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OSCILLATORITY OF FRESNEL

INTEGRALS AND CHIRP–LIKE FUNCTIONS
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Abstract. In this review article, we present results concerning fractal analysis of Fresnel and gen-
eralized Fresnel integrals. The study is related to computation of box dimension and Minkowski
content of spirals defined parametrically by Fresnel integrals, as well as computation of box di-
mension of the graph of reflected component function which are chirp-like function. Also, we
present some results about relationship between oscillatority of the graph of solution of differ-
ential equation, and oscillatority of a trajectory of the corresponding system in the phase space.
We are concentrated on a class of differential equations with chirp-like solutions, and also spiral
behavior in the phase space.
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[31] N. N. LEBEDEV, Special Functions and Their Applications, Dover, 1972.
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Bulletin des Sciences Mathématiques, 129, 6 (2005), 457–485.
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