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SOLOW DIFFERENTIAL EQUATIONS ON TIME SCALES –

A UNIFIED APPROACH TO CONTINUOUS AND DISCRETE

SOLOW GROWTH MODEL

EVA BRESTOVANSKÁ AND MILAN MEDVEĎ

Abstract. In this paper we reformulate the axioms of the well-known Solow macroeconomic
growth model by means of the mathematical calculus on time scales. We derive a system of
differential equations on a time scale T which is a generalization of the classical Solow funda-
mental differential equation for the continuous case as well as its discrete version. We also prove
sufficient conditions for the exponential stability of equilibrium points of this system having
positive coordinates. Applications of these results to the case of the Cobb-Douglas production
function are given.
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