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Abstract. In this paper we are concerned with obtaining least squares solutions for a linear non-
homogeneous boundary value problem with impulses. In particular, we obtain a complete de-
scription for the least squares solution of minimal norm, in the sense of L2[0,1] .

1. Introduction

In the following we will be concerned with finding least squares solutions to

x′(t) = A(t)x(t)+h(t), a.e. [0,1] (1)

x(t+i )− x(t−i ) = vi, i = 1, ...,k (2)

subject to

Bx(0)+Dx(1) = 0. (3)

The points ti, i = 1, · · · ,k, are fixed with 0 < t1 < t2 < · · · < tk < 1. For each
t ∈ [0,1] , A(t) is an n× n matrix. The components of A(·) are assumed to be in
L2([0,1],R) and the function h is assumed to be in L2([0,1],Rn) . The vi , i = 1, · · · ,k ,
are elements of R

n , and B and D are n×n matrices.
In our analysis we obtain a complete description for the least squares solution of

minimal L2([0,1],Rn) norm. Our analysis is intimately related to the idea of gener-
alized inverses. For those readers interested in the method of least squares as well as
ideas regarding generalized inverses and generalized Green’s functions as they apply to
differential equations, we suggest [1, 2, 3, 4, 5, 6, 7, 8, 9].
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2. Preliminaries

The linear boundary value problem will be viewed as an operator equation. To for-
mulate the problem, we introduce the following. PAC{ti}[0,1] will represent the subset
of L2([0,1],Rn) consisting of functions which are absolutely continuous on every com-
pact subinterval of [0,1]\ {t1, · · · ,tk} . We define

dom(L ) = {φ ∈ PAC{ti}[0,1] | φ ′ ∈ L2([0,1],Rn) and Bφ(0)+Dφ(1) = 0}.

We define an inner-product on L2([0,1],Rn)×R
nk by〈[

h1

v1

]
,

[
h2

v2

]〉
=

∫ 1

0
h1

T (s)h2(s)ds+
k

∑
i=1

v1,i
T v2,i ,

where for j = 1,2,

v j =

⎡
⎢⎣

v j,1
...

v j,k

⎤
⎥⎦ .

It is clear that L2([0,1],Rn)×R
nk becomes a Hilbert space under the above inner-

product.

We define an operatorL : dom(L )→ L2

(
[0,1],Rn

)
×R

nk by

L x =

⎡
⎢⎢⎢⎢⎢⎣

x′(·)−A(·)x(·)
x(t+1 )− x(t−1 )

...

x(t+k )− x(t−k )

⎤
⎥⎥⎥⎥⎥⎦

.

REMARK 2.1. It is clear, from the previous defintions, that finding a least squares
solution to (1)-(3) is equivalent to finding a least squares solution to the operator equa-

tion L x =
[

h
v

]
.

To obtain a description of our least squares solution, we will construct projections
onto the Ker(L ) and Im(L ) . To aid in the construction of these projections, we now
completely characterize both the kernel and image of L .

PROPOSITION 2.2. A function x ∈ Ker(L ) if and only if x(t) = Φ(t)c for some
c ∈ Ker(B+DΦ(1)) . Here Φ(·) is the principal fundamental matrix solution to x′ =
A(t)x .

Proof. L x = 0 if and only if x′ = A(t)x a.e. [0,1] and Bx(0)+Dx(1) = 0, which
happens if and only if

x = Φ(·)x(0) and the boundary conditions hold,
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which is equivalent to

∃c ∈ R
n such that x = Φ(·)c and Bc+DΦ(1)c = 0.

We now turn to a characterization of the Im(L ) . To do so, we introduce the
following notation. We let {c1, · · · ,cp} be a basis for Ker

(
(B+DΦ(1))T

)
. We define

W = [c1, ...,cp]
and

Ψ(t)T = WT DΦ(1)Φ−1(t) .

Lastly, we define S = span

{[
Ψ j(·)

�Ψ j

]
= 1, ..., p

}
,

where

[
Ψ j(·)

�Ψ j

]
=

⎡
⎢⎢⎢⎣

Ψ j(·)
Ψ j(t1),

...
Ψ j(tk)

⎤
⎥⎥⎥⎦.

Here Ψ j(·) denotes the jth column of Ψ(·) .

PROPOSITION 2.3. L x =
[

h
v

]
if and only if

∫ 1

0
ΨT (s)h(s)ds+

k

∑
i=1

ΨT (ti)vi = 0;

that is, if and only if

〈[
Ψ j(·)

�Ψ j

]
,

[
h
v

]〉
= 0 for each j = 1, · · · , p.

Proof. It is well documented that L x =
[

h
v

]
if and only if

x(t) = Φ(t)
(

x(0)+
∫ t

0
Φ−1(s)h(s)ds+ ∑

ti<t
Φ−1(ti)vi

)
.

Imposing the boundary conditions, we have[
h
v

]
∈ Im(L ) if and only if there exists w ∈R

n such that

Bw+DΦ(1)
(

w+
∫ 1

0
Φ−1(s)h(s)ds+

k

∑
i=1

Φ−1(ti)vi

)
.

This is clearly equivalent to there existing a w ∈R
n such that

[B+DΦ(1)]w =−DΦ(1)
(∫ 1

0
Φ−1(s)h(s)ds+

k

∑
i=1

Φ−1(ti)vi

)
,

which is equivalent to

DΦ(1)
(∫ 1

0
Φ−1(s)h(s)ds+

k

∑
i=1

Φ−1(ti)vi

)
∈ Im

(
B+DΦ(1)

)
.

Since Im(B+DΦ(1)) = Ker
(
(B+DΦ(1))T

)⊥
, the result follows.
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COROLLARY 2.4. The image of L is equal to S⊥ .

3. Least squares solution with minimal norm

In this section we characterize the least squares solution with minimal norm for
the linear boundary value problem

x′(t) = A(t)x(t)+h(t), a.e. [0,1]

x(t+i )− x(t−i ) = vi, i = 1, ...,k

subject to
Bx(0)+Dx(1) = 0.

From Proposition (2.2), it follows that there exist a basis, α1, · · · ,αp , for Ker(B+
DΦ(1)) such that {

Φ(·)α1, ...,Φ(·)αp
}

is an orthonormal basis for the Ker(L ) .
We define

P : L2([0,1],Rn)→ L2([0,1],Rn)
by

Px =
p

∑
j=1

〈
Φ(·)α j,x

〉
Φ(·)α j

and
Q : L2([0,1],Rn)×R

nk← L2([0,1],Rn)×R
nk

by

Q

[
h
v

]
=

p

∑
j=1

〈[
ψ j(·)
�ψ j

]
,

[
h
v

]〉[
ψ j(·)
�ψ j

]
.

It is clear that P and I−Q are the orthogonal projections onto Ker(L ) and Im(L ) ,
respectively.

PROPOSITION 3.1. The least squares solution to (1)-(3) with minimal L2([0,1],Rn)

norm is given by Mp(I−Q)
[

h
v

]
, where Mp = L −1

|Ker(P)∩dom(L ) .

Proof.

It is clear that any least squares solution, x , satisfies L x = (I−Q)
[

h
v

]
.

Since

‖x‖2 =‖Px+(I−P)x‖2

=
∥∥∥∥Px+Mp(I−Q)

[
h
v

]∥∥∥∥
2

=‖Px‖2 +
∥∥∥∥Mp(I−Q)

[
h
v

]∥∥∥∥
2

,
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we see that ‖x‖ is a minimum precisely when Px = 0. The result now follows.

THEOREM 3.2. The least squares solution to (1)-(3) with minimal L2([0,1],Rn)
norm is given by

x(t) = Φ(t)
(

(Ec+ β )+
∫ t

0
Φ−1(s)

[
h(s)−

p

∑
j=1

[∫ 1

0
ψT

j (u)h(u)du+
k

∑
i=1

ψT
j (ti)vi

]
Ψ j(s)

]
ds

+ ∑
ti<t

Φ−1(ti)
(

vi−
p

∑
j=1

[∫ 1

0
ψT

j (u)h(u)du+
k

∑
i=1

ψT
j (ti)vi

]
Ψ j(ti)

))
.

Here E =
[
α1, ...,αp

]
, and c∈R

p and β ∈Ker(B+DΦ(1))⊥ are the unique elements
satisfying

ci =−
∫ 1

0
αT

i ΦT (s)Φ(s)β

−
∫ 1

0
αT

i ΦT (s)Φ(s)
(∫ s

0
Φ−1(u)

[
h(u)

−
p

∑
j=1

[∫ 1

0
ψT

j (y)h(y)dy+
k

∑
i=1

ψT
j (ti)vi

]
Ψ j(u)

]
du

+ ∑
ti<s

Φ−1(ti)
(

vi−
p

∑
j=1

[∫ 1

0
ψT

j (y)h(y)dy+
k

∑
i=1

ψT
j (ti)vi

]
Ψ j(ti)

)
ds

)
.

and

β =−TDΦ(1)
(∫ 1

0
Φ−1(s)h(s)ds+

k

∑
i=1

Φ−1(ti)vi

)
,

where
T = [B+DΦ(1)]−1

|Ker(B+DΦ(1))⊥ .

REMARK 3.3. We would like to point out, as will be evident from the proof below,
that when A(·) and h are continuous the the least squares solution will actually satisfy

x′(t) = A(t)x(t)+h(t) for all t ∈ [0,1]\ {t1, · · · ,tk}.

Proof. With Proposition (3.1) in mind, we search for a description of Mp . Now,

for

[
g
u

]
∈ Im(L ) , Mp

([
g
u

])
is the unique element in dom(L ) satisfying the fol-

lowing:

(i) L Mp

([
g
u

])
=

[
g
u

]
.
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(ii) PMp

([
g
u

])
= 0.

We now show that

Mp

([
g
u

])
(t) =Φ(t)

(
Ec∗+ β

)

+ Φ(t)
(∫ t

0
Φ−1(s)g(s)ds+ ∑

ti<t
Φ−1(ti)ui

)
,

for all

[
g
u

]
∈ Im(L ) , where

c∗i =−
∫ 1

0
αT

i ΦT (s)Φ(s)
(

β +
∫ s

0
Φ−1(u)g(u)du+ ∑

ti<s
Φ−1(ti)ui

)
ds.

From Proposition (2.3), it is clear that

L

(
Φ(t)

(
Ec∗+ β

)
+ Φ(t)

(∫ t

0
Φ−1(s)g(s)ds+ ∑

ti<t
Φ−1(ti)ui

))
=

[
g
u

]
.

Now,
∫ 1

0
αT

i Φ(s)T
[

Φ(s)
(

Ec∗+ β +
∫ s

0
Φ−1(u)g(u)du+ ∑

ti<s
Φ−1(ti)ui

)]
ds

=
∫ 1

0
αT

i ΦT (s)Φ(s)
(

c∗i αi + β +
∫ s

0
Φ−1(u)g(u)du+ ∑

ti<s
Φ−1(ti)ui

)
ds

= c∗i +
∫ 1

0
αT

i ΦT (s)Φ(s)
(

β +
∫ s

0
Φ−1(u)g(u)du+ ∑

ti<s
Φ−1(ti)ui

)
ds

= 0.

Since Px = 0 if and only if for each i , i = 1, · · · , p , we have
〈
Φ(·)αi,x

〉
= 0, it follows

that

P

(
Φ(t)

(
Ec∗+ β

)
+ Φ(t)

(∫ t

0
Φ−1(s)g(s)ds+ ∑

ti<t
Φ−1(ti)ui

))
= 0.

Thus,

Mp

([
g
u

])
(t) =Φ(t)

(
Ec∗+ β

)

+ Φ(t)
(∫ t

0
Φ−1(s)g(s)ds+ ∑

ti<t
Φ−1(ti)ui

)
.

The result now follows for an arbitrary

[
h
v

]
∈ L2([0,1],Rn)×R

nk by replacing[
g
u

]
in the description of Mp with (I−Q)

[
h
v

]
.
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