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STABILITY OF POSITIVE SOLUTIONS

TO p&2–LAPLACE TYPE EQUATIONS

J. TYAGI

(Communicated by Peter L. Simon)

Abstract. In this article, we first show the existence of a positive solution to{
−Δpu−αΔu = λ(u− f (u)) in Ω,

u = 0 on ∂Ω,

by the method of lower and upper solutions and then under certain conditions on f , we show the
stability of positive solution.

1. Introduction

Let us consider the following boundary value problem{
−Δpu−αΔu = g(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

for some α ∈ R
+, where Ω ⊂ R

N is an open, smooth and bounded subset, N � 2 and
2 � p < ∞. Solutions of (1.1) are the steady state solutions of the reaction diffusion
equation

ut = div(A(u)∇u)+g(x, u), (1.2)

where A(u) = α + |∇u|p−2. This equation has applications in science and engineering,
see [1] for chemical reactions, [22] for plasma physics, [6] for biophysics and solid
states.

For the existence and uniqueness of a positive solution to (1.1), in case α = 0, we
refer the reader to [12]. In case α = 1, (1.1) appears in the investigation of soliton like
solutions of

iψt = −Δpψ −Δψ +g(x, ψ), (1.3)

which was dealt by G. H. Derrick [10] as a model for elementary particles.
Problems involving the operator −Δp−Δ have not been studied much so far. For

instance, using the fibering method or the mountain pass theorem, N. E. Sidiropoulos [21]
obtain the existence of a nonnegative solution of (1.1) for g(x, u)= a(x)uq−1−b(x)us−1,
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where p < 2, 1 < q and s < 2∗. For the existence of three non-negative solutions of
(1.1) with indefinite nonlinearities g(x, u), we refer the reader to [20]. We refer to
[6, 15, 16] for a class of equations involving −Δp−Δr, where the existence and regu-
larity of the weak solutions are discussed.

Recently, there are some investigations on the stability of solutions to equations of
type (1.1) (when α = 0, see [26] and the references therein). We refer the reader to the
work of V.Benci and D.Fortunato [2], where they establish the existence, nonexistence
and stability results for solitary-wave or kink solution to partial differential equations
with variational structure. The authors considered the nonlinear wave equation

ψtt − c2Δφ +G′(ψ) = 0 for ψ : R
4 → R

k

and a system in which the nonlinear wave equation is coupled to Maxwell’s equation.
In [26], we obtain a stability theorem for a class of quasilinear elliptic equations of the
form {

−Δpu = a(x)u− f (x, u) in Ω,

u = 0 on ∂Ω,

where a ∈ L∞(Ω), f ∈C(Ω×R, R) and f ∈C1(Ω×R, R) in the y variable such that

fy(x, y) � f (x, y)
y

, ∀ 0 �= y ∈ R.

The main aim of this paper is to see whether the stability theorem of [26] can be
extended to the following problem:{

−Δpu−αΔu = λ (u− f (u)) in Ω,

u = 0 on ∂Ω, λ > 0,
(1.4)

which has a number of applications, see [1, 6, 22].
In fact, using the method of upper and lower solutions as in [17], we show the

existence of a positive solution to (1.4) and by extending the results of [26], we obtain
the stability theorem to (1.4). We remark that when α = 1 = λ in (1.4), our existence
results are extension of earlier research work.

We make the following hypotheses on the nonlinearity:

(H1) Let f ∈C(R+, R) and for any t0 > 0, there exists A > 0 such that

|t− f (t)| � A, ∀t ∈ [0, t0].

(H2) f (0) < 0 and there exists β > 0 such that β = f (β ).

(H3) f ′(y) � f (y)
y , ∀ 0 < y ∈ R.

The organization of this paper is as follows: Section 2 deals with the existence of
a positive solution to (1.1) and qualitative results to an eigenvalue problem associated
with (1.1). In Section 3, we show the stability of positive solution.
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2. Auxiliary results

In this section, we show the existence of a solution to (1.1) by the method of
lower-upper solution and also discuss the qualitative results to an eigenvalue problem
associated with (1.1). Let g(x,t) be a Carathédory function on Ω×R with the property
that for any t0 > 0, there exists a constant A such that |g(x, t)| � A for a.e. x ∈ Ω and
all t ∈ [−t0, t0].

A function u∈W 1, p(Ω)∩L∞(Ω) is called a (weak) lower solution of the problem
(1.1) if u � 0 on ∂Ω and∫

Ω
|∇u|p−2∇u∇φdx+ α

∫
Ω

∇u∇φdx �
∫

Ω
g(x, u)φdx

for all φ ∈ C∞
c (Ω), φ � 0. Similarly, we can define upper solution by reversing the

inequality signs.

PROPOSITION 2.1. Assume that u and u are respectively lower and upper solu-
tions for (1.1), with u � u a.e. in Ω. Let us consider the associated functional

E(u) =
1
p

∫
Ω
|∇u|pdx+

α
2

∫
Ω
|∇u|2dx−

∫
Ω

G(x,u)dx,

where

G(x, s) =
∫ s

0
g(x, t)dt.

Let
M = {u ∈W 1, p

0 (Ω)|u � u � u a.e. in Ω}.
Then E attains the infimum at some point u ∈ M and u is a solution of (1.1).

Proof. The proof is adapted from [9] or p. 17[22] which deal with the quasilinear
and semilinear cases, respectively. Since the proof is short and interesting, so we re-
peat it here. By coercivity and weak lower semicontinuity, one can easily see that the
infimum of E is achieved at some u ∈ M. Let φ ∈C∞

c (Ω), ε > 0, and define

vε := min{u,max{u, u+ εφ}} = u+ εφ −φε + φε ,

where
φε := max{0, u+ εφ −u} and φε := −min{0, u+ εφ −u}.

Since u minimizes E on M and E is a C1 functional on W 1, p
0 (Ω), so we have <

E ′(u), vε −u >� 0, which gives

< E ′(u), φ >� (< E ′(u),φε > − < E ′(u),φε >)
ε

. (2.1)

Since u is an upper solution and −Δp is monotone, we have

< E ′(u), φε > �< E ′(u)−E ′(u), φε >
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� ε
[∫

Ωε
(|∇u|p−2∇u−|∇u|p−2∇u)∇φ

+(∇u−∇u)∇φ
]
− ε

∫
Ωε

|g(x, u)−g(x, u)||φ |, (2.2)

where Ωε = {x ∈ Ω : u(x)+ εφx � u(x) > u(x)}. Now |Ωε | → 0 as ε → 0, the last
inequality implies that

< E ′(u), φε >� 0(ε) as ε → 0.

Similarly,
< E ′(u), φε >� 0(ε) asε → 0

and by (2.1), we get
< E ′(u), φ >� 0.

Replacing φ by −φ , one concludes that u solves (1.1).
Using the ideas as in [17], we show the existence of a positive solution to (1.4).

THEOREM 2.2. Let (H1) and (H2) hold. Then (1.4) has a positive solution.

Proof. By (H2), it is easy to see that u = 0 is a subsolution of (1.4). In fact, using
the fact that f (0) < 0, it is a strict subsolution of (1.4). Again by (H2), one can see
that u = β > 0 is an upper solution of (1.4). Now since (H1) holds so an application of
Proposition 2.1 yields the existence of a positive solution to (1.4).

REMARK 2.3. We remark that in the above theorem, f (0) < 0 is used to construct
a strict subsolution to (1.4). In case f (0) = 0, using the similar ideas of [17], it seems
possible to construct positive subsolution and therefore one can establish the existence
of a positive solution to (1.4), by lower-upper solution method. We leave this as an
exercise for interesting reader.

Next, we discuss the existence of first eigenvalue and qualitative questions to the
following weighted eigenvalue problem{

−Δpψ −αΔψ = λc(x)|ψ |p−2ψ in Ω,

ψ = 0 on ∂Ω,
(2.3)

where c ∈ L∞(Ω) and it may be allowed to be of sign changing nature.

LEMMA 2.4. Let

M = {u ∈W 1, p
0 (Ω)| 1

p

∫
Ω

c(x)|u|pdx = 1}.

Then M is a weakly closed subset of W 1, p
0 (Ω).
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Proof. Let un ⇁ u weakly in W 1, p
0 (Ω). We claim that u ∈ M. Since un ∈ M, we

have
1
p

∫
Ω

c(x)|un|pdx = 1.

Since W 1, p
0 (Ω) is compactly embedded in Lp(Ω), un → u strongly in Lp(Ω). Up to

a subsequence (still denoted by {un} ), un(x) → u(x) a.e. x ∈ Ω and there exists h ∈
Lp(Ω) such that |un(x)| � h(x) a.e. x ∈ Ω. Now using the fact that c ∈ L∞(Ω), by
Lebesgue dominated convergence theorem, one can see that

1 =
1
p

∫
Ω

c(x)|un|pdx → 1
p

∫
Ω

c(x)|u|pdx.

This implies that 1
p

∫
Ω c(x)|u|pdx = 1 and therefore u ∈ M.

Using similar arguments as in [25], the next lemma deals with the first eigenvalue
of (2.3).

LEMMA 2.5. Let

λ1(c) = inf

{∫
Ω
(
1
p
|∇u|p +

α
2
|∇u|2)dx

: u ∈W 1, p
0 (Ω) and

1
p

∫
Ω

c(x)|u|pdx = 1

}
. (2.4)

Then λ1(c) is achieved and λ1(c) is the least positive eigenvalue of (2.3). Moreover,
λ1(c) = Φ(u) for some u ∈ M if and only if u is an eigenfunction associated with
λ1(c), where

Φ(u) =
∫

Ω
(
1
p
|∇u|p +

1
2
|∇u|2)dx

and

M = {u ∈W 1, p
0 (Ω)| 1

p

∫
Ω

c(x)|u|pdx = 1}.

Proof. Let us define the functional associated with (2.3):

E : M −→ R by

E(u) =
1
p

∫
Ω
|∇u|pdx+

α
2

∫
Ω
|∇u|2dx, u ∈ M.

By Lemma2.4, M is a weakly closed subset of W 1, p
0 (Ω). It is easy to see that E is co-

ercive and weakly lower semicontinuous functional on M. Then by Theorem 1.2 [22],
E is bounded from below on M and attains its infimum, denoted by m, i.e.,

E(m) = min
M

E.
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One can also see that E is continuous, Gâteaux differentiable and the derivative of E
is given by

< E ′(u), v >=
∫

Ω
|∇u|p−2∇u.∇vdx+ α

∫
Ω

∇u.∇vdx,

∀u,v ∈W 1, p
0 (Ω). It is easy to see that E ′ is continuous on W 1, p

0 (Ω). Then by standard
Lagrange multiplier rule, the minimizer m solves (2.3) in the weak sense.

LEMMA 2.6. Suppose that u is a weak solution of{
−Δpu−αΔu = b(x) in Ω,

u = 0 on ∂Ω,
(2.5)

where b : Ω → [0, ∞) is a L∞(Ω) function. Then u � 0 in Ω .

Proof. Let

Ω+ = {x ∈ Ω|u(x) � 0} and Ω− = {x ∈ Ω|u(x) < 0}.

Let u+ = max{u, 0} and u− = max{−u, 0}. The weak formulation of (2.5) with test
function u− yields

∫
Ω−

|∇u−|pdx+ α
∫

Ω−
|∇u−|2dx = −

∫
Ω−

b(x)u−dx.

This implies that ∇u− = 0 in Ω and so u− is constant in Ω. By standard regularity
theory, u is continuous in Ω and therefore is u−. Since u− = 0 on ∂Ω. This implies
that u− = 0 in Ω and hence u = u+ � 0. This completes the proof.

From [13, 14], the following “Strong maximum principle” holds.

LEMMA 2.7. Let u ∈W 1, p
0 (Ω) be a nonnegative weak solution of

−Δpu−αΔu = λa(x)u in Ω; u = 0 on ∂Ω, (2.6)

where 0 < a ∈ L∞(Ω). Then either u ≡ 0 or u > 0 in Ω.

PROPOSITION 2.8. The eigenfunctions associated with λ1(c) are either positive
or negative in Ω.

Proof. Let u ∈ M be an eigenfunction associated with λ1(c). Then u achieves
the infimum in (2.4). Since ||∇|u|||p + ||∇|u|||2 = ||∇u||p + ||∇u||2 and |u| ∈ M, it
follows that |u| achieves the infimum in (2.4) also and therefore, from Lemma2.5, |u|
is an eigenfunction for λ1(c). By Lemma2.7, we conclude that |u(x)|> 0, ∀x∈ Ω and
therefore u is either positive or negative in Ω.
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3. Stability

In this section, we consider the stability of nontrivial weak solutions of (1.4). The
weak formulation of (1.4) is the following:∫

Ω
(|∇u|p−2∇u.∇φ +α∇u.∇φ)dx = λ (

∫
Ω

uφ dx−
∫

Ω
f (u)φ dx), ∀ φ ∈C1

c (Ω), (3.1)

where C1
c (Ω) is the space of C1 functions in Ω having a compact support in Ω. A so-

lution u of (1.4) satisfies (3.1) and by the well-known elliptic regularity theory, thanks
to [7, 8] for C1,α(Ω) regularity (α ∈ (0, 1)) of solutions to (1.4) with positive non-
linearities, which are independent of x and to [11, 18, 23] for the same regularity of
solutions to (1.4) where the solution u is assumed to be in W 1, p

0 (Ω)∩L∞(Ω).
In this paper, we assume u to be in C1,α(Ω).
The functional associated with (1.4) is

E : W 1, p
0 (Ω) → R defined by

E(u) =
1
p

∫
Ω
|∇u|pdx+

α
2

∫
Ω
|∇u|2dx− λ

2

∫
Ω

u2dx+ λ
∫

Ω
F(u)dx,

where

F(s) =
∫ s

0
f (t)dt.

In order to define the stability of solutions to (1.4), let us consider the weighted Sobolev
space with weight

w(x) = |∇u(x)|p−2.

As in [7, 19, 24], let us denote the space by H1,2
w (Ω), which is defined as the closure

of C1(Ω) or (C∞(Ω)) with respect to the ||.||
H1,2

w (Ω) norm defined as follows:

||v||
H1,2

w (Ω) : = ||v||L2(Ω) + ||∇v||L2
w(Ω)

=
(∫

Ω
|v(x)|2dx

) 1
2

+
(∫

Ω
w(x)|∇v(x)|2dx

) 1
2

.

We define H1,2
w,0(Ω) to be the closure of C1

c (Ω) with respect to the H1,2
w (Ω)-norm.

The linearized operator Lu associated with (1.4) at a given solution u is defined
by the following duality:

Lu : v ∈ H1,2
w,0(Ω) → Lu(v) ∈ (H1,2

w,0(Ω))′, where

Lu(v) : ψ ∈ H1,2
w,0(Ω) → Lu(v, ψ) and

Lu(v, ψ) =
∫

Ω
(|∇u|p−2(∇v.∇ψ)+ (p−2)|∇u|p−4(∇u.∇v)(∇u.∇ψ)

+α∇v.∇ψ −λvψ + λ f ′(u)vψ)dx.
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It is easy to see that Lu is well-defined and the first eigenvalue of Lu is given by

λ1 = inf
v∈H1,2

w,0(Ω),v�=0

Lu(v, v)∫
Ω v2dx

. (3.2)

For the details of spectral theory of linearized p -Laplace equations, we refer to [3]. We
notice that the stability of the solution to (1.4) can be defined without its associated heat
equation. We recall that a solution u of (1.4) is said to be stable if

∫
Ω

(
(p−2)|∇u|p−4(∇u.∇v)2 + |∇u|p−2|∇v|2 + α|∇v|2

−λv2 + λ f ′(u)v2
)

dx � 0, (3.3)

for every v ∈C1
c (Ω), (see [3, 4]). We remark that the left hand side of (3.3) is nothing

but the second variation of the energy functional E(u) and we point out that for p �= 2,
it is well-defined only in the weighted Sobolev space, see [5].

Actually, (3.3) implies that the principal eigenvalue of the linearized equation as-
sociated with (1.4) is nonnegative and hence the solution u of (1.4) is stable.

In the ensuing theorem, we show the stability of a positive solution to (1.4).

THEOREM 3.1. Let (H1)-(H3) be satisfied. Then the positive solution u of (1.4)
is stable.

Proof. Since (H1)-(H2) hold so by an application of Theorem2.2, (1.4) has a pos-
itive solution u ∈W 1, p

0 (Ω)∩L∞(Ω) and by regularity theory, u is in C1,α(Ω). Let for
any v ∈C1

c (Ω), we take

φ =
v2

u

as a test function in (3.1). Since

∇φ =
2uv∇v− v2∇u

u2 ,

so from (3.1), we get

∫
Ω
|∇u|p−2∇u.

[
2uv∇v− v2∇u

u2

]
dx+ α

∫
Ω

∇u.

[
2uv∇v− v2∇u

u2

]
dx

=
∫

Ω
λv2dx−λ

∫
Ω

f (u)v2

u
dx.

This implies that

0 =
∫

Ω
|∇u|p−2∇u.

[
2uv∇v− v2∇u

u2

]
dx+ α

∫
Ω

∇u.

[
2uv∇v− v2∇u

u2

]
dx
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−λ
∫

Ω
v2dx+ λ

∫
Ω

f (u)v2

u
dx

=
∫

Ω

[
2v|∇u|p−2∇u.∇v

u
− v2|∇u|p−2∇u.∇u

u2 −λv2 + λ
f (u)v2

u

]
dx

+ α
∫

Ω

(
2v∇u.∇v

u
− v2∇u.∇u

u2

)
dx

=
∫

Ω

[
−λv2 + λ

f (u)v2

u
−
((

v(∇u.∇u)
p
4

u

)2

− 2v|∇u|p−2∇u.∇v
u

)

− (∇u.∇u)
p−4
2 (∇u.∇v)2

]
dx

+
∫

Ω
(∇u.∇u)

p−4
2 (∇u.∇v)2dx+

∫
Ω

[
α|∇v|2 −α

(
v∇u
u

−∇v

)2
]

dx

=
∫

Ω

[
−λv2 + λ

f (u)v2

u
−
(

v(∇u.∇u)
p
4

u
− (∇u.∇u)

p−4
4 ∇u.∇v

)2

+ |∇u|p−4(∇u.∇v)2
]
dx+

∫
Ω

[
α|∇v|2 −α

(
v∇u
u

−∇v

)2 ]
dx. (3.4)

From (3.4), we see that

∫
Ω

[
|∇u|p−4(∇u.∇v)2 + α|∇v|2−λv2 + λ

f (u)v2

u

]
dx

=
∫

Ω

[(
v(∇u.∇u)

p
4

u
− (∇u.∇u)

p−4
4 ∇u.∇v

)2

+ α
(

v∇u
u

−∇v

)2 ]
dx

� 0. (3.5)

Since
|∇u|2|∇v|2 � (∇u.∇v)2,

so we get ∫
Ω
[(p−2)|∇u|p−4(∇u.∇v)2 + |∇u|p−2|∇v|2]dx

�
∫

Ω
[(p−2)|∇u|p−4(∇u.∇v)2 + |∇u|p−4(∇u.∇v)2]dx

=
∫

Ω
[(p−1)|∇u|p−4(∇u.∇v)2]dx

�
∫

Ω
[|∇u|p−4(∇u.∇v)2]dx.

(3.6)

From (3.5) and (3.6), we get
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∫
Ω

[
(p−2)|∇u|p−4(∇u.∇v)2 + |∇u|p−2|∇v|2

+ α|∇v|2−λv2 + λ
f (u)v2

u

]
dx � 0. (3.7)

Now by hypothesis (H3), we obtain

∫
Ω

[
(p−2)|∇u|p−4(∇u.∇v)2 + |∇u|p−2|∇v|2

+ α|∇v|2−λv2 + λ f ′(u)v2
]
dx � 0, (3.8)

which completes the proof.
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