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RESONANT BOUNDARY VALUE PROBLEMS FOR SINGULAR
MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS

YuJi Liu AND XIAOHUI YANG

(Communicated by Sotiris K. Ntouyas)

Abstract. In this article, we present and study three class of resonant boundary value problems
for singular fractional differential equations with sup-multiplicative-like operators. The exis-
tence results for solutions of these boundary-value problems are established. Our analysis relies
on the well known coincidence degree theory. Here the nonlinearity terms in fractional differ-
ential equations depend on Dg;ru and may be singular at # =0 or r = 1. The results obtained
generalize and enrich known results to some extent from the literature.

1. Introduction

Fractional differential equations have many applications in modeling of physical
and chemical processes and in engineering and have been of great interest recently.
In its turn, mathematical aspects of studies on fractional differential equations were
discussed by many authors, see the text books [20, 29, 34] and papers [1, 2, 3, 6, 14,
20, 32, 39, 40, 9, 24, 30, 37, 38, 28, 26] and the references therein. The methods are
based upon fixed point theorems in cones in Banach spaces.

Recently the coincidence degree theory [27] has been used to study the existence
of solutions to boundary value problems for fractional differential equations [31, 35,
42,7,4,27, 18, 10, 17, 23].

In paper [31], authors studied the existence of solutions in C*~1[0,1] = {u: u(t) =
I(‘)"flx(t),t € [0,1],x € C°[0,1]} of the following boundary value problem of fractional
order differential equations at resonance

D u(t) + f(t,u(t)) =0, t€(0,1),
u(0) =0, (1)
u(1) = sa=ru(n),

where DS‘+ is the standard Riemann-Liouville fractional derivative of order 1 < ot <2,
0<n<1, fecC(0,1] xR). Using intermediate value theorem, sufficient conditions
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for the existence of the solutions for the above fractional order differential equations
were established.

In [17], the authors studied the existence of solutions in C'[0, 1] of the following
periodic boundary value problem for fractional differential equation

DE.u(t) = f(t,u(t), (1)), 1 €[0,1],
u(0) = u(1), @)
W(0) = u/(1),

where “Df, is a Caputo fractional derivative of order a, f : [0,1] x R? — R is contin-
uous.

In [10], the author investigated the existence of solutions in C*~1[0,1] = {u :
u(t) = Ig‘flx(t)J € [0,1],x € C°[0,1]} of the following fractional order differential
equation boundary value problem at resonance

DEu(t) = £(t,u(t), DL u(t)) +e(r), 1€ (0,1),

I3 %u (0)=o,m (3)
D% u(1) = p BuD (&),

where Djj; and [j, are the standard Riemann-Liouville differentiation and integration
of order *, 1 <a <2, f: [O 1] x R? — R is a continuous function, e € L'(0,1),

&€(0,1) and B; € R with 2[3,_1

In recent paper [23], authors established existence results of solutions of the fol-
lowing fractional order differential equation boundary value problem at resonance

D% u(t) = f(t,u(t),Dy.u(t)) +e(t), t€(0,1),

~ (4)
Dg+u(l) = kg,l ﬂng+u(§k)7

where Dg+ is the standard Riemann-Liouville differentiation of order *, 1 < o < 2,
we (0,—1], f:(0,1) xR?> — R is a continuous function and may be singular at

t=0,1,ecL'(0,1), & € (0,1) and B € R with zﬁ,g“ H2 o,

In [37], the authors studied the existence of solutlons of the following periodic
value problem of fractional order differential equation

D3%u(r) = f(t,u(t), DS, u(t)), t<(0,T],
7%t =0 =t %u(t) =,
17D u(t)|—o = 1" *DG,u(t) |1,

where T > 0 is a constant, DO+ is the standard Riemann-Liouville differentiation of
order x, f:[0,T] x R2 — R is continuous. The methods used in [37] are based upon
the upper and lower solutions and Schauder fixed point theorem.



Differ. Equ. Appl. 5 (2013), 409472, doi:10.7153/dea-05-26 411

The turbulent flow in a porous medium is a fundamental mechanics phenomenon.
For studying this type of phenomena, Leibenson (see [21]) introduced the p-Laplacian

equation as follows
(0 (1)) = f(t,u(t),u'(2)),

where ¢,(s) = |s|P~2s, p > 1. Obviously, ¢, is invertible and o, I'=¢,, where ¢ >
1 such that 1/p+1/g = 1. Since the p-Laplacian operator and fractional calculus
arises from many applied fields, such as turbulent filtration in porous media, blood flow
problems, rheology, modeling of viscoplasticity, material science, it is worth studying
the fractional p-Laplacian equations.

In [12], T. Chen and W. Liu studied an anti-periodic boundary value problem for
the fractional p-Laplacian equation:

D}, [9p(D%, u(1))] = f(t,u(t)), 1€0,1],
u(0) = —u(1), 5)
‘D u(0) = —“Dg, u(1),

where 0 < o, < 1 with 1 < a4+ <2, Dy, is a Caputo fractional derivative of
order *, and p > 1, ¢,(s) = |s|P~2s is a p-Laplacian operator, f: [0,1] x R — R is
continuous.

In [13], the authors studied the existence of solutions of the following resonant
boundary value problem for fractional differential equation

DB (8, (DG u(@))] = £(1,u(t), D& u()), 1€ 10,1],
‘D0+u(0) 0, (6)
‘Df,u(1) =0,

where 0 < o, <1 with | < a+p <2, "D(’g+ is a Caputo fractional derivative of
order *, and p > 1, ¢,(s) = |s|P~2s is a p-Laplacian operator, f: [0,1] x R? - R is
continuous.

In [36], authors studied the solvability of the following two-point boundary value
problem for fractional p-Laplace differential equation

D10, (<DZ u(1)] = f(t,u(r), D% u(t)), 1€ [0,1],
u(O)zO, (7N
D, u(1) =° Dg,u(0),

where ‘Dg+ denotes the Caputo fractional derivatives, 0 < o, <1, | <o+ <2
¢,(s) = |s|P~2s is a p-Laplacian operator, f : [0,1] x R — R is continuous. By using
the coincidence degree theory, the existence of solutions for above fractional boundary
value problem was obtained.

Integral boundary conditions have various applications in applied fields such as
underground water flow, blood flow problems, chemical engineering, thermo-elasticity,
population dynamics, and so on. For a detailed description of the integral boundary
conditions, we refer the reader to some recent papers [5, 8, 11, 33] and the references
therein.
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In paper [25], Liu and Lu studied the following boundary value problem of integral
type for fractional p-Laplace differential equation

D} [0p (D& u(1)] = £(t,u(t), Dg-u(r)), 1€ [0,1],
u(0) = fo u(s)ds+Au(g), ®)
‘D, u(0) = k°Dg u(n),

where “Dy+ denotes the Caputo fractional derivatives, 0 < o, < 1, I <a+f <2
A keR, E,me0,1], ¢p(s) =|s|P"2s isa p-Laplacian operator, f: [0,1] x R? = R
is continuous. By using the coincidence degree theory, the existence of solutions for
above fractional boundary value problem was obtained.

In [22], Liu investigated the existence of solutions of the following boundary value
problem of integral type for the nonlinear fractional differential equation with the non-
linearity depending on D, u

D, [p (1)®(Dg. ul ))} +q(0)f(t,u(t),Dgu(r)) =0, 1<(0,1),
lim,ﬁotl_“u(t) " au(E) = fo g(s u(s),Dg u(s))ds, 9)
im0 ® (1P (1)) DS (1) + 57 BiDE. (&) = I3 h(su(s). DR us))ds

where 0 < o, 3 < 1, Dy, is the Riemann-Liouville fractional derivative of order ,
®(s) = |s|P~2s with s > 1 a p-Laplacian, 0 < & < & < --- < &, < 1, a;,bi(i =
1,2,---,m) are nonnegative numbers, p € C°(0,1) is positive and satisfies that there
exists 0] € R such that 01(¢—1) < o and

Pp(r) =19, 1€(0,1),
q defined on (0, 1) is nonnegative and satisfies that there exists 0, > —f such that
ﬁ+q€CO[O 1] ( )<t027t6(071)7

f,&,h defined on [0, 1] x R x R are nonnegative Caratheodory functions.

In almost all known papers, f is supposed to be continuous and be dependent on x,
Dy~ x or X' or D, oreven Dy, with p < ot —1. We find the assumptions p < ot — 1
and o+ f > 1 are convenient for proving the completely continuous property of the
defined nonlinear operator. So it is interesting to establish existence results of solutions
of BVPs without the assumptions p < oc — 1 or ot + 3 > 1. Our paper also fill the
researching gap mentioned.

The equations in (2)-(9) are called multi-term fractional differential equations [15].
Such class of equations have many applications. Bagley-Torvik equation and Basset
equation are examples see [15]. Differential equations governed by nonlinear differen-
tial operators have been widely studied. In this setting the most investigated operator is
the classical p Laplacian see citellllll, that is ®,(x) = |x[P~2x with p > 1, which, in
recent years, has been generalized to other types of differential operators, that preserve
the monotonicity of the p-Laplacian, but are not homogeneous. These more general
operators, which are usually referred to as ®— Laplacian (or quasi-Laplacian), are in-
volved in some models, e.g. in non-Newtonian fluid theory, diffusion of flows in porous
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media, nonlinear elasticity and theory of capillary surfaces. The related nonlinear dif-
ferential equation has the form

[q)(x/)]/ = f(trxvx/)v re (_°°»+°°)»

where @ : R — R is an increasing homeomorphism such that ®(0) = 0. More re-
cently, equations involving other types of differential operators have been studied from
a different point of view arising from other types of models, e.g. reaction diffusion
equations with non-constant diffusivity and porous media equations, see [18].

In this paper, we are concerned with the following boundary value problems of
integral type for multi-term fractional differential equations with Riemann-Liouville
fractional derivatives and sup-multiplicative-like functions

D [@(p1 (1)DE, u(t))] = g1 (1) fi (¢, u(t), DI (1)),

t€(0,1),1n (Oa)aﬁe(Ol)
lims ! =P (py (1) D ()):fogl(s u(s), DY, u(s))ds, (10)
timi! =P (py (1) D, u(r)) = Jy b (s,u(s), DYt u(s))ds,

DY, [D&,u(t)] = qa(r) fo(t,u(t), DF u(z)),
1€ (0,1),pe(a,a+p),a,pec(0,1),
limi!=%u(r) = Jy g2(s,u(s), D u(s))ds, (b

u(1) = satgru(n) = Jo ha(s,u(s), Dy u(s))ds,0 < n <1,

and
DS, u(t))] = g3(t )fa(t u(t), D3 u(r)),
€(0,1),3€(6-1,8),6 € (1,2],
1imt2_5 (t) —u(1 ): Jo g3(s,u(s),D¥, u(s))ds, (12)
hmﬂﬂ@ SDP u(t) —DPu(1) = [y ha(s,u(s),DP u(s))ds,
t—0
where

(o) D(’;+ is the Riemann-Liouville fractional derivative of order *

(e) ®:R — R is a sup-multiplicative-like function with supporting function
o, its inverse function is denoted by ®~! : R — R with supporting function v (see
definition in Section 2),

(o) p1 € CO(O, 1) is positive, continuous, and satisfies assumptions given in Sec-
tions 3, respectively,

(®) q1,92,93 € CO(07 1) is nonnegative, continuous and satisfies assumptions
given in Sections 3, 4 and 5, respectively,

(®) fi, />, /s are defined on (0,1) x R? and satisfy assumptions given in Sections
3,4 and 5, respectively,

() gi,hi(i=1,2,3) are defined on (0,1) x R? and satisfy assumptions given in
Sections 3, 4 and 5, respectively.
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We obtain the results on the existence of at least one solution (see definitions in
Section 2) of BVP(10), BVP(11) and BVP(12), respectively. The methods used in the
proofs of obtained theorems are based upon the coincidence degree theory. The results
obtained generalize and enrich some known results to some extent from the literature.

We clarify the structure of sequential fractional differential equations. Due to
the lack of commutativity of the fractional derivatives, this represents an interesting
complication that does not arise in the integer-order setting. In problems (10) and (11),
we necessarily have a composition of two fractional derivatives, which gives rise to a
sequential problem. Problem (12) is a natural generalized form of ordinary differential
equation x”(¢) = q(r) f(¢,x(t),x'(t)). Consequently, we feel these to be interesting, if
at this point minor, contributions.

The remainder of this paper is as follows: in section 2, we present preliminary
results. In section 3, existence result for BVP(10) is established. The existence result
for BVP(11) is established in Section 4. The main existence theorem for BVP(12) is
established in Section 5.

2. Preliminary results

To obtain the main results, we need some notations and an abstract existence the-
orem by Kilbas, M.Srivastava, Trujillo [20], Gaines and Mawhin [27].
Denote the Gamma function and Beta function respectively by

oo 1
F(al):/O s lems g, B(ahﬁl):/o (1—x)% LB 1ax oy, i > 0.

DEFINITION 2.1. (see [20]). The Riemann-Liouville fractional integral of order
o > 0 of a function f: (0,00) — R is given by

l 1
I t:—/ t—5)% 1 f(s)d
O+f( ) r(a) o ( S) f(S) s,
provided that the right-hand side exists.

DEFINITION 2.2. (see [20]). The Riemann-Liouville fractional derivative of or-
der o > 0 of a continuous function f: (0,00) — R is given by

o _ Lan o f(s)
Dy f(1) = Tn—o)de /0 (1 _s)a7n+1ds’

where n— 1 < o < n, provided that the right-hand side is point-wise defined on (0,).

LEMMA 2.1. (see [20]). For o0 > 0, the general solution of fractional differential
equation D, x(t) = 0 is given by x(t) = cot* ™" + it o2 et
where c;€R, 1=0,1,2,....n—1 n—1<a<n.

DEFINITION 2.3. (see [27]). Let E and Z be Banach spaces. L: D(L) CE —Z
is called a Fredholm operator of index zero if ImL is closed in £ and dim KerL =
co dim ImL < +oo.
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It is easy to see that if L is a Fredholm operator of index zero, then there exist the
projectors P: E — E,and Q : Z — Z such that

ImP=KerL, KerQ=ImL, X=KerL&KerP, Y =ImL&ImQ.
If L: D(L) C E — Z is called a Fredholm operator of index zero, the inverse of
L|D(L)mKerP : D(L)NKer P — Im L

is denoted by K,.

DEFINITION 2.4. (see [27]). Suppose that L: D(L) C E — Z is a Fredholm
operator of index zero. For nonempty open bounded subset Q of E satisfying D(L) N
Q # 0, the continuous map N : Q — Z is called L—compact if ON(Q) is bounded and

K,(I— Q)N(Q) is bounded and relatively compact.

LEMMA 2.2. (see [27]). Let L be a Fredholm operator of index zero and N be
L— compact on each open nonempty set Q centered at zero. Assume that the following
conditions are satisfied:

(). Lx # ANx for every (x,A) € [D(L) \ KerL) N 9dQ] x (0,1);

(ii). Nx & ImL for every x € KerLNdQ;

(iii). deg(/\_lQN}KerL , QN KerL,0) # 0, where A\=': Y /ImL — KerL is the
inverse of the isomorphism N : KerL — Y /ImL.

Then the equation Lx = Nx has at least one solution in D(L) N Q.

DEFINITION 2.5. (see [13]). An odd homeomorphism @ of the real line R onto
itself is called a sup-multiplicative-like function (or operator) if there exists a homeo-
morphism @ of [0, +e) onto itself which supports @ in the sense that for all vy, vy >0
it holds

D(vivy) = 0(v))D(v2). (13)

w is called the supporting function of ®.
REMARK 2.1. Note that any function of the form
k .
D(u) =Y cjlufu, ueR
J=0
is a sup-multiplicative-like operator, provided that c¢; > 0. Here a supporting function
is defined by @(u) := min{u**!,  u}, u>0.

REMARK 2.2. Itis clear that a sup-multiplicative-like function @ and any corre-
sponding supporting function @ are increasing functions vanishing at zero and more-
over their inverses ®~! and v respectively are increasing and such that

O L wiwa) < v(w)@ ! (ws), (14)

for all wi,w, >0 and v is called the supporting function of ®~!.
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REMARK 2.3. If ¢, ! (x) = |x|""2x for p > 1, we call ¢, a one-dimensional p-

Laplacian. By Remark 2.1, ¢, is a sup-multiplicative-like function with its supporting
function @(x) = |x|?~2x and its inverse function ¢, ' (x) = |x|? %x. The supporting
function of ¢, ! is v(x) = [x|9"%x. Here g satisfies 1/p+1/g = 1. Itis easy to see

115% v BBy I

In this paper we always suppose that @ is a sup-multiplicative-like function with

its supporting function @, the inverse function ®~! has its supporting function v.

3. Solvability of BVP(10)

Suppose that

(H1) f1:(0,1) x R? — R satisfies the following items:

o t— fi (¢,1% x,1%7 "~ 1y} is continuous on (0,1) for each (x,y) € R?,

o (x,y) = fi (t,1% x,1*7"~1y) is continuous on R? for almost all 7 € (0,1),
e for each r > 0, there exists a nonnegative M, > 0 such that

fi (0% et Y [ <Myt e (0,1), x| <

(H2) g1:(0,1) x R? — R satisfies the following items:

o 1 — gy (t,1% 1x,1% " ~1y) is continuous on (0,1) for each (x,y) € R?,

e (x,y) — g1 (£,t% 1x,t* 1 ~1y) is continuous on R? for almost all 7 € (0,1),
e for each r > 0, there exists a nonnegative function ¢, € L'(0,1) such that

g1 (1.1 1 y) | < 9 (1),1 € (0, 1), Iy| <

(H3) hy:(0,1) x R? — R satisfies the following items:

o t— Iy (t,t% 1x,1% " ~1y) is continuous on (0,1) for each (x,y) € R?,

e (x,y) = hy (1,1% 1x,t* 1 ~1y) is continuous on R? for almost all 7 € (0,1),
e for each r > 0, there exists a nonnegative function y, € L!'(0,1) such that

[ (1,0 et 1) | < wie) € (0, 1), [, [yl <

(H4) ¢ satisfies that there exist numbers k| > —o and [; € (—f3,0) with 1+

ki +1; > 0 such that gy (t) < #X1(1—1)" forall £ € (0,1) and ¢(t) Z0 on (0,1).

(H5) p; satisfies that there exists a number k > —o such that py (£) > ¢ *v(rP~1)

forall € (0,1).

(H6) ®:R — R is a sup-multiplicative-like function with supporting function ®,

its inverse function is denoted by ®~!' : R — R with supporting function v with

1
lim—————— = 1.

=0 v(t!=B)v(tB-1)
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REMARK 3.1. From (H4), we know that

1 1
O</ (l—s)ﬁflql(s)safldsg/ (1—s)B=1k1 (1 — )52 1as
0 0
=B(B+h,a+k)<

and

1 1
O</ (l—s)ﬁflql(s)slfﬂdsé/ (1—s5)B= 1k (1 —s5)rs'~Bas
0 0
=BB+1,2-B+k)<

Define
x(t) = u(t), y(t) = D(ps ()DL x(1)).

Then BVP(10) is transformed to

—1
PR Dg () = St € (0,1),

= f1 (t,x(6), DY, x(1)) ;1 € (0,1), (15)

b
0+y 1)

tlggtl Py(t) = fy g1 (t.x(r), DIl x(t)) dt
lime!=Py(e) = Jo hu (1.2(), D'x(1)) dr

It is easy to see that if (x,y) is a solution of BVP(15), then x is a solution of BVP(10).

Let C(0,1] or C[0,1] be the set of all continuous functions on (0,1] or [0, 1]. We
use the Banach spaces:

X= {x €C(0,1]: Dl.x € C(0,1], there exist the limits

tli_r}%t“"‘x(t),tli_r}rgt”’"f"‘DKLx(z)}

with the norm

|Ix|lx =max{ sup '~ %|x(r)[, lim ¢ *N"*DN x(1) b, x € X,
1€(0,1] 1€(0,1]

and
Y ={yeC(0,1]: there exists the limit lims'Py(r)}

—
with the norm
[IYlly = suprego ' Ply()ly €Y,

and C[0, 1] with the norm ||u|| = max |u(7)|.
1€[0,1]
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Choose E =X x Y with the norm ||(x,y)|| = max{||x||x,|[y||y }, (x,y) € E. Choose
Z =C[0,1] x C[0, 1] x R? with the norm

H(uvv7a7b)|| :maX{HuHNv HVH'XH ‘a|7 \b|}7(x,y,a,b) S
Choose

Dﬁ
p(t) = {(x) € B+ 2t pg x e clo., iy ecio. )

0
q1

and define the linear operator L on END(L) by

B
L(x,y)(t) = (vi(’tl;ﬂl) DY x(1), Df(])j(yt()t)7 }%tl—ﬁy@)7 mg—ga))

for (x,y) e END(L).
Define the nonlinear operator N on E by

~1
W) = (S A o). 00400) . [ (100, DY)

1
/ hy (t,x(t),Dng(t)) dt) for (x,y) € E.
0
Then BVP(15) can be written as
L(x,y) =N(x,y), (x,y) € END(L).

REMARK 3.2. It is easy to see that L: E(\D(L) — Z is well defined. Further-
more, N : E — Z is well defined.

In fact, for (x,y) € E, then ||(x,y)|| = r < eo. Then (H1)-(H3) imply that there
exists M, > 0 such that

|f1(2,x(0), DY ()] = |1 (2,47 ' = x(@)], e DT x(1)])|
<M1 €[0,1],

and there exist ¢,,y, € L'(0,1) such that

9 (1)
()

|11, x(t), Dl x(1))]

<
[ (2,x(1), Dt x(1))| <

1 E
1€
From (H1), we know that

t— fi(t,x(t), DY x(t)) = fi (¢,0%7 [t~ %x(e)], N N TODY X (1))

is continuous on [0, 1].
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Since @ is a sup-multiplicative-like function, we get that

,l(tl*ﬁx) b () 1_
v S v < @7 P, x>0,

“1(t'-Px) )
v(l=Byv(P-1) = v(B-1)

o (' Px), x<O0.

WV

Then for y € Y, we have

1B 1 - B
S < S <@ (), ¥ >0,

Py o oTlp) 10—
v(zﬁ*l)V(t\;*I) < V(tﬁ\i') <@ ﬁy(t))7 y(1) <0.

@' (y(1)
v(P-1)

is continuous

Together with (H6) we see that hm v éy (f g) exists. Hence r —

on [0,1]. Since
|13 1 (5,x(5), DY x(5))ds| < J3 91(s)ds < o

o 11 (5,x(), DY x(5))ds| < J3 wi(s)ds < o
Then N(x,y) € Z. So N : E — Z is well defined.

LEMMA 3.1. Suppose that (HI)-(H6) hold. Then L is a Fredholm operator of
index zero and N : X — Y is L—compact.

Proof. First, for (x,y) € E(\D(L), we see that L(x,y) € Z. To prove that L is a
Fredholm operator of index zero, we should do the following four steps.
Step (i) Prove that

KerL = {(ct*7',0): ¢ €R}. (16)

We know that (x,y) € KerL if and only if

f;; D8 x(1) =0,
0+V( )
an 0
lim; o' ~Py(r) =0,
lim, ;' By(r) = 0.

Hence x(t) = ct*~! and y(¢) = 0. Note that |T'(0)| = = and ﬁ =0. So

vl _ Y(a) oa—y—1
Dy x(1) Cif‘(a—yl)t .
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It is easy to see that x € X and y € Y. Furthermore, we have

Pit) pa ) —0e o] Dot*)y(z) —0eclo,1].

v(eP=1)"0 a1

Then (x,y) € KerL if and only if x(¢) = ct*! for some ¢ € R and y(¢) = 0,z € [0,1].
Thus KerL = {(ct*~1,0) € E, c € R}.

Step (ii) Prove that
ImL = { (u,v,a,b) € Z, ﬁfol(l — )1 (s)v(s)ds=b—a } . (17)

For (u,v,a,b) € Z, we know that (u,v,a,b) € ImL if and only if there exist (x,y) €
E(D(L) such that

It follows that

(1) = Jy Lt )y + o with ¥ € R

(t=$)* N~ (s‘ﬁ

Dfalt) = Ji Ui s+

y(t)= [y (t_rs&f)q q1(s)v(s)ds+YB~1 with T € R.

We note that (HS) implies that

(=)™ v 9™ v
/0 o) pils) u(S)ds'é/O o) kav(sﬁ—l)H”H“’ds

=)t
—/0 Wskdsﬂuﬂw

1 1— o—1
:t‘”k/o %wkdwhﬂm < oo, 1€ (0,1],

and

t(f—g)e—n-1 S[3—1
[l

(] — )01
< 1otkn / mwkdww”w < oo
Fla—n) pils) o T ’

(o)
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where 7 € (0,1]. Then x, D] x € C(0,1] and y € C(0,1]. Since

tl—a

fé (I}EZ;;I v’().\ﬁ;)l)u(s)ds‘ < tl-‘rkfol %WdeHMHm —0ast—0,

Hn kdw|ul| — ast — 0,

_ 1 (1) N1 y(sP- 1) 1+k
“1Jo o) pits) * s)ds| < fo FO‘) W

then x € X.
Since (H4) implies that

t(r—g)B-1
/Ouéh()

1-B
' T(B)

< 1B s)P-1 1
— 1
/ B ) (T —=5)1|v||eds
B-1
1= ﬁ/ s) t—sllds v
L= asll
ﬁ+ll 1

1
_ HVH tl+k1+ll ldW
0

— 0 ast — 0,

then lim,_o#'~Py(r) = a implies y € Y and Y = a. From lim,_; ' By(t) = b, we get

1

i ()) q1(s)v(s)ds+a=b. (18)

On the other hand, if (18) holds, we get (u,v,a,b) € ImL. Hence (u,v,a,b) € ImL if
and only if (18) holds. Then (17) is valid.

Step (iii) Prove that ImL is closed in X and dim KerL = co dim ImL < +-co.

From (17) ImL is closed in Z.

It follows from KerL = {(ct*"',0) € E, ¢ € R} that dim KerL = 1. Define the
projector P: E — E by

N a-1 A
P(x,y)(t) = (f((ll s))a 1:11(())05 )fil\ ol 0) for (x,y) €E. (19)

It is easy to prove that Im P C KerL.
For (ct*~!,0) € KerL, choose x.(t) = ct*~! and y.(¢) = 0. It follows that

pi(t) _ Dﬁ+)’6(’) .
v(tﬁ—l)Dw x.(1)=0 and (EHT_O.

One can show that (x.,0) € E and

1—5)% g (s)es®Lds _
P(XC,O)(I) (?O((l 3)(1 1211(())5‘1 lgs ta ! O) :(Cta 170)'

So Im P O Ker L. Hence Im P = Ker L.
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For (x,y) € E, we have
P((x,y) = P(x,y))
_p (x_ (1= 5)% gy (s)x(s)ds o1, 0)

S (1= 5)% gy (s)5%1ds

_ L(1—5)% gy (s)x(s)ds g
B (i as
T =5 g (s)so1ds

So X = KerL + KerP. For (x,y) € KerLNKerP, we get x(t) =0 and y(z) = 0. Hence
X = KerL @ KerP.
Define the projector Q : Z — Z by

_ Jo (1=5)B~1qy (s)v(s)ds—T(B)(b—a) ,1 B
Q(u,v,a,b)(t) - <O7 fol(lf.\')ﬁ’lql(.\').\'l’ﬁds 4 9 Oa 0 (20)

for (u,v,a,b) € Z.
It is easy to show that KerQ C ImL.
For (u,v,a,b) € ImL, we have ﬁ Jo (1 =5)B=1g,(s)v(s) = b —a. Then

_ (o J0=9)P""q1(s)v(s)ds—T(B)(b—a) ,1—p _
0O(u,v,a,b) = (0, P ()5 -Pas t'7P,0,0 ) = (0,0,0,0).

It follows that ImL C KerQ. Hence ImL = KerQ.
For (u,v,a,b) € Z, we have

v (o B0 =9 g (s TB)B—a) 1
el (O’ W g a0

_ ( =P (s)ds —T(B)b—a) b)
- ) 1 _ _ ) ) *
Jo (L—s)B=1g,(s)s'~Bds

It is easy to see that

_ L1—s)B=1g, (s)v(s)ds—T b—a) 1—
i 1= 9P ans) () - B0l os) o,

_ J0(1=5)P" g1 (s)v(s)ds—T(B)(b—a) ,1—p
<u, ' f()l(I*S)B*lql(s)sl*ﬁd_y t , a, b | €ImL.

Thus ¥ = ImQ + ImL. It is easy to show that ImQ NImL = (0,0,0,0). Hence Y =
ImQ & ImL.
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From above discussion, we see that dim KerL = co dim ImL =dimImQ =1 <
+oo. So L is a Fredholm operator of index zero.

Step (iv). We prove that N is L—compact. This is divided into three sub-steps.
Substep (ivl) We prove that N is continuous. Let (x,,y,) € E with (x,,y,) —
(x0,y0) as n — oo. We will show that N(x,,y,) — N(xo,y0) as n — oo.
In fact, we have r > 0 such that ||(x,,y,)|| < 7 < +eo and
sup,e(o,1) '~ *hn(t) = xo(r)| — 0,1 — oo,
supe(o,1 11Dy xa(t) — Dxo(1)] — 0,n — oo, (21)
sup;co.1)2' P ya(t) = yo(t)| — 0, n— oo,

By

@ (1)
v(tP-1)

1 1
/Ogl (t,xn(t),Dngn(t))dt,/O hy (t,xn(t),Dngn(t))dt>

N(x"’y")(t): ( afl (taxn(t)?Dghrxn(t))a

for (x,y) € E. Since ® is a sup-multiplicative-like function, we get that

oy el ly) pt
v(,l—ﬁ)v(,ﬁ—l)\ v(,ﬁ—l) \(D (y)v y>07

(22)

> 1(y) o1 (B, _
v(tlfﬁ)v((ytﬁ’l) - v(t(;*l)V) >@7(), y<0.

Then
o' (tPly)

—————=~ iscontinuouson [0,1] X R.
v(tB-1) [0.1]

(t,y) —

It follows that %ﬁ:;x) is uniformly continuous on [0, 1] x [—r,7].

For any € > 0 there exists 0 > 0 such that

d)’l(tﬁflul) o Q)’I(I'B’luz)
v(P-1) v(iP-T)

<e, t€[0,1],|u; —up| < 9.
From (21), there exists N such that
7% x, () — x0(2)| < 8, t € (0,1),n> Ny,
(=DM x, (1) = DI xo(2)| < 8, 1€ (0,1),n> Ny, (23)

1P lya(t) —yo(t)| < 8, t € (0,1),n > Ny.
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Hence,

O~ (P11 Py, (1)) @ (PP Py (1))

O (y,(t)) D (yo(r)) ‘ _
v(tB-1) v(iBP-1)

v(iB-1) - v(B-1)
<eg, fort€(0,1),n> Ny.
It follows that

lim sup
e t—(0.,1)

Similarly we can show that

lim sup | f1(2,x0(1), D} xa () — f1(t,2a(t), Dy 20 (2)) | = 0,

0 (0,1)
Jijgof(} g1 (.3 (t), DI xa()) dt = [ g1 (t,x0(t), DIL xo(2)) dit,

lim [ hy (¢,% (), DI xa(2)) dt = [ hy (t,x0(t), DL xo(2)) dit.

Nn—o0

Then
[|N (X, yn) — N(x0,50)|| — 0,1 — oo

It follows that N is continuous.

Let € be a bounded open subset of E. We have that there exists r > 0 such
that ||(x,y)|| < r for all (x,y) € Q. Since (H1)-(H3) hold, then there exists M, > 0,

oy, Wy € L1(0,1) such that

|1 (1,x(0), D} x(1))| < Myt € (0,1),(x,y) € Q,

’gl (t’x(t)’Dng(t))’ < ¢V(t)7t € (0’ 1),()6,)7) €Q,
|1 (1,x(6), DY x(1))]| < wi(1),2 € (0,1), (x,y) € Q.

Substep (iv2) Prove that QN (Q) is bounded.
One has

ON (x,y)(7)

-1
- Q(W, fi (1,3(0), DY x(1)),

: ph dt 1h t.x(t),D" t))dt
| & (0x). D x(0) dr, [ (1,x0). D] x(0)

_ (0 Jo (1 =P a1 ()i (5:x(s), D x(s)) ds |
-\ fol(l —s5)B-1q,(s)s' - Bds

(24)
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T(B) ( Sy (,x(6), DY x(2)) de — [ g (t,x(t),Dg;x(t))dt)
fol (1—s)B-1q(s)s'~Pds

=B o, 0).

It is easy to see from (25), (26) and Remark 3.1 that
Jo (1=5)B=1qy(s) f1 (s,x(s), DY\ x(s)) ds 1_p
Jo (1=5)B=1g)(s )s1 Pds
T(B) (o i (.5(0), Dy x(1)) de = [ g1 (1,x(0), DY (1)) )
fo (1—5)B=1gy(s)s'~Pds
R0 g wds T8 (5 00t +13 o))
(=) lqi(s)s'Pds i (1=5)B1qi(s)s' Pds

It follows QN(Q) is bounded.

tlﬁ'

S

Substep (iv3) Prove that Kp(I— Q)N : Q — E is compact, i.e., prove that Kp(I —
Q)N (Q) is relatively compact.
Let P:X — X and Q:Y — Y be defined by (19) and (20). For (u,v,a,b) € ImL,

let

1 (f—g o—1 sﬁ—l
Kp(u,v,a,b)(t) = (/0 (t l"((l) vi()l(S) )u(s)ds—c(u,v)ta_l,

where ¢(u,v) is a constant defined by:

_ s (s—w o1 w'37l
Jo (1= 5)a=1 o Lo Y0 (w)dwds

Jo (1= 5)2=1gy (s)s*~ds
One sees Kp(u,v,a,b) € E(\D(L) and

c(u,v) =

PKp(u,v,a,b)(1)
1 (f—g o—1 Sﬁ—l
:P</0 U T ) )u(s)ds—c(u,v)ta_l,

(&) pils)
Jolt— $)B=1gq1(s)v(s)ds n atﬁl)

T'(B)
_ (fOl“ —)" i) [ i e el s 0)
- S (1=5)% g, (s)s@ 1ds ’
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It follows that K,(u,v,a,b) € KerP. Then Kp : Im L — D(L) NKerP is well defined.
Furthermore, for (u,v,a,b) € ImL, by direct computation, we have
(LKp)(u,v,a,b)(t) = (u,v,a,b).
On the other hand, for (x,y) € Ker PNE(D(L), by direct computation, we have
KrL(x,y)(1) = (x(1),¥(0)).

Then Kp is the inverse of L : D(L)(\KerP — ImL. The isomorphism A : KerL —
Y /ImL is given by

Aet®1,0) = (0,ct'P,0,0), ceR. 7)
Then
K,(I- Q)N
1
— K,(I- Q( tﬁ 1 ) 4 tx(t),Dng(t))7/O g1 (6,x(e), DI x(1)) di,

/ 1 (2,x(t), D} x(1 )dt)

o
= (t,?’(f)”, i (2300, DI 2(0).
/01 ), DI x(t ))dt,/olhl (t,x(t),D%Lx(t))dt)
1

B fo(l_s)ﬁ 'q1(5)fi (5,x(s), Dl x(s)) ds |
k(0 eSO
_F(ﬂ)( Jo 1 (2.x(2), DY x(2)) dt — [y g1 (t,x(t),D@x(t))dt)tliﬁ . 0)
fol(l—s)ﬁ—lql(s)sl—ﬁds T

= (x1(),31(1))
with
5= u)“ )

(=) @) [ OO I e T s
fO I'(a) p1(s) ds fo(l 5)% g (s)s®Lds ! ’

xi(t) =
and

Vi(t) = gy Jo e = )P~ qu(s) f (5. x(s), D x(s))ds

_ f (1— Dl Yg () f1 ,x(s),Dy1 x(s) )ds
—ﬁfé(t—s)ﬁ Lqy(s)s'Pds= T E(S)SI,BO;S )

B o T (S ny (ex(0).D7 x(1) )dr— [} g1 t,x(t)7Dyl+x(t))dt)
+Wf(;(t—s)ﬁ 15]1 (S)Sl ﬁds ( ( _[g(;)—s)/})lql(s)sl/gds .
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To complete this step, we must prove that Kp(I — Q)N(Q) is bounded and equi-continuous
on each subinterval [e, f] C (0, 1] and equi-convergentat = 0.

Firstly, we have

oy aea [TE=5) @7 (y(s))
170 (1) = 1! /O o) ons) ds

1 s (s—w) oLy
fol(l _S)oc lfO ( F((Zc) pl(( ()))dwds

fol(l —s5)% g (s)s*1ds

)

and

F—s)* o (y(s)) P
Cla—n)  pils)

N

tl+n_aD2)/I+XI (Z) _ tl+Y1—OC[)

§— Wat 1
=)y bt awds  1(q)

T e -
and
Pyt
= tr(Ti [ =5 11(5)(5.x05). D3 x()ds
. ;(_[g [ 11 (5)s sl U —s}:(llil <;;f11 L(}(; ) z;;< 5)) ds
+% [ =55 bas

T(B) (o b (1,x(1), DYt (1)) dt = Ji &1 (1,x(0), D3 x(0)) it )
fol (1—s)B-1g,(s)s'~Pds

X

—|—/ g1 (1,x(t Dy'x())dt

It is easy to show from (25) that Kp(I — Q)N (L) is bounded.

Second, for each [e, f] C (0,1], and 71,#; € [e, f] with #, > #;, we have

= %x1 (1) — 1y %x1 (1))
fl—so‘ "o (v(s)
/ pi(s) as

o 2 (=)™ @ (5(s))
A O

and
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t11+Y1 DYl 1y, (tl) t21+Y1 DYl xl(t2)|

- / (=9 " o7l (y(s)) ,

! o Tla—n)  pils)
= LUy
? o TIle=n)  pils)

<

N

Sty

and

|rf"3y1<n> té‘ﬁy1<t2>|

N " (01— )P gy (5)F(s.x(s), DY x(s))ds

T(B) |
—t1 ﬁ/tz (t2— )P q1(5) f (5,x(s) Dgﬁx(s))ds
-’ B-1 1-B n P B-1 1-B
1 _ _
+ W/O (t1 —$)" q1(s)s Pds— (ﬁ)/ (tr — )" q1(s)s" Pds
fo(l $)P1q1(s) /1 (5,x(s), D}, x(s)) ds
Jo (1 =5)P~1g,(s)s'Pds
n tlliﬁ R 1-B g 217!3 S 1-B
By ) O s s Zos [P =g (s Pas
u (6 (2,2(0), D3 x(6)) de — [ g1 (1,x(0), D}t (1)) )
J =) 1q1(s)s' Bds
< ﬁ tll_ﬁ /011 (11 —s)ﬁ_lql(s)f(s,x(s),Dgﬂx(s))ds
7 [* = 9P 511 5.6), D ()
1-B 1 1-p 1)
gy ) O a0t Pas— s [P =9 i)' Pas
L M (1= 5P g (s)ds
fol(l —5)B=1q,(s)s'Pds
Lo [ =5 a5 Pas - : [ =9 ar)s!Pas
DGR 0B o
T(B) (Jo [wr(0) + 9r(0))de )
X .
fol (1—s)B-1g,(s)s'~Pds
We find that

o [T OG0 g 2 (-9 & ((s))
e R e T T )

N
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—a —a t2_s ) Lot (Sﬁil‘sliﬁ)’(s)‘)
Sk |/ pi(s) “
i Oz-—S)a l(b (515" By(s)])
i A a) ") as
o [l =9 (1 —5) | D (P s Py (s)))
Sy ) e

P L (e M G
<l g a/ 1 _
‘tl t2 | 0 F(a) Pl(S) ds® (HyH )

o [ VP
il e bl ds

AR L U L NG P
e nm o @ bll)as

l‘ —
el a|/ @=9" ko1 ()

2 (¢ —s)“_l _
1-o 2 k 1
t —~————s"ds®
+1 /tl o) s'ds (r)

—1 n -1
ti“k/ 7(1 — W) wkdw—léﬂk/t2 7(1 —)° wkdw
0 0 o

1-o
t
h T(0)

B
< ‘tll—oc o tzl—oc| max{ea+k,fa+k}

s amax{ea+k7fa+k}/ UZW " kawd! (r)

(a,k+1)

+f1 OC|:tO(+k tg+k\ r(a)

oc 1
+max{e°‘+k,f°‘+k}/ 7wkdw o ()

— 0 uniformly on Qast| — 1.

Then we get

1-o 1-o

;7 “x1(t1) —t, “x1(t2)| — O uniformly as t; — #;.
1 2
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Similarly we can prove that
\tllﬂl_aDngl (1) — t21+Y1_aDgl+x1 (12)] — O uniformly as #; — 5,

|t11_l3y1 (1) — tzl_ﬁyl (t2)| — 0 uniformly as t; — 1.

So Kp(I — Q)N(Q) is equi-continuous on each subinterval [e, f] C (0,1].
Third, we have

s (s—w o1 p-1 y(w
o (1 =) o i ity dwes
S (1= 5)71qy(s)s%~1ds

ot [0 2 bt

1% 1)+

(o) pi(s)
<
<o | I %skdsd)_l(r)
S 1 %wkdwd)l(r)

— 0 uniformly on Q as t — 0.

Similarly we can show that

1 s (s—w) Lo (y(w
Jo (1=~ J3 Cqpl= 2505 awds (g

Jo (1—5)%1qy (s)s*~1ds F(oe—n)

tNeDI Xy (1) +

— 0 uniformly on Q as ¢ — 0,

and

1 —
tl_ﬁyl(t)—/o g1 (t,x(t),Dng(t))dt — 0 uniformly on Q as 7 — 0.

Hence Kp(I — Q)N(Q) is equi-convergentat ¢ = 0.

So Kp(I — Q)N(Q) is relatively compact. Then N is L—compact. The proofs are
completed.

A function [J : [0,00) x [0,00) — [0,00) is called a bi-non-increasing function if
both x — [](x,y) and y — [(x,y) are non-increasing. Now, we prove that main theo-
rem in this section. Suppose that

(H7) there exist nonnegative functions @g, ¢, € L'(0,1) and bi-nondecreasing
functions ]y, [T, ITp : [0,00) x [0,00) — [0,0) such that

LA (0%t 0 ) | < T (ul, ),
(28)
g1 (£,0%  u N | < @ (1) T (il V1)
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or
L (@ =) [ < T (Jul, V),
(29)
[ (1,04 L, 0 %) [ < () T (Jul V1)
hold for all (u,v) € R?, ¢t € (0,1).
(H8) there exists a constant M > 0 such that for x € X with t!=%|x(¢)| > M for
all r € (0,1) implies that

/01 {(1 0P qi(0) A1 (1,x(r), DY x(2)) — By (1,x(2), DI x(r) )

g1 (1.2(0), Dy x(1)) [ e 0.

(H9) there exists a constant My > 0 such that

C/O1 [(1 — )P 1q1 (A <t7Cta_1,C%ta—n—l)

=N
— Iy <I7Cta—17cﬂta—)’1—l)
Fla—n)

I'a)

+g1(t,at% e t“‘”‘l)]dt>0 30
gl( Tla—7) (30)

holds for all |¢| > My or

C/O1 [(1 — )P 1q1 (A <t7Cta_1,C%ta—n—l)

—h <t7cta_17c7r(a) t“‘yl‘l)
Fla—mn)

(o)

+g1(t,ct% e t“”'l)]dt<0 31
gl( Tla—m) (3D

holds for all |c| > M.

THEOREM 3.1. Suppose that (H1)-(H9) hold. Then BVP(10) has at least one
solution if

BEMED 4 [L o (1)dtrg < 1(if (28) holds ),

T(B)
(32)
BB ry 3 03 (1)dtr, < 1(if (29) holds ),
where
Ay — M. M (o) Bo — B(ak+1) B(ok+1)+B(o—y k+1)
0 = MaX M, Miia=yy f» B0 = M T M@= :
rp= lim Hf(Ao+BofD’l(\;),Ao-&-BO(D’l(v))7 re= lim r[g(A0+Boqr1(vv),A0+Boqr1(v))7
: V—oo V—+-o0
rp= lim DeotBe® (Ao +By@1(v)

V—r+oo v
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Proof. Let E, Z L and N be defined above. By (H1)-(H6), from Lemma 3.1, L
be a Fredholm operator of index zero and N be L—compact on each open nonempty
set Q centered at zero. We seek fixed point of the operator equation L(x,y) = N(x,y).
To apply Lemma 2.2, we should define an open bounded subset  of E centered at
zero such that (i), (ii) and (iii) in Lemma 2.2 hold. To obtain €, we do three steps. The
proof of this theorem is divided into four steps.

Step 1. Let Q; = {(x,y) € END(L) \ KerL, L(x,y) = AN(x,y) for some A €
(0,1)}. We prove that Q; is bounded.

In fact, if Q; is unbounded, then there exists two sequences {(x,,y,) € E(1D(L)\
KerL} and {4, € [0,1]} such that L(x,,yn) = AuN(xy,y,) and N(x,,y,) € ImL and
[|(Xn,¥1)|| — o= as n — co. Then

oLy,
thlﬁ( )1 O+xn(t) = xn V(l%v*fg)) 7t E (07 1)7

)
n(t)
%) i (,20(1), DY 3 (1)) 11 € (0, 1),

time' =Py, () = A Jo 1 (1,2 (1), DY xa (1))
time! Py, (1) = A Jo b (1,3 (). D (1)) dt,

and

/01(1 — )P q1(9) 1 (5,20 (5), DY xa(s)) ds = /olhl (t,20(2), Dl xa (1)) dt
1
— [ &1 (100, Dfoxa(0)) . 33)
It follows that
B-1
— / F(s;}) ()f1 (5,%(5), DI xu(s)) ds
1
0P [ (10, D) i (34)
or
B-1
=M / rs)) q1(s) f1 (s,xn(s),Dngn(s)) ds
ti-sP! ¥
A [/0 qu(s)fl (s,xn(s),DOan(s)) ds
—/Olhl (1,30 (1), DY xn (1)) e [P, (35)
and there exists a constant Y’ € R such that

—s)o-l ! s _
() = A fo S S s vl (36)




Differ. Equ. Appl. 5 (2013), 409-472, doi:10.7153/dea-05-26 433

From (H7) and (33), there exists 7y € (0,1) such that \t&""xn(to)\ < M. By (36),

we have
0 (1g— )" @ (yuls))

o) o1 (s) ds+7.

10 % (10) = Ant(}“"/o

Then

X1 < g™ %xn(t0) | +

Lo [0 (0= )" @7 (y(s))
i
0 (19— )% L D (P[5! Py, (s)]])

(o) pi(s)
0 (1o _S)oc—l v (sﬁfl)
T(a)  pis)

_ ) (Z‘O—S)a71 _
<My [t ()

ds

<M+t(}“"/
0

<mie ds® ([ |yuly)

l—o a+k I(I_W)Ohl k -1
=M [ e )

BIOKEL) 1)1y, 1y)-

<M
T T

Then

_ I(a) o [M =) o (u(s))
An-apn ) < ] gt a/ d
| o)l < Mg = o Ta—n e

B(o,k+1) INa)
W(D 1(|yn|Y):| Ta—m)

ot (f— )l _
L e /0 ﬁskdsd) L(1yally)

g[M-i—

B(o,k+1)

s [’V” ()

. I'a)
o ! n _
()| e
B(oo—y1,k+1)
—_— - ® n .
r(a_,)/l) (Hy HY)
One has

||xal|x < Ao+ Bo®@ " (|[yally)- (37)

Case 1. The inequalities (28) hold.
From (34) and (28), (37), we get

¢ _sﬁ—l
0] = ' [ %qmsm (5.20(5). D 3 (s) ) s

1
A / 21 (1,50(), DY (1)) di
0
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Y
Stl*ﬁ/o ‘ 1“(23) q1(5) [ i (500 (5), Dg'oxu(s)) | ds

1
[ o) D)

B t (t—s)ﬁ71 _a 1—o 1
<! ﬁ/o 5] ql(s)l;[(sl |, (5)], 217 DY, x(s)])ds

[ TT6 o) 47D, ) il

1 _sﬁ—l
<o | U m;) (1= TT bl sl )t

1
+ /0 00 (CACNEA

C(r— )B-
<o [ 15k1(z_s>111;[(|xn|X,|xn|x>ds

1
+ /0 0x(0)at TT (sl )

_ tlfﬁtﬁJrlHrkl /1 w
0 r(B)

1
+/o (Pg(t)dtl;[(HXnHXvHanX)

k
witdw [T(1xallx | Peal 1)
7

B(B+11,k +1 !
< %guxm,umw/o oc() [Tl sl )

< BB D) a4 B (i) Ao + Bo® (L)
DU

+ [ 0 TTA0+ Bo® ™ () Ao + B ().
8

It follows that
|yn|Y\Ml;[Ao+Boq) (yally) Ao+ Bo® (Ilyally)
+ /O 05(0) [T Ao+ 500" (Il o+ Bo®~ ()
Then

BBLIEU T, (A +Bo® ! (Illy) Ao+ Bo@ ! (Ill)

1<
[lynlly
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n Jo 9¢(1) TTg (Ao + Bo®@ " (|lyally) ;A0 + Bo® " ([[yul|r))
[lynll¥ '

From ||(x,,yn)|| — o as n — o and (37), we know that |[y,||y — o as n — oo. Let
n — oo, It follows from above inequality that

1
it +1—~l(ll;];1 i 1)’".7""/0 g (t)dtrg,

a contradiction to (32). It follows that Q; is bounded.
Case 2. The inequalities (29) hold.
From (35) and (29), (37), we get

1<

t _Sﬁfl
0] = ' [ %m(s)fl (5.20(5), DT xa(5)) ds

1 — B-1
_x,,/o %ql(s)fl (53 (5), DIt xn(5)) dls

1
+MAMQMUDWMDW

1 (p—g)B-1_B-1(1 —)B-1
<P /0@ : rt<ﬁ> o gy (1A (sva(s). D))l

Bt
+ | %fh(s)fl (s, (5), Dgixa(s) ) Ids

13
1
+ | |y (2,20 (2), DY x (1)) |l
L—wptht
e [ U T
A g " WI;I(HXHX ||x[x)

1
+/0 q)h(t)dtl;I(HxHLHxHX)

B(B+1,ki+1)

<27y 1o+ Bo®  (1hnlly), Ao+ Bo@™ ([billy)
f
—|—/01¢h(t)dtl;I(Ao+Bod)1(|)’n|Y),AO+BOq)1(|yn|Y)).
Then
|lyally <2 M

[ 140 +Bo®~" ([[yally). Ao + Bo® ™" ([[yull¥))
fi

+ /0 on(6)dt TT (Ao + Bo® " ([[3ally), Ao + Bo® (|3l )-
h

It follows that
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B(B+11,k _ _
| 2P T (o + Bo® H(ll ) Ao+ Bo®” (1))

|[yally
n Jo () T1,(Ao + Bo® ' (Ilyully), A0 + Bo® ' (|[yally))
[[ynlly '

Let n — oo. It follows from above inequality that

B(B+1,ki+1)
r'(B)

a contradiction to (32). It follows that €, is bounded.

Step 2. Let Q = {(ct*1,0) € KerL: N(ct*~!,0) € ImL}. We prove that Q, is
bounded.

For (ct*~1,0) € Q,, we have

1
1<2 rf+/ On(t)dtry,
’ 0

r
N(ct*71,0) = (O,fl (Lcta_l,c&t‘]‘_”_l),

F(a—mn)
! I'(a)
a—1 a—y—1
/o gl(f,Cf ’CF(a—yl)t )dt,

1 _ I'a) i
a—1 a—y—1
/Ohl(t,ct ’cr(a Yl)t )dt).

So

(1_5 ﬁ ' < OC) oc—yl—1>
¢ d
/0 (s).fi Tla—7) s
1
/ h(l % 17C71"(a) t“‘yl‘l) dt
0 I(a—n)
1 _ INa) i
— tet% 20 o 1) dr.
fe(e ey

From (H9), we get that |c| < My. This shows Q; is bounded.
Step 3. If (30) in (H9) holds for all |c| > My, we prove that
Q= {(ct*10)eKerL: AA(ct*1,0)+ (1 —A1)ON(ct*1,0) =0, A €[0,1]}

is bounded, where A is the isomorphism given by A(cz®~!,0) = (0,c1'P,0,0).
For (ct*~1,0) € Ker L, one sees that

—Aet' B = (1= By,

where
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1
J =
TR (- )P qn (s)s1Pds
(1—s)B-1 o T(o)s* 11
“ SR CE
a1 T(o)s*n-! vt T(a)s*n-!
_hl(s’cs l’cw>g1<&cs I’CWHCI&
Then

—Ac? = (1-A)cly.
If A=1,thenc=0.If A €[0,1), and |c| > Mp, we get

0>—-Ac?=(1—A)cl; >0,

a contradiction. Then |c| < My. Then Q3 is bounded.
If (31) in (H9) holds for all |c| > My, let

Q3= {(ct* 10)eKer L: AA(ct*1,0)— (1 =2)ON(ct®1,0) =0, 2 €10,1]},

We can prove that Q3 is bounded too.

Step 4. We shall show that all conditions of Lemma 2.2 are satisfied.

Set Q be a open bounded subset of X centered at zero such that Q D Uf’z 15,-. By
Lemma 3.1, L is a Fredholm operator of index zero and N is L—compact on Q. By
the definition of Q, we have

(@). L(x,y) # AN(x,y) for (x,y) € (D(L)\ KerL)NdQ and A € (0,1);

(b). N(x,y) ¢ ImL for (x,y) € KerLNJQ.

(¢). deg(ON|kers, QNKerL,0) #0. In fact, let H((x,y),A) = A A (x,y)+ (1 —
A)ON(x,y). According the definition of Q, we know H((x,y),A) # 0 for (x,y) €
0QNKerL, thus by homotopy property of degree,

deg(ON|ger - 2N KerL,0) = deg(H(-,0),QNKerL,0)
= deg(H(-,1),QNKerL,0)
= deg(A,QNKerL,0) # 0.

Thus by Lemma 2.2, L(x,y) = N(x,y) has at least one solution in D(L)NQ. Then x is
a solution of BVP(10). The proof is complete.

THEOREM 3.2. Suppose that (HI)-(H6) and (HS), (H9) hold and
(H7)' there exist nonnegative numbers Ag,Bs,Cs,Aq,Bg,Cq,Ap, By, Cpy, and non-
negative functions @q, ¢y, € L'(0,1) such that

[fi (0% 1) | < Cp + Br(|ul) +Ap(|v]),
(38)
|g1 (l7ta_1”vta_n_lv)| < ¢g(t)[cg+Bg(D(|”D "‘qu)(h’m
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or
i (60 e 1) [ < Cp o+ Bp@(Jul) + A (),
(39)
}hl (t,tailu,taiy'ilvﬂ < ¢h(l‘)[Ch +th)(|u‘) +Ahd)(|v|)}

hold for all (u,v) € R?, t € (0,1).
Then BVP(10) has at least one solution if

[(Bf +Ap) BB (B 1) ) (Pg(t)dt] o(Bo) < 1if (38) holds,
(40)
[2(Bf + A BEIEED (B4 Ay Jo (Z)h(t)dt} o(Bo) < 1 if (39) holds,

where

_ Mo \ . Blak+D)+Bla—yk+])
Ao_max{M7 MW}» BO_maX{v’ I'a—mn) 1 }

Proof. Let E, Z L and N be defined above. By (H1)-(H6), from Lemma 3.1, L
be a Fredholm operator of index zero and N be L—compact on each open nonempty
set Q centered at zero. We seek fixed point of the operator equation L(x,y) = N(x,y).
To apply Lemma 2.2, we should define an open bounded subset € of E centered at
zero such that (i), (ii) and (iii) in Lemma 2.2 hold. To obtain €2, we do three steps. The
proof of this theorem is divided into four steps.

Step 1. Let Q; = {(x,y) € END(L) \ KerL, L(x,y) = AN(x,y) for some A €
(0,1)}. We prove that Q; is bounded.

It is easy to see that

—1
(I)(A() —|—B0(I) HynHY q)((q) T Hy HY +B()> (HynHY)>
[nlly Tl
—1
w<d> onll) +BO>¢(¢ (Iyally))
HynHY
=0 +B0>
<q> Y lyully)

— 0(By) as n — co.

(
Choose [1;(s) = Cr + By®(s) +A®(s), [Ig(s) = Cg + B, @(s) + A, @(s), TIx(s) =
Ch+ B, ®(s) + A, D(s). If (38) holds, we get (37) and

B I,k +1 1
lly < PP g [ oo

B(B + 11,k +1) 1
+ {(Bf‘FAf)T‘F(Bg +Ag)/0 ¢g(t)dt]

x ®(Ag+ Bo® " (||ynl|v))-
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It follows that

{ < CfB(ﬁ?l(l/%];lH) +C, fo1 g (2)dt

[lynlly

1
+ {(Bf +Af)w + (Bg +Ag)/0 ¢g(t)dt]

" D(Ag+Bo®@ " (|[yally))
|[ynlly

Let n — co. We get

U< [(By+A7) B+ (By+Ag) [ 94(1)dr| o(Bo)

which contradicts to (40). Hence Q; is bounded. If (39) holds, we also get that Q; is
bounded.

The other part of the proof is just same to that of the proof of Theorem 3.1 and is
omitted.

THEOREM 3.3. Suppose that (H1)-(H6) and (H7)" hold and

lim  inf 1—¢)Pt 14y e
u—+o01e(0,1),veR {( ) a(1)fi ( " v)

—hy (1,0% M%) g (t7t°‘_lu,t1+7’1_av)} >0,

and

lim  sup [(l—t) ai) fi (1,0 Tt TN y)

U= 7%0e(0,1),veR

—hy (1,0% Tt TN T0Y) g (t,talu,tlﬂ'lav)} <0.

Then BVP(10) has at least one solution if (40) holds.

Proof. We need to proof that (H8) and (H9) in Theorem 3.2 hold. From the
assumptions, there exist M > 0 and r > 0 such that

(U=0)P2gqi (@) £ (1,0 Tt ) — g (1,09 Ty M)
+g (tJO‘_lu,tHYl_av) >r
holds for all 7 € (0,1) and u > M, v € R and

(L=0)P g0 fi (1,0 a7 %) — g (1,0 Lt 17 %)
g1 (1,0 u ) <
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holds forall € (0,1) and u < —M, v € R.
If t1=%x(¢) > M forall t € (0,1), then

(1=1)P=1qy(t) f1 (£,x(t), DY x(2)) — hy (¢,x(2), DY x(t)) + g1 (t,x(t), DY x(2)) > 1.
So

/01 [(1 — 0P qi(0) fi (1,x(t), DY x(2)) — by (1,x(1), DY x(1))
+g1 (t,x(t), Dl x(r)) |dt > 0.

If t!=%x(t) < —M forall t € (0,1), then

(1—0)P=1g (1) f1 (¢,x(t), DY x(2)) — hy (t,x(2), DY, x(2)) + g1 (¢,x(t), DY, x(2)) < —r.

So
/0 1 {(1 — 0P qi(0) fi (1,x(t), DY x(2)) — By (1,x(1), DI x (1))
+g1(t,x(r), DY, x(1)) | dt < 0.

Since x € E, we have ¢ — t!~%x(¢) is continuous on [0, 1]. Then t'~%|x(¢)| > M for
all r € [0,1] implies

[ a0 a0 (0.Dx) =y (1200, DY x0)

+s81 (t,x(t),Dgix(t)) } dt #0.

Similarly, we have that either

C/O1 [(1 —t)ﬁ—lql(t)fl (ttha_l,C%ta—n—l)

- (t,ct“l,cir(a) t“”'l)
Fla—mn)

(o)

+gi1(t,et% e t“”'l)]dt>0 41
gl( Tla—m) (41)

holds for all |c¢| > My or

c/ol [(1—;)131(11(;)161 (f,ct“‘,c%tay.l)

—hy <[’Ctal’cﬂta)’ll)
(e —n)
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I'a)

+g1(t,et% e t“711>}dt<0, 42
gl( Tla—7) (42)

holds for all |c| > M.
Hence (H8) and (H9) hold. Then the proof follows from Theorem 3.2.

REMARK 3.3. Let o = % =f and y = %. Consider the functions
3 5 3 .
Sfi(t,x,y) =t2x° + 17 siny,
gi(txy) =1"2(1—1)2 (t%x3+t%y),

hl(f»)@y) :gl(t7x7y)7

qi(t) =173 (1—1)74.

It is easy to see that f1,g; and h; satisfy (H1), (H2) and (H3) respectively. g satisfies
(H4). Furthermore, we have the followings:

o for ¢,(r) = ¢p(r) = 2 (1— t)’% and bi-nondecreasing functions [];(u,v) =
u’ +v and [y (u,v) = [T, (u,v) = u’ + v, it holds that

i (10 e ) | <TT(Jul, V),

g1 (1% u, 1M 10) | < (1) T, (Jul, V1),

|y (2,0 u, 1) | < @ (0) TTA (e, [v])
hold for all (u,v) € R?, t € (0,1);

e there exists a constant M > 0 such that for x € X, if t!=%(¢t) > M for all
€ (0,1) then

/01 {(1 — 0P qi(0) fi (,x(t), DY x(2)) — By (1,x(2), DY x(t))
+g1 (t,x(t),Dng(t))]dt
= [P )1 1x0), D 0

1 1

1 _1 1 _Ll/s 5, .3 N
:/0 (1=~ 34 (1 =) (3x()’ +17 sin D]l x(0) ) i

1
>/ (1—1) 2 a(1—1)"3 <t%t‘%M5—t%>dt>O.
0

If t17%(t) < —M forall ¢ € (0,1) then similarly we get
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! B—1 "
|| =0P" a1 (10, Dyxt0)
0

—hy (1,x(1),DY. x(1)) + g1 (,x(t), D}l x(1)) } dt < 0.

So (H8) holds.
e Since
! I'a)
11—, <t7 rol 7#1‘71‘1)
[ Ja=0raon (rae e L2
- Fla) ooy - Nla)  oye
—hy (t,ct* N e——"2 %1 1)+ (t,ct“ Ve 1% n=1) |gr
1( (o —71) é (o —71)
e 11 i soss . T(1/2) s
_c/o (I—=r) 2t 4(1L—1) 4<ct 2t2+s1ncr(1/4)t 4)dl>0

holds for all sufficiently large |c|. Then (H9) holds.

4. Solvability of BVP(11)

Suppose that

(G1) f,:]0,1] x R? — R satisfies the following items:

o t— fo(¢,1% x,1% 271y} is continuous on [0,1] for each (x,y) € R?,

o (x,y) = fo (¢,1% 'x,1% %271y} is continuous on R? for almost all 7 € [0, 1],
e for each r > 0, there exists a nonnegative M, > 0 such that

|fo (0,0 2,072 ly) | <Myt € (0,1), ], Iy < e

(G2) g:(0,1) x R? — R satisfies the following items:

o 1 — g (1,1 'x,1% 27 1y) is continuous on [0, 1] for each (x,y) € R?,

e (x,y) — &> (1,t% 1x,t*"%27y) is continuous on R? for almost all 7 € [0,1],
e for each r > 0, there exists a nonnegative function ¢, € L'(0,1) such that

g2 (1,1 1, t 1Y) | < @ (2), £ € (0,1), x| < e

(G3) hy:(0,1) x R? — R satisfies the following items:

o t — Iy (t,t% 1x,t* %271y) is continuous on [0, 1] for each (x,y) € R?,

o (x,y) = f5(1,1% 'x,1%7271y) is continuous on R? for almost all 7 € [0,1],
e for each r > 0, there exists a nonnegative function , € L'(0,1) such that

|ha (2,07 0727 y) | < wi(e), 1€ (0,1), |x), [y < n

(G4) ¢, satisfies that there exist numbers ky > —o¢ and I, € (—f3,0) with 8 +
ky + 1, > 0 such that g,(¢) < *2(1 —1)2 for all + € (0,1) and ¢2(z) Z0 on (0,1)
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satisfying [) G(1,5)qa(s)s'Pds # 0, where

na+ﬁ—l(l_s)a+ﬁ—l_(n_s)a+,8—l

na+ﬁ—1r(a+ﬁ) ’ 0 < s < n,
G(n,s) = ;
(l_s)oHr -1
gy NSS<L
Denote
0= / (1=9)*"'gs(5)s*~"ds
’ f (1—s5)0~1gy (s)s+B~1ds’
0, — B0t U o (s)asds
O =

./'o'(l $)% L ga(s)s* P~ 1ds ’

' Yoc+ﬁ

0, =: Jo(=0""ga(0) f5 Tﬁ)qz(ﬁs 1=B dsd
' TT(=5)% Tga(5)s@ B~ 1ds :

REMARK 4.1. If o+ > 1, then n®tB-1(1 —5)*tB-1 _(n —5)etB-1 > 0. So
G(n,s) >0 forall s € (0,1). Then fol G(N,5)qa(s)s'Bds > 0. If go(r) =12 (1 —1)>
with k» + 1, +1 > 0, then

Jo G(n,9)qa(s)s'Pds
::jg(l——s)a+ﬁ44sb(1-—S)hslfﬁdS—-nafﬁ,lﬁy(n-—S)a+ﬁ‘Jsb(l<—s)hslfﬁds
B(o+ B+l ka+2—B) = s Jo (0 —9)* P14 P (n —s)lds

=B(oa+B+hkr+2-B)— notithth f()l (1— W)aJrﬁHZ*lwszrl*ﬁdw

PYeEy
—B(o+ B+ lk+2—B)—n2BHRtB(q 4 B lky+2—B) >0
REMARK 4.2. Q,Qp and Q) are well defined. In fact, we have
o< [0 s
< [t (s = Bt hoda k) <

and

fo( Dk (1= 1)l f3(r —5)*+B-1sk2 (1 — 5)dsdr
Jo (1 =) 1gy(s)s*+B~1ds

(1

(

_ (=0 (102 [ — )P (0 — 5)2dsdr
= 1— 5)%=1gy(5)s®+B~1ds

Jo
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_ (=0 (1 — e tBrith (1 —w)etBrhlyk dwdy
Jo (1 =) 1gy(s)s*+B~1ds
_ B(o+b2ko+a+B+5L+1)B (a+ﬂ+lz,k2+1)
= fol(l _S)aflqz( )s"‘*ﬁ s

Similarly we have Q < e and Q; < eo.

Let C(0,1] or C[0,1] be the set of all continuous functions on (0,1] or [0, 1]. We
use the Banach spaces

E= {x €C(0,1]: D2x e C(0,1],

there exist the limits limz!~%x(r), lin(}tHer‘Dgix(t)}
11—

11—

with the norm

||x|| = max < sup t'"%x(r)[, lim ¢"*2"*D2 x(1) b x€E,
1€(0,1] 1€(0,1]

and Z = C[0,1] x R? with the norm ||(u,a,b)|| = max { m[ax] lu(t)|,al,|b| } :
1€[0,1
Define

DB po x
D(L) = {x cE:t— % is continuous on [0, l]}
and L: END(L) — Z by

DP, (D% x(1)]
Lx(t) = (% [15%;1 o (t),x(l)—#x(n)) forx € E.

Define N: E — Z by
Nx(t) = (2 (x(6), Dx(0)) g £a(5,(5), DI x(5))ds, [y (s, x(s), DI x(s))ds
forx € E. Then BVP(11) can be written as Lx = Nx, x € E(\D(L).

LEMMA 4.1. Suppose that (G1)-(G4) hold. Then L is a Fredholm operator of
index zero and N : X — Y is L—compact.

Db, (D
Proof. First, for x € E(\D(L), then 1 — % is continuous on [0, 1] and
the limits linatl_o‘x(t)7x(l) - #x(n) exist. So Lx € Z. Then L: END(L) — Z is
t—
well defined.

To prove that L is a Fredholm operator of index zero, we should do the following
three steps.
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Step (i) Prove that KerL = {cz*"B~1 ¢ E, c € R}.
We know that x € KerL if and only if

DP, D% ()] 0
2O
lim; ¢! ~%x(t) =0,

x(1) — me) =0.
So x € KerL if and only if there exist numbers Y,'¥ € R such that

x(t) = Yro B o=l p c (0,1],
lim, ot'~%x(t) =0,
x(1) — ,,TILHX(TI) =0.

Hence x € KerL if and only if x(¢) = cz**B~! for some ¢ € R. Thus KerL = {ct*+tF~1 ¢
E, ceR}.
Step (ii) Prove that

ImL = { (u,a,b) € Z: fol G(n,s)qa(s)u(s)u(s)ds =b— (1 - n%) a } (43)

For (u,a,b) € Z, we know that (u,a,b) € ImL if and only if there exist x €
ED(L) such that

Dl D% x(1)]
S )

lim, ot ~%x(t) = a,
x(1) - me) =b.

It follows that

t (t _ s)oc+ﬁ—1 . .
(1) = / U)o ()u(s)ds+ Y% B W ith Y, € R,
0

o+ B)
1
. 1—o _ —
lime'=x(r) = a, x(1) ~ rgrx(n) =b.

It is easy to see that

1 (p— g)ot+B-1
/()qu(s)u(s)ds

_ t—s)a+/3_1
I'(o+B)

o [
< /o o+ B)

t(f— o+p—1
<z1*a/ =" o g)2dis .
0

e sk (1= s)2ds||ul|w

r(B)
vt [P T ).
o T(a+p)

—0ast— 0.
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Then lim,_o#'~%x(t) = a implies that ¥ = a. So (u,a,b) € ImL if and only if

_gya+B-1 g)atB-1
Jo SR ax(s)u(s)ds — e I Ui aa(u(s)ds =b— (1- 5 ) a

This ends the proof.

Step (iii) Prove that ImL is closed in X and dim KerL = co dim ImL < +-eo.
From (41) ImL is closed in Z. It follows from KerL = {ct"‘*ﬁ’1 €E, c € R} that
dim KerL = 1. Define the projector P: E — E by

Jo (1= 5)%1ga(s)x(s)ds

1“*B=lfor x€E. (44)
fol(l —5)2 gy (s)so+B-1ds

P(x)(r) =

It is easy to prove that
Im P C Ker L. (45)

For c1%tP~1 ¢ KerL, choose x.(1) = ct*tP~1_ It follows that

D, D& xe(n)]  DP D% @B
ol 00

=0,7€[0,1]

One can show that x. € E(\D(L) and

1 _ _
P(xc)(1) = Jo (1 =) Iga(s)es™*P 1dsz°‘+ﬁ*1 =@t
fol (1—5)%~1gy(s)s®tB~1ds
So
Im P D Ker L. (46)

Hence Im P = Ker L.
For (x,y) € E, we have

-1

1—s s)ds

B fO 5)0— lqz(v)x(r) ds (OB 1>
Jda- >a Ty (o) Tas” [oHB=1
Jo (1=5)2 gy (s)s B~ 1ds ’

(152 g5(s) (x<s>

So X = KerL+ KerP. For (x,y) € KerLNKerP, we get x() =0. Hence X = KerL ®
KerP.
Define the projector Q : Z — Z by

J G(n7-\')¢12(-\')u(s)ds—[ <1,n73

> ] (1-B 47
Jo G(n.5)g2(s)s'~Pas 0,0 “n

O(u,a,b)(1) =

for (u,a,b) € Z



Differ. Equ. Appl. 5 (2013), 409-472, doi:10.7153/dea-05-26 447

It is easy to show that ImL D KerQ.
For (u,a,b) € ImL, we have

/Ol G(n,s)q2(s)u(s)ds =b— <1 - 171_I3> a.

Then Q (u,a,b) = (0,0,0). It follows that ImL C KerQ. Hence ImL = KerQ.
For (u,a,b) € Z, we have

(u,a,b) - Q(uaaab) = (u,a,b) - (C2t17ﬁa0a0) = (M _C2t17ﬁaaab)a
where the constant ¢; is defined by:

JEG(M,9)q2(s)u(s)ds — [b (1 _ Tﬁ) a}
Jo G(n,5)qa(s)s'Bds ~

C) =

It is easy to see that

Jo G(n,0)qa(t) (u(t) — cot'P)dr = b — <1 _ #)a'

Hence (u,a,b) — Q(u,a,b) € ImL. Thus ¥ =ImQ+ImL. Itis easy to show that InQ N
mL = (0,0,0). Hence ¥ = ImQ @ ImL.

From above discussion, we see that dim KerL = codim ImL = dimImQ =1 <
+oo. So L is a Fredholm operator of index zero.

Step (iv) We prove that N is L—compact. This is divided into three steps.

Substep (ivl) We prove that N is continuous. Let x, € E with x, — xo as n — oo,
We will show that N(x,) — N(xg) as n — oo.

In fact, we have ||x,|| < r < +eo and

sup 117 %|x, (1) —x0(r)] — 0, sup £77%~ %Dy bxn(t) — D0+x0( )| = 0,1 — oo (48)
t€(0,1] t€(0,1]

By
M) ) = (1 (30,07 0,0)
/ go(s,xn(s 0+x,, ))ds / ha(s,x0(s), Dgixn(s))ds),

similarly to the proof of Substep (ivl) in Lemma 3.1, we get that
[IN(xn) = N(xo)|| = 0,n — .

It follows that N is continuous.



448 YUII LIU AND XIAOHUI YANG

Let €2 be a bounded open subset of E'. We have that there exists r > 0 such that
||x|| < r forall x € Q. Since (G1)-(G3) hold, then there exists M, >0, ¢, y, € L'(0,1)

such that .
|/ (,x(1),Dlx(2))| < M.t € (0,1),x€Q,

|g2 (1,x(1), DY x(1)) | < 9r(1),1 € (0,1),x€Q, (49)

|ha (t,x(2), DY x(1)) | < wir(2),1 € (0,1),x € Q.

Substep (iv2) Prove that QN (Q) is bounded.
Furthermore, one has

OV W0 = 0( £ 1x0). DA [ g2 100, D x0) .
/Olh( x(1),DP x(t ))dt)z(]gtlﬁ,0,0). (50)

where the constant J, is defined by

1 1
= I G(n7s)q2(s)sl—[3ds/o [G(n,t)%(t)fz (1,x(t), D x(1))

— hy (1,x(t), DY x(1)) + (1 - 771_’3> g2 (1,x(t), DY x(1)) } dt

It is easy to see from (47) and (48) that

_ a+p-1
S s — vy L ES DY
|2t ‘ ‘folG(T],S)CD(S)Sl ﬁds‘ /0 F(OC—Fﬁ) N ( S) K
Mo e
F ey e gy (s ) wo
1 1
+'1—n—ﬁ'/0 <Pr(t)dt]
< 1 [ B(a+B+h,k+1)
|l G s)as(s)si-bas I(o+ B)
R L T Ry Yo
< oo,

It follows QN(Q) is bounded.

Substep (iv3) Prove that Kp(I — Q)N : Q — E is compact, i.e., prove that Kp(I —

Q)N (Q) is relatively compact.
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Let P: X — X and Q:Y — Y be defined by (42) and (45). For (u,a,b) € ImL,
let

t _sa+ﬁ—1
Kelwan)o) = [ O

1 1 _Sa+[3—1
_/0 (l—t)a—lqz(t)/o %qg(s)u(s)dsdt

(s)u(s)ds

tOH’ﬁ*l
X
fol (1 —5)2~1gy(s)s*tB~1ds

g 0= ()5 M5 g e
fol(l —5)elgy(s)sotB-1ds )

(1)

for (u,a,b) € ImL.
One sees Kp(u,a,b) € E and K, (u,a,b) € KerP. Then Kp : ImL — D(L) N KerP
is well defined.

Furthermore, for (u,a,b) € ImL, we have (LKp)(u,a,b)(t) = (u,a,b). On the
other hand, for x € Ker PNE, we have KpL(x)(t)x(z). Then Kp is the inverse of L :
D(L)(KerP — ImL. The isomorphism A : KerL — Y /ImL is given by

Act® PNy = (er'P,0,0), ceR.
Let J, be a constant defined as in previous subset. Then

—Q)N(x,y)(1)
=IX] (l)

=K,(I-0Q) (fz (t,x(1),D¥ x(1)) 7/01g2 (t,x(1),D x(1)) dt,
1
[ e x0).0fxw)

—Kp ( £ (1.x(1), DEx(1)) | /O g2 (1,5(0), DEx(1)) / o (1,(0), DEx(1) dt)
—Kp(hat'7P,0,0)
= [ ) (o) D) s [ L
s 00 020) 3 T @29 (). DI () s
fo(l—S)“ 1612( )s@HB=1ds
Jo (1=1)"""ga(t) Ji 5 Fa+/3 g (s)s'Bdsdi
fol(l—s)o‘ 1q2( )soc+/3 s

1 -1 o—1

1—s)% s)s%tds 1

_tOCJrﬁ*l 1fO( (271 q2( )a — / 2 (t,x(t),Dgix(t))dt
S (1= 5)* g (s)sP—1ds Jo

“:N
—~
~

¢ (s)s' Pds x J,

+to¢+ﬁ—1

><J2
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1
+t"“1/0 g2 (1.x(t), D x(1)) dt.

It follows that

Dgixl(t)
t _SOH’ﬁ* -1
[ 0 (509Dl ) s
t _soc+/3— -1
—/0 %qz(s)sl_ﬁdsxh
_tOH’ﬁ*h*l r(“"’ﬁ)
(a+ﬁ—72)
y fol(l 0 ga(t) [y trﬁg 1 2(5) /2 (5,x(s), D0+x( 5)) dsdt
Jo (1= 5)%1g;(s)s*+P~1ds
4 otB-n-1 I'(a+B) fO(l_Z)a : (t)fo tr\aorls 42(3)31_13deij
Ta+B—n) (1 = 5)21gy ()52 +B~1ds ’
Cappt _T@4B)  f(1=5)"gas)sNds t i
S lr(a‘Fﬁ—Yz) fol(zl—s)“ Lo (s)s*+B= 1ds/0 2 (1,x(0), Dgx(1)) i
1
+tayzl%/o g2 (t,x(1), D0+x( ))dt.

To complete this step, we must prove that Kp(I — Q)N(Q) is bounded and equi-continuous
on each subinterval [e, f] C (0, 1] and equi-convergentat = 0.

For easily reading, we give the following estimation:

" My[1 40 )0 Bl o+ 1)+ J3 0 (0)de + |1 = | 3 grlo)ar
bl < =:M,.
3 G w)g2(w)wi~Paw]

Firstly, use (47), we can prove that both 1 — 1'% |x ()| and  — 1" ™1 =D\ |x, (1)]
are bounded on [0,1]. So Kp(I — Q)N(Q) is bounded.

Second, for each [e, f] C (0,1], and 11, € [e, f] with r, > t;, we can prove that

™ x1 (1) — 1y %x1 ()]
< il- a/" (1) —s)* P!
! o T(a+P)

(5] —s o+p—1
_t21 0‘/0 %‘h(@fz (S,x(s),Dgix(s)) ds

42(5) 2 (s,x(s), D x(s)) ds
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() —s)%tB-1

. a/ (=) ¢ (s)s' Pds
o T(a+p)

B (1 —5)* A1 B, |
o [R270) =B aelm
g /0 Flatp) PO TdsMr

+

'Htl _tz|: oM, + Q1 M, +Q/ o (1 dt]

and

1 1 —
it TEDI xi (1) — 1, DY x (1)

1o — g)0HB—rn-1
o [ 00 (54(9). D) ds

0 (1, —s)0+tB—1-1
L (91 (54(0) D)) ds

1 _ No+HB—p-1
L+y— (t1—s) 1By
h /0 Mo+ p_p) s 7ds

e i
2 o T(a+B—7p)

1
|:Q0Mr+Qer+Q/O ¢r(1)dl:| .

<

+

a2 (s)s' " Pds|M,

(o +pB)
Fla+B—n)

Similarly to the proof of Substep (iv3) in the proof of Lemma 3.1, we can prove that

‘Htl _tz‘

It} "% (t1) — 1, %x1(2)| — O uniformly on Q as #; — 12,
\tlﬂ'l “Dltxi (1) — tzlﬂ'1 “DY. x1(12)| — 0 uniformly as | — 5.
So Kp(I — Q)N(Q) is equi-continuous on each subinterval [e, f] C (0, 1].
Third, we can prove that
’tlfaxl (1)~ i g (t,x(t),Dgax(t))dz’ 0 uniformly on Q as 7 — 0.

Similarly we can show that

MDY X (1) — W/ g2(6,x(0), Dl ))dt%

— 0 uniformly on Q as ¢ — 0.

Hence Kp(I— Q)N(Q) is equi-convergentat t = 0. Then N is L—compact. The proofs
are completed.
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Suppose that
(GS5) there exist nonnegative functions g, ¢y, € L'(0,1) and bi-nondecreasing
functions ]y, [, : [0,00) x [0,00) — [0,0) such that

|fo (2,0 Lu, 127 10) | < T4 (Jul, ),
(52)
g2 (1,2 u, 1% 27 10) | < 9 (1) T (Jul, |v))
hold for all (u,v) € R?, ¢ € (0,1).

(G6) there exists a constant M > 0 such that t1+72""|D2)'2+x(t)\ > M forall t €
(n,1) implies that

Al%ﬂnﬂﬁﬂﬁﬁOJO%D$ﬂ0%—M0wU%D$AO)

+ (1 - niﬁ) g2 (1,x(t), DY, x(1)) } dt #0.

(G7) there exists a constant My > 0 such that

1 arp-1  T(@+B) oipy-
ey o (o0t G S )

_ T'(a+B) o
—h 1 [O“Vﬁ l’cil‘o”rﬁ bl 1)
2<C T(o+B—n)
1 ., cI(a+p) o
+(1-— t,cr@th-1 2 TE) getBon 1)]dr>0 53
( 1ﬁ>&< Moa+B—n) &9

holds for all |c¢| > My or

1 ., I(a+p) L
c ct?® B _S TP jo+f-n
/0 [G(n,t)qz(t)fz (u 1%t I’F(oc ﬁ_mt +B-7 1)

_ T(a+p) i
—h 1 [a+l3 l’cita"‘ﬁ N 1)
2<C T(a+B—n)
1 ., cI(a+p) oy
(1 — tct@tB-1 TP atfon 1>}dt<0. 54
( rﬁ)&< Tt oD

holds for all |c| > M.
THEOREM 4.1. Suppose that (G1)-(G7) hold. Then BVP(11) has at least one

solution if
Aory+ Borg <1, (55)

where

Ba+B+bko+1) Bloa+B+bL—p,k+1)
F(a+B) nPT(a+B)

Ag = max{
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)

Bla+B+h—pk+1) B(O¢+B+l2—y27k2+l)}
F(a+B—n) nPr(a+B—p) ’

o) T(at+B-1)
nPC(e—p)| T(a+p)

(o) T(a+p—-1
WP (o— 1) @+ f— n—l}/¢g

rp— tim OV gy T
V—r+oo Vv V—r+oo Vv

Proof. Let E, Z L and N be defined above. By (G1)-(G4), from Lemma 4.1, L
be a Fredholm operator of index zero and N be L—compact on each open nonempty
set Q centered at zero. We seek fixed point of the operator equation L(x) = N(x). To
apply Lemma 2.2, we should define an open bounded subset € of E centered at zero
such that (i), (ii) and (iii) in Lemma 2.2 hold. To obtain Q, we do three steps. The
proof of this theorem is divided into four steps.

Step 1. Let Q; = {x € END(L)\ KerL, L(x) = AN(x) for some A € (0,1)}. We
prove that Q; is bounded.

In fact, if Q; is unbounded, then there exists two sequences {x, € E(\D(L)\
KerL} and {A, € [0,1]} such that L(x,) = A,N(x,) and N(x,) € ImL and ||x,|| — oo
as n — oo. Then

Bozmax{l+

PP D%, (1]
‘iﬁ%—_MﬂUﬁOMﬂ%MA» € (0,1),

;EW“<>xm&oMo wan
xn(l)—mxn = n fo hy (2, x( +xn t)) dr.

and
1
/0 |:G(n7t)q2(s)f2 (t7xn(t)7D(7)2+xn(t)) —hy (Z,xn(t)7D(7)2+xn(t))
+ (1 — niﬁ) o (t,xn(t),D@xn(t))}dt =0. (56)

Then there exists number Y € R such that

T (t—s a+p—1
) = [ g (569D (o)

1
Bt et /0 82(5, % (5), DX (5)) s,

and
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t (t _ s)ochﬁfyzfl

Do) = || g r gy (55 (5), D (5))ds

+ Ytourﬁfyzfl F(OC + ﬁ)

Floa+B—n)
w1 Tla
w nlfay_%r/’&SJh(xpgﬂx)ms

It follows from (G6) that there exists 7y € (1,1) such that \tlﬂz aD0+x,,(t0)| <M.
Then

B F(OC—Fﬁ)
m%Fw+ﬁ—w)

1+n ocD

Iy 0+n (tO)

0 _ No+HB—p-1
1+7— oc/o qu(s)fz(S,xn(S),D(})axn(S))ds

o Fa+B—7)
INa) 1
+ W/O 82(8,x, (s),Dgaxn(s))ds

<M—|—tl+h a/m (l‘O_S)OH_ﬁ_h_1
o Tla+p-n)

I'a) 1
T m/o Igz(S,xn(s),Dgixn(smds

0 (1 _S)OHﬁ*Yz*l
<M+t1+y2 a/ w—»s - =
o T(a+B—7n)

M) [ » )
*F@TEWA%“WA“‘MUIHWI%Mamm

<M—|—tl+h a/m (l‘O_S)OH_ﬁ_h_1
o Tla+p-mn)

o) !
+E@j%—A¢M®®HAWMMMW

(1 _ W)a+ﬁ+lzfyzfl

q2(5)| f2(5, % (5), D3 (5))|ds

$2(1—5)2TLp (s a(s)], s 727D xa(5) )l

5% (1o — 5)2dsTL (| xal [, 132 )

wkzdwnf(‘ |an7 Han)

1

I+p—o a+ﬁ+lz Ytk
Mt /
o T(a+p-—p)

INa) !
+ m/o O (5)dsIg (|||, ||xn||)

Boo+B+bL—pk+1)
Fla+p—7)

IN'la) 1
*Tﬁ5?£ﬂ4¢M”“HAwmmMm

<M+

NGRS
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Then we have

—o —a t(t_s)a+ﬁ71
0 < S raEy

1
0P 4 [ lga(s0n (). D v s)) s

q2(5)| f2 (5, (s), D53 (5)|ds

t(r —g)atB-1 _a +p—a
<HQA£%@%ETﬁ4LwWHﬂf [ (5)], 82| DR xa (5) )l

L _
01 Tt [ T 61 (9] 405 s
0

Bla+B+1b,kr+1)

]"((x_|_ﬁ) Hf(HanvHan)
B B(a+B+bL—p,k+1) N i

e M+
ot 0Tl ) MR B

1
+ [ st ).
Similarly we get

IHVT(X‘D()%XH(’”

t (4 ¢\otB 1
< o /O U ) fass(s), DL ()

Fla+B—-1)
B _
g’ T(o+P) T(oe+p—1)] /
+ Y|ty —= 82(8,xn (s X, (s))|ds
Y00 5 ot B et B0 Jo £ PE0 )
B(oo+B+bL—v,k+1)
Tz ([|xn ], []xn
N REAREAD
+M+%%%%%ﬂﬂmmumm+w 15700 9 (8)dsTT (|13, |1 )
nh
T(e+B-1)
H n n
I ﬁ_l /¢a JesTg(Ill )
It follows that
_ MT(o+B—7p)
sup 1%, (1)) < = ———— 122
te(OI?l] beu(0) nf  T(o+p)
B(oo+B+b,kh+1) Ma+ﬂ+b—nkﬁ4q
+ 11 alls ||
[ NCEY (T B) RN

M) T(a+p-»n
+[1+nﬁ|r(a_yz) (o4 P) ]/H )dsTg (| [xa] [, [[xal]),
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and

sup 127D (1)) <
1€(0,1]

[(a+ﬂ+lg—y2k2 1) Bla+B+bL—p,k+1)
Cla+B—1) nPr(a+B - 1)

I'a) T(a+B—1)|
[nﬁlr(a—n)+|r(a+ﬁ P }/ g ()T (|]xu] |, [[n]])-

M
Sf
_|_

]Hf<|xn|,|xn|>

Then
T(o+B—
[Feal | < 2 EEtBd 4 M AT (|| ol ) + BoTTg ([l [l (57)
It follows that
M T(otB-p) M
1< nP_T(e+h) nB _’_AOHJ'(HXHHMXHH)_’_B (Hxnulﬂxnu)

(bl (bl (el

From ||x,|| — e as n — oo, let n — oo. It follows from above inequality that 1 <
Agry + Borg, a contradiction to (55). It follows that Q; is bounded.

The remainder of the proof is similar to that of the proof of Theorem 3.1 and is
omitted.

THEOREM 4.2. Suppose that (G1)-(G4) and (G6), (G7) and
(G5)' there exist nonnegative functions g, ¢, € L'(0,1) and nonnegative num-
bers Ag,Br,Cr,Ag,B,,Cy and Ay, By, Cy, such that

’fz (t,t“_lx,t“_h_lyﬂ < Cf—|—Bf\x\ +Af|y|,
(58)
g2 (1,69, 1% y) | < (1) [Co + Bglx| +Agly|]

hold for all (x,y) € R?, t € (0,1).
Then BVP(11) has at least one solution if

Ao(By+Ay)+Bo(B, +A,) < 1, where Ay, By are defined in Theorem 4.1.  (59)

Proof. Let Ig(u,v) =Cy+Bpu+Ayv and Ig(u,v) = Cy + Bgu+ A,v. The proof
is similar to that of the proof of Theorem 3.2 and is omitted.

THEOREM 4.3. Suppose that (G1)-(G4) and (H5)' hold and

li inf  |G(n,0)qa () f> (£,6% 1, 1% 7!
Jim _nf (n,0)q2(t) 2 ( u v)

—hy (1,6% Mt ) g (8,0t 2T | >0,
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and

lim  sup  |G(n,0)qa(0) fa (£,0% 1% y)
V7T %e(n,1),ueR

—hy (1,6% Mt Y) gy (1,67 ur* ) | <0

Then BVP(11) has at least one solution if (59) holds.

Proof. We need to proof that (G6) and (G7) in Theorem 4.2 hold. The proof is
similar to that of the proof of Theorem 3.3. Then the proof follows from Theorem 4.2.

REMARK 4.3. We can give examples for the functions f>,g, and hy : (0,1) x
R2 — R which satisfy the assumed hypotheses (G1)-(G3), (G5)-(G7). The details are
omitted.

5. Solvability of BVP(12)

Suppose that

(I1) f5:[0,1] x R? — R satisfies the following items:

o 1 — f3(1,1°72x,197%72y) is continuous on [0, 1] for each (x,y) € R?,

o (x,y)— f3 (t,ta’zx,ta’ﬁ’zy) is continuous on R? for almost all ¢ € [0, 1],
e for each r > 0, there exists a nonnegative M, > 0 such that

‘f3 (z,t5—2x,t5—7’3—2y) ‘ <Myt €(0,1), x|, [y < r.

(12) g3:(0,1) x R? — R satisfies the following items:

ot — g3 (1,972,157 %72y) is continuous on (0,1) for each (x,y) € R,

o (x,y) — g3 (1,£%%x,1977~2y) is continuous on R? for almost all € (0, 1),
e for each r > 0, there exists a nonnegative function ¢, € L'(0,1) such that

’83 (t7t5*2x7t5*73*2y)’ <9:(0), 1€(0,1),Ixl, [yl <7
(I3) h3:(0,1) x R? — R satisfies the following items:
o t — I3 (1,197 2x,1%7%2y) is continuous on (0,1) for each (x,y) € R?,

o (x,y) — h3 (t,ta’zx,t‘s*ﬁfzy) is continuous on R? for almost all 7 € (0,1),
e for each r > 0, there exists a nonnegative function y;, € L'(0,1) such that

s (1672012 ) [ < o), 1 (01), ol byl <

(I4) g3 satisfies that there exist numbers k; > —o and [} € (—f3,0) with 24k, +
I, > 0 such that g3(r) <X (1 —¢)" forall € (0,1) and ¢(¢) #0 on (0,1).
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Let C(0,1] or C[0,1] be the set of all continuous functions on (0,1] or [0,1]. We
use the Banach spaces

E= {x € C(0,1]: Df.x e C(0,1],

there exist the limits lims>~%x(r), lin(1)t2+y3*5Dg3+x(t)}
—

t—0
with the norm
|Ix[Jo = max{ sup 27%x(r)[, lim *7BODEx(r) ¢, x€E,
1€(0,1] 1€(0,1]

and
Z={(u,a,b) € C[0,1] x R?}

with the norm
||(u,a,b)]| =maX{ sup u(t)I,IaI,IbI} for (u,a,b) € Z
r€[0,1]

Define

B (O 50
D(L)_{er.z 0 eC[OJ}}

and L: END(L) — Z by

L(x)(1) = (Dg*x(t),nmﬂ—ﬁx(z)_x(1), limr> 50 DY x(1) — Dggxu))

qs(t) 10 -0

forx € E. Define N: E — Z by

N()(E) = (3 (150, D (1)) o 3 (1,5(0), D x(0)) i, i iy (1,5(0), D x(1))
forx € E. Then BVP(12) can be written as L(x) = N(x), x € E.

LEMMA 5.1. Suppose that (11)-(I14) hold. Then L is a Fredholm operator of index
zeroand N : X — Y is L—compact.

Proof. First, for x € E(1D(L), we see that L(x) € Z. To prove that L is a Fredholm
operator of index zero, we should do the following three steps.

Step (i) Prove that KerL = {12 c E, c € R}.

We know that (x,y) € KerL if and only if
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Hence x € KerL if and only if x(t) = cz®~2 for some ¢ € R. Thus KerL = {c1%72 ¢
E, ceR}.
Step (ii) Prove that
5 73— (1 S)z?—l

ImL = { (u a b) EZ fo 1- 7),3) 1"(_3,7,3) :| QB(S) ( )ds+b al‘(a( 3/3) 0}

For (u,a,b) € Z, we know that (u,a,b) € ImL if and only if there exist x €
END(L) such that

DS, x(1)

a3(1) = u(t),
limt2_5 (1) —x(1) =a,

hm Y e 5D73 x(1) = DE.x(1) =b.

It follows that there exist numbers Y,'¥ € R such that
(t—s)! 5-1 52
x(t) = / ———q(u(s)ds+Yt° +WPr° “with Y € R.
0

Since

s [ (t—s)01
< 6/0 %Sh(l—é‘)lqﬂwdé‘

1 _ O+i3—1
= (2700 +kHls / %wlqdw\ |u||]co — O ast — 0,
0 ()

together with lin(}tz’éx(t) —x(1) = a, we get that
11—

_g)5-1
Y- (fo1 %Q3(s)u(s)ds+Y+\P> -

51

Then Y = —a — [y %qg(s)u(s)ds. So

t(f—g S—p—1
D0+x() /0 %qg(s)u(s)ds

- <a+/ l_s 613 s)u ()d> (1(;(5)%)#57’31

It is easy to show that

t _séf -1
/Ou%(s)u(s)ds

t2+y376
I'(6—mn)
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ot t_s)éf)g—l
<H 6/ (75]“3 1 —5)53]|u||wds
]

— 2188tk + /1 (1—w)d-nth-l
0 I'(3)

wdwl|ul|w — 0 ast — 0.

From lim, t2+7’3_5D2;3+ (1) = DPx(1) = b, we get

~ [ SR assuts)as — (a+ 3 Sk as(s)uts)ds) 525 = b (60)
Hence (u,a,b) € ImL if and only if
F(L=s)¥ 5l T(E)  (1-s)! re)
b = oo ) et -apg =5 <o

Then the proof is completed.

Step (iii) Prove that ImL is closed in X and dim KerL = co dim ImL < +-eo.
From Step (ii), ImL is closed in Z. It follows from KerL = {ct‘g’2 €E, ceR}
that dim KerL = 1. Define the projector P: E — E by

Jo (1= 5)51g3(s)x(s)ds =
s igo)-2as O VEE ©61)

It is easy to prove that Im P C Ker L.
For c1%~2 € KerL, choose x.(r) = ct®~2. One can show that x, € E(\D(L) and

o (1 =) as(s)es2ds 5,
S (1=5)5g3(s)552ds

So Im P O Ker L. Hence Im P = Ker L.
For x € E, we have

P(x—P(x)) =P <x - /fol (50 ax(o)x(5)ds z‘”)

Jo (1=5)3-1g3(s)s5~2ds

P()(1) =

0-2

=ct

P(xc)(t) =

5 1
L1081 g5(s) [ x(s ,w 52\ 4.
_ Jo (1=s) 113(\)<X(S) R a0 7. Xt5_2:0

Jo (1-5)2~1q3(5)s>~2ds

So X =KerL+ KerP. For x € KerLNKerP, we get x(#) = 0. Hence X = KerL & KerP.
Define the projector Q : Z — Z by

i [& &}%() (s)ds+b—aT10L_
T(o B o—
Q(u,a,b)(t)z %) T(6-m13) - r(6-1) 28 0,0 (62)
(1-591 (1-5)0-1
]0 [75 ) F(Sﬂg) }q3(s)s2—5ds

for (u,a,b) € Z



Differ. Equ. Appl. 5 (2013), 409-472, doi:10.7153/dea-05-26 461

It is easy to show that KerQ C ImL
For (u,a,b) € ImL, we have

5 * —S 61 r 6
fo - 3 (11(5*))/3) Q3(S)”(S)ds+b—aﬁ =0.

Then Q (u,a,b) = (0,0,0). It follows that ImL C KerQ. Hence ImL = KerQ.
For (u,a,b) € Z, we have

(u,a,b) — Q(u,a,b) = (u,a b)
—5)0-7. s
fO [ 0 - 3 (1( i )}‘B( Ju (s)ds—|—b—ar(r5(f;3)
5 b2 _g)0-1
fo [ — 3 (11(5‘,)),3) ] ‘13(5)52_5ds

—s)0~ 73 _ (1-5)%! T(5)
f (- — @3 (S)u(s)ds+b— ass—~
—|u_ 0 [ ( )} r(o 73)t273, a, b

5)0- 73 _ (1-5)%1

I [ o = s | as(s)si2as

*7%.0,0

It is easy to see that

R e re
| e Ty | 0os + == =0

Hence (u,a,b) — Q(u,a,b) € ImL. Thus ¥ =ImQ+ImL. It is easy to show that InQ N
ImL = (0,0,0). Hence ¥ =ImQ @ ImL.

From above discussion, we see that dim KerL = codim ImL =1 < +e. So L is
a Fredholm operator of index zero.

Finally, we prove that N is L—compact. This is divided into three steps.

Step (i) We prove that N is continuous. Let x, € END(L) with x,, — xp as n— oo.
We will show that N(x,) — N(xp) as n — oo.

In fact, there exists r > 0 such that ||x,|| < r < 4 and

sup 1270x, (1) —x0(t)| — 0, sup 12+~ 5|D0+xn( 1) — D0+x0( )| — 0, n— . (63)
1€(0,1] 1€(0,1]

By

N(x,) (1) = <f3 (z, xn(t)aDg)Gern(t)) ,/Olgg (t,xn(t),Dgixn(t)) dt,
/ol hs (1% (1), D xa (1)) dt) forx € E,

similarly to the proof of Substep (ivl) in Lemma 3.1, we get that

[IN(x,) — N(x0)|| — 0, n — oo.
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It follows that N is continuous.

Let Q be a bounded open subset of £. We have that there exists » > 0 such that

||x|| < r forall x € Q. Since (I1)-(I3) hold, then there exists M, >0, ¢, y, € L'(0,1)
such that —
|3 (1,x(6), D! x(1))| < Myt € (0,1),x € Q,

|g3 (t,x(t), DI x(t)) | < ¢ (t),1 € (0,1),x € Q, (64)

|h3 (t,x(1),D} x(2)) | < (1), € (0,1),x € Q.

Substep (iv2) Prove that QN (Q) is bounded.
Denote
(l_t)afyrl (l_t)a—l

HO) =TG5 To-n)

One has
1
QNuxm::Q(ﬁxaxaxngxu»,[;gmaxoxDéxo»du
/Olh3 (6,x(r), DY, x(t ))dt) = (15273,0,0), (65
where the constant J3 is defined by
1
= (] [HOas(05 10D 30)) -1 (1200, D3 x0)

83 1300, DJx0) g )

1

5)0~ }’3 _ (1=s)3-!

fo[ T(6— l"(_457y3)}q3(s)s276ds

It is easy to see from (64) that ON(Q) is bounded.

Substep (iv3) Prove that Kp(I— Q)N : Q — E is compact, i.e., prove that Kp(I —
Q)N (Q) is relatively compact.

Let P: X — X and Q:Y — Y be defined by (61) and (62). For (u,a,b) € ImL,
let

t (t _S)S—l

Kp(u,a,b)(1) = /0 Ty s

_gyo-
— 91 (a—l—/ol %QB (s)u(s)ds)

a0 (07 0) i as s)uls)dsds
Jo (1 =55 1g3(s)s%2ds




for (u,a,
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b) € ImL.

— o—1
+1972 (a—l—/ol %(h (s)u(s)ds)
1

Jo (1—1)8" g3 (e)e® Lt

X .
Jo (1= 5)3=1g5(s)s9~2ds

(66)

One sees Kp(u,a,b) € E and K, (u,a,b) € KerP. Then Kp : ImL — D(L) N KerP
is well defined.

Furthermore, for (u,a,b) € ImL, we have (LKp)(u,a,b)(t) = (u,a,b). On the
other hand, for x € Ker PNE, we have KpL(x)(t)x(z). Then Kp is the inverse of L :
D(L)(KerP — ImL. The isomorphism A : KerL — Y /ImL is given by

A(ct®72) = (er*7,0,0), ceR.

=:x1(1)
1 1
— (1= 0) (1 10D (). / 5 (160), D x0)
1
[ 10D x0)
=Kp <f3 (t,x(1),DF x(r) 01g3 ,DE x(1)) dt /lhg (t,x(1),DF x(t ))dt)

:/O’

—Kp <J3t2*57070>

(1_5)5—1

T(s)

42(5) (5,x(). D x(s)) s — | -9

q3(5)s> Ods x J3

—t5*1/1g3 (t,.x(1),DF,x(1)) dt

112 [ (1x0), D a0 a2

Jo (1 =1)0"1g3(e)ear

Jo (1 =5)0-1g3(s)s92ds
qu(s)fg (s7x(s) D0+x( )) ds
_ q3(5)s> %ds x J3

(1= 1)51g3(0) i S5 q3(5) 3 (s.x(s). DEx(s)) dis

—5)8-1 _
LI (=12 gs(0) fi s as(s)s* P dsar

fol (1—15)91g3(s)s92ds

X J
T =5)5 1g5(s)572ds ’



464 YUII LIU AND XIAOHUI YANG

5.0 [L(1—s)%! fo( 0% ga(0)r® di
Tt 2/0 qu(S)fa (5.x(s), D x(s)) ds f0(1—s)5 1q3(s)s®~2ds

oo [1(1=5)°" 20 Jo (1=1)°""g3(0)® 't
R e

It follows that

DgZ+X1 (t)

t —5 S—mn—1
:/0 %CB(S)J% (S»X(S%Dgix(s))ds

(1 —s) 0! 2-5
_/0 W%(S)s ds x J3

re)
W/O 3 (1,x(t ),Dmx( ) dt

-2 (1= 0% gy (0>
ol (=0 x5

et
e r(s) /1 (1—ys) a3 (s) 3 (s7x(S),D2)/3+X(S)) ds

_t57y371

Lé—y)Jo T(5)
— o—1
44511 r(l;(_b‘)%) /1 (1 l"((s)) q3 (5)52_5615 x J3
g TG
ré-—p-1)

Jo (1= 0)1q5(0) Ji SR g5 (5) 3 (s.x(s). D x(s)) disd
Jo (1= 5)3=1g3(s)s5—2ds
r@E—1) Jo(1=02"1g30) fg (I}'Egilqa(s)sz“sdsdt
ré-n-1 Jo (1= 5)8=1g3(s)s52ds

_ —s 5—1
+z57’321“(1(;(:S 7/31_)1) /o1 . F(c‘?) 43(5)f3 (5.x(s), Dy, x(s)) ds
o= gy

fo (1 —5)9~1g3(s)s%2ds

(12 re-1) /1 L ;(sg;lfI3(s)s25ds

X

+t5—y3—2 X J3

L B0 g
") s (5)02ds

To complete this step, we must prove that Kp(I — Q)N(Q) is bounded and equi-continuous
on each subinterval [e, f] C (0, 1] and equi-convergentat = 0.
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For easily reading, we give the following estimation:

18 [H@as M+ sy (6) + 900) a0 | dr -
/5] < =M,.

1-5)0 B0 (1-5)0-1 -
f()l [( r(g,%) - (r(,szﬁ) } 513(5)52 Sds

Firstly, use (64), we can prove that both # — 129 |x; (r)| and r — t2“’3"5D2;3+ lx1 (2)]
are bounded on [0,1]. So Kp(I — Q)N(Q) is bounded.

Second, for each [e, f] C (0,1], and 71, € [e, f] with r, > #;, we can prove that
2-6 2-6 : O
[t;°x1(t1) — 15 °x1(t2)| — O uniformly on Q as 1y — 12,

2+73—0

2% 6DY5 " X1 (1‘1) 1

A Dyixl (2)| — 0 uniformly as t; — 1.
So Kp(I — Q)N(Q) is equi-continuous on each subinterval [e, f] C (0,1].

Third, we can prove that

. (_ J (=091 g3(0) fo S5 s (5) 3 (s.x(s). DE x(s) dsdt

B 1= 5)5 T (s)s 2ds
1311 "g5(0) fi b aa(s)5* s

Jo(1=5)51qs(s)s2ds

Hi=s)! Jo (1= 1)> g3 (0)r®ar

Ty s DR e
_ F(1—s)! s, o (=0 lg3(0)®ar
/0 o) PO 1q3<s>s52ds”3)‘

— 0 uniformly on Q as ¢ — 0.

><J3

Similarly we can show that

2TB70DE Xy (1)

) (_ P 1) S0 a(0) 3 “Eras(5)5 (s.3(), DY x(s)) dsds
(

Fé-p-1) Jo (1 —5)8-1g3(s)s9~2ds
—s5)0-1 —
rS—1) Jo(1=0%"gs(0) fy Seas(s)s> Odsar y
ré-p-1 Jo (1= 5)8=1g3(s)s0~2ds :

ERACES) /1 (1—5)%!

F((S—’)/g— 1) 0 1"(5) 6]3(S)f3 (S,X(S)7D2;3+x(s)) ds
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Jo (L =1)3"g3(1)e% 'ar
[ = 5)5 g (s)s%2ds
LT = R0 g0
GopTh @ O dsf()l(l—s)5—1q3(s)s5—2dsXJ3)‘

— 0 uniformly on Q as t — 0.

Hence Kp(I —Q)N(Q) is equi-convergentat = 0. Then N is L—compact. The proofs
are completed.

Suppose that
(I5) there exist nonnegative functions ¢, ¢, € L'(0,1) and bi-nondecreasing
functions ]y, [T, : [0,00) x [0,00) — [0,0) such that

|f3 (,0% tu, e 2= ) | <TT 4 (Jul, [v)),
(67)
g3 (£,0%  u, %727 ) | < @ (1) T (|l V).

(I6) there exists a constant M > 0 such that r2=%|x(¢)| > M for all 7 € (0,1)
implies that

—5)8-1-1 _ g1
/01 |: <(lr(6)_ ;:) a (1}(5 —)’1/3) ) q3(S)f3(S,x(S)7D2)/3+x(S))

ERICON
[(6—n)

(I7) there exists a constant My > 0 such that

=9 (-9 LT
C/O [< lr(5—7/3) - 1"1(5_y3)>93(5)f3(5,cs5 2”%? % 2)

I'(6) - ro—-1) 5.,
_“r(a—y3)g3(s’“6 2’Cr(5—y3—1)5(s : 2)

52 TB-1) 5.,
+h3<s,cs S et )dsdt>0 (68)

g3 (s,x(s),Dgix(s)) +h3 (s,)c(s),DZ)@+ (s))] ds #£0.

holds for all |c¢| > My or

=9t (-9 BTGB s,
C/O [< lr(5—7/3) - 1"1(5_y3)>93(5)f3(5,cs5 2,cﬁs6 ” 2)

I'(6) - ro—1) g§_.,._
_“r(s_y3)g3(s’“6 2’Cr(5—y3—1)S(s . 2)

s—2  T(6-1) 5 .5
+h3(s,cs et >ds<0, (69)

holds for all |c| > M.
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THEOREM 5.1. Suppose that (I1)-(16) hold. Then BVP(12) has at least one
solution if
Aors+ Borg < 1, (70)

where

_ B(+h k1) BE—psthhytl) | »B(S+hk+l) | [T(6-1)| B(+hk+l)
AO = max {4 () ) T(6—7) +2 T(6—7) + C(6—p3—1)] (o) } ’

Bo = max {2, pHEL o HEDLA il (s)as,

rp= lim —Hf(v’v), re = lim

Hg (V,V)
y— o0 v y— o0

v

Proof. Let E, Z L and N be defined above. By (I1)-(I6), from Lemma 5.1, L be
a Fredholm operator of index zero and N be L—compact on each open nonempty set {2
centered at zero. We seek fixed point of the operator equation L(x) = N(x). To apply
Lemma 2.2, we should define an open bounded subset Q of E centered at zero such
that (i), (ii) and (iii) in Lemma 2.2 hold. To obtain Q, we do three steps. The proof of
this theorem is divided into four steps.

Step 1. Let Q; = {x € END(L)\ KerL, L(x) = AN(x) for some A € (0,1)}. We
prove that Q; is bounded.

In fact, if Q; is unbounded, then there exists two sequences {x, € E(\D(L) \
KerL} and {A, € [0,1]} such that L(x,) = A,N(x,) and N(x,) € ImL and ||x,|| — oo
as n — oo. Then

5
2ottt s (1.360(0), Dfalt)) 1 € 0.1,
lim e, (1) = (1) = 2 3 83 (1,50 (6), DI (1))

hmtzﬂ’3 5D0+x,,( ) — D0+xn( )=y fol h3 (t,xn(t),D()%xn(t))dt.

Hence there exists a constant Y € R such that

t 5—1
lt) = [ g a6 (561 D )

([t i
—s 6—1
—l—/o IFqu(s)ﬁ(s,xn(s),Dmxn( ))ds) Ly ypd-2,
Then
— )61l _ )51
/Ol |:((1 ( ) &l _ (1 ) )q3(S)f3(S’xn(s)7D2;3+xn(s))

[(6-n) T(6-n)
+ h3 (s,xn(s),Dgixn(s)) - %gg (s7xn(s)7D2)'3+xn(s)) } ds=0.
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It follows from (I6) that there exists 7o € (0, 1) such that |t0’5xn (t0)] < M. By (36), we
have

to — 6—1
& 2l =it ? [ I a3 (9. Dy 39

([ s tnD5 w0 a

_gyo-
—|—/01 %%(S)fg (s,x,,(s),Dgixn(s))ds)t—|—Y’.

Then

2— 268 (to —S)&I
Y] < 23 (10)| + 12 /0 S AOICEADR SRR

+/ |g3 txn 0+xn( )) |dt
b [ as(6) s ), D )

_ fo—s)%! _
<wgs ! %s’m—sﬂznﬂsz )5y (5,7 D7 ) s

+ 0 ()T (5° 2 a(5) ™% =2 | DI xa ()|l

1( )5—1 L , ,s s
+ b Ws 2(1—_9) ZHf(S ‘xn( )| B— ‘D +xn( )|)ds

B(8+b.ky+1)

w4 22Ty ) )+ [ 0u Tl .

Then we have

T (t—s 5—1
1‘276|xn(l‘)| <t276/0 %qﬂsﬂfﬂs,xn(s),Dmxn( ))|d5+|Y|

e (et sol

1 —5 6—1
+/0 %qﬁs)|f3(S,xn(S)7D2)@+xn(s))|ds>

B(6+1,ky+1)

<
<M+4 (o)

1
Hf(llxn\l’llxn\|)+2/0 9 (5)dsTIg ([ |2 | [ ]eu )

Similarly we get

no ‘DE)ZXH ]
B(6—p+hk+1)
I(6-mn)

(%)
I(6-n)

TL¢ ([l ], [lea][) + Y]
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r(s
g () et )
+J%%§2HKVHJMD)
B(§ — 73 +l,ky+1)
TG — ) Hf(Han7Han)
+[M+ZE@j§%%iQHKDMLVnD

+?%@%?T(/7% sl sl )+ J%%ﬁﬁnﬂuuAMn)

It follows that

B(6+0b,kh+1
sup 28, (1) < M4 420 ket D)

H )Cn 9 )Cn
1€(0,1] T(5) sl xall)

1
+2/0 ‘Z’g(S)dng(Han,Han)»

and

(o B(6 — Iyko+1
sup 11172 D] (0] < Mg O [ PO )

1€(0,1] I'(6—mn) r'é-mn)
B(S+L,ka+1)  |[T(5—1)] B(5+zz,k2+1)]
_|_2 I1 nlly n
G-y TE-p-D 1) # Ibse . [l
r(8) IT(s — /
T r(6—p) + IT(6 — 7,3_1 g (5)dsTLg (| bxal [, [ ]])-

Then

|| < M -+ M52 + Aol ([l | [all) + BoTTg ([l Beal ). (71)
It follows that

()
PTG 1) 4 pgBellmnlllinl) | g Delnlllinl)

(bl [l (bl

~

From ||x,|| — e as n — oo, let n — oo. It follows from above inequality that 1 <
Agry + Borg, a contradiction to (70). It follows that Q; is bounded.
It follows that Q; is bounded.

The remainder of the proof is similar to that of the proof of Theorem 3.1 and is
omitted.
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THEOREM 5.2. Suppose that (I11)-(14) and (I16), (I7) and
(I5)" there exist nonnegative functions ¢, € L'(0,1) and nonnegative numbers
A¢, By, Cr,Ag,Bg,C, such that

|f3 (t,t“’lx,t“’yz’ly)’ < Cr+ Bylx| +Aglyl,
(72)
|g3 (t,t“_lx,t“_h_lyﬂ < g (1)[Cq + Bglx| +Aglyl],

holds for all (x,y) € R?, t € (0,1).
Then BVP(12) has at least one solution if

Ao(Bf+Ayf)+ Bo(Bg +Ag) < 1 where Ag, By is defined in Theorem 5.1. (73)

Proof. The proof is similar to that of the proof of Theorem 3.2 and is omitted.

THEOREM 5.3. Suppose that (11)-(14) and (I5)" hold and

: : (1 _5)6_%_1 _ (1 _5)6_1 6-2 o—y—2
VL‘the(ofﬂfueRK TG—p)  To_p) BT s R)

- %83 (5,8°72u, %6 2y) + hg(s,s52u,so‘7/32v)} -0,
and
. (1— 5)577371 (1— s)é—l 5o u
lim  su _ a3(5) 3 (5,552, 5% B2y
H°°te<o,1>r,)ueu@{< (6 —-mn) INCES) 3(9)/5( )

F((S) 6-2  o—y;—2 62 o—p-2
—mgg(s,s u,s v)+ h3(s,s° “u,s v)| <O.

Then BVP(12) has at least one solution if (73) holds.

Proof. We need to proof that (I6) and (I7) in Theorem 5.2 hold. The proof is
similar to that of the proof of Theorem 3.3. Then the proof follows from Theorem 5.2.

REMARK 5.1. We can give examples for the functions f>,g¢, and hy : (0,1) x
R2 — R which satisfy the assumed hypotheses (I1)-(G7). The details are omitted.
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