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STABILITY OF POSITIVE SOLUTIONS

TO p&2–LAPLACE TYPE EQUATIONS

J. TYAGI

Abstract. In this article, we first show the existence of a positive solution to{
−Δpu−αΔu = λ(u− f (u)) in Ω,

u = 0 on ∂Ω,

by the method of lower and upper solutions and then under certain conditions on f , we show the
stability of positive solution.
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