) is satified for p � 2. In addition we assume the continuity, growth- and
monotonicity conditions on α,β from section 2.1 to hold. For simplicity, let us assume
d = 2, diam(Ω) = 1 and cβ < cA . Thus by Corollary 1 we obtain

c� = p

√
2p−2 cA

cβ
.

COROLLARY 2. Assume |ρ |< 22−p cβ
Lα

, p � 2 . Then, for all f ∈ (
W 1,p(Ω)

)∗
there

exists a unique solution uρ ∈W 1,p(Ω) of (4.1) which is bounded by

cA

(
1−|ρ | Lα

22−p cβ

)
‖uρ‖p−1

� � ‖ f‖∗ +‖A( · ,0)‖Lp′(Ω) + p

√
cA

cβ
‖β (·,0)‖Lp′ (Γ) .

The proof follows directly by the application of Proposition 1. The approximation result
of Proposition 3 applied to (4.1) leads to

COROLLARY 3. Let uρ , u0 denote the solution of Pρ , P0 in (4.1) respectively.

Then, for |ρ | < 22−p cβ
Lα

, p � 2 , there holds

(
22−p cβ

Lα
−|ρ |

)
‖uρ −u0‖p−1

� � |ρ |‖u0‖p−1
� .

REMARK 3. Observe that an increase of cβ extends the range of the subresonant
state of (4.1) and reduces the difference ‖uρ − u0‖� in Corollary 3. This implies that
an increase of the flow β over the boundary Γ compensates an increase of the source
term α in Ω .
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