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EXISTENCE AND MULTIPLICITY OF SOLUTIONS

FOR SEMILINEAR ELLIPTIC SYSTEMS INVOLVING

HARDY–SOBOLEV CRITICAL NONLINEARITY

NEMAT NYAMORADI AND MOHSEN SHEKARBIGI

(Communicated by Dongsheng Kang)

Abstract. This paper is concerned with a singular elliptic system, which involves the Hardy-
Sobolev critical nonlinearity. The existence and multiplicity of solutions for this system are
obtained by the variational methods.

1. Introduction

The aim of this paper is to establish the existence and multiplicity of solutions to
the following semilinear elliptic system

⎧⎪⎪⎨
⎪⎪⎩
−div(|x|−2a∇u)− μ u

|x|2(1+a) = 2α
α+β

|u|α−2|v|β u
|x|bp + λ ∂

∂uF(x,u,v), x ∈ Ω,

−div(|x|−2a∇v)− μ v
|x|2(1+a) = 2β

α+β
|u|α |v|β−2v

|x|bp + λ ∂
∂vF(x,u,v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.1)

where 0 ∈ Ω is a bounded domain in R
N (N � 3) with smooth boundary ∂Ω ,

0 � a <
√

μ , μ �
(N−2

2

)2
, and 0 � μ < (

√
μ −a)2,

a � b < a+1, λ > 0, α,β > 1 satisfy

α + β = p = p(a,b) � 2N
N−2(1+a−b)

is the Hardy- Sobolev critical exponent. Note that

p = p(a,a) =
2N

N−2
= 2∗

is the Sobolev critical exponent. F is a real function satisfying some assumptions.
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In the case μ = 0, problem (1.1) is related to the well known Caffarelli-Kohn-
Nirenberg inequalities in [4],

(∫
RN

|x|−bp|u|pdx
) 2

p � Ca,b

∫
RN

|x|−2a|∇u|2dx, for all u ∈C∞
0 (RN), (1.2)

where

−∞ � a <
√

μ , a � b � a+1, and p =
2N

N−2(1+a−b)
.

For particular constants and extremal functions, see [6]. As b = 1 + a and p = 2 in
(1.2), we have the following weighted Hardy inequality [6, 7],

∫
RN

|u|2
|x|2(1+a) dx � 1

(
√

μ −a)2

∫
RN

|x|−2a|∇u|2dx, for all u ∈C∞
0 (RN). (1.3)

When a = 0, (1.3) becomes the well known Hardy inequality,

∫
RN

|u|2
|x|2 dx � 1

μ

∫
RN

|∇u|2dx, for all u ∈C∞
0 (RN).

By using the inequality (1.2) and the boundedness of Ω , it was proved in [15] that
there exists C > 0 such that

(∫
Ω
|x|−δ |u|rdx

) 2
r � C

∫
Ω
|x|−2a|∇u|2dx, for all u ∈ H1

0 (Ω, |x|−2a), (1.4)

where 1 � r � 2N
N−2 , δ � (a + 1)r + N[1− (r/2)] , which is known Caffarelli-Kohn-

Nirenberg’s inequality. In other words, the embedding H1
0 (Ω, |x|−2a) ↪→ Lr(Ω, |x|−δ )

is continuous if

1 � r � 2N
N−2

and δ � (a+1)r+N[1− (r/2)].

Moreover, this embedding is compact if

1 � r <
2N

N−2
and δ < (a+1)r+N[1− (r/2)],

(see [15] Theorem 2.1).
For μ ∈ [0,(

√
μ − a)2) , we define the space H = H1

0 (Ω, |x|−2a)×H1
0 (Ω, |x|−2a)

with the norm

||(u,v)||2 = ||u||2 + ||v||2, where ||u||2 =
∫

Ω

(
|x|−2a|∇u|2− μ

|u|2
|x|2(1+a)

)
dx,
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which ||u|| is equivalent to the usual norm of H1
0 (Ω, |x|−2a), resulting from (1.3). We

can also define the best Hardy-Sobolev constant:

Ãa,b,μ(Ω) := inf
(u,v)∈H\{(0,0)}

||(u,v)||2(∫
Ω

|u|α |v|β
|x|bp dx

) 2
α+β

. (1.5)

Modifying the proof of Theorem 5 in [1], we can easily deduce that

Ãa,b,μ(Ω) =
[(α

β

) β
α+β +

(α
β

) −α
α+β

]
Aa,b,μ(Ω), (1.6)

where

Aa,b,μ(Ω) := inf
u∈H1

0 (Ω,|x|−2a)\{0}
||u||2(∫

Ω
|u|p
|x|bp dx

) 2
p

.

Here are the main results of this paper.

THEOREM 1. Suppose that

N � 3(1+a), 0 � a <
√

μ , 0 � μ < (
√

μ −a)2, a � b < a+1,

and F satisfies:

(H1) F ∈C1(Ω,R+ ×R
+,R) and F(x,0,0) = ∂F

∂u (x,0,v) = ∂F
∂v (x,u,0) = 0 ;

(H2) 0 < F(x,s, t) � e1s ∂F
∂u (x,s,t)+e2t ∂F

∂v (x,s,t), ∀(s,t)∈R
+×R

+\{(0,0)} , x∈Ω ,
where e1,e2 ∈ ( 1

p , 1
2 );

(H3) there exist 1 < pi < q (where q ∈ (2,2∗]), i = 1,2 , R1 and R2 such that

s
∂F
∂u

(x,s, t)+ t
∂F
∂v

(x,s,t) � R1(sp1 + t p2), if s+ t � R2 ∈ R
+×R

+ \ {(0,0)},

for all (s, t) ∈ R
+×R

+ and for a.e x ∈ Ω;
(H4) let f0 = inf|(s,t)|=1 F(x,s,t) > 0 , (s,t) ∈ R

+×R
+ \ {(0,0)} , x ∈ Ω .

Assume that

ρ :=
1

max{e1,e2} > max
{

2,
N
γ

,
N−2β√

μ −a

}
� r0, (1.7)

where

β �
√

(
√

μ −a)2− μ and γ �
√

μ −a+ β .

Then there exists λ ∗ > 0 such that the problem (1.1) possesses one positive solution for
every λ ∈ (0,λ ∗) .



564 NEMAT NYAMORADI AND MOHSEN SHEKARBIGI

THEOREM 2. Suppose that

N � 3(1+a), 0 � a <
√

μ , 0 � μ < (
√

μ −a)2, a � b < a+1

and F satisfies:

(H1’) F ∈C1(Ω,R2,R) and F(x,0,0) = ∂F
∂u (x,0,v) = ∂F

∂v (x,u,0) = 0 ;

(H2’) 0 < F(x,s, t) � e1s
∂F
∂u (x,s,t)+ e2t

∂F
∂v (x,s,t), ∀(s, t) ∈ R

2 \ {(0,0)} , x ∈ Ω ,
where e1,e2 ∈ ( 1

p , 1
2 );

(H3’) there exist 1 < pi < q (where q ∈ (2,2∗]), i = 1,2 , R1 and R2 such that

∣∣∣s∂F
∂u

(x,s, t)+ t
∂F
∂v

(x,s,t)
∣∣∣ � R1(|s|p1 + |t|p2),

if |s|+ |t|� R2 ∈ R
+ ×R

+ \ {(0,0)},

for all (s, t) ∈ R
+×R

+ and for a.e x ∈ Ω;
(H4’) let f0 = inf|(s,t)|=1 F(x,s,t) > 0 , (s,t) ∈ R

2 \ {(0,0)} , x ∈ Ω .

Assume that (1.7) holds. Then there exists λ ∗ > 0 such that the problem (1.1)
possesses one positive solution for every λ ∈ (0,λ ∗) .

For example, in the following, it holds that the conditions (H1)-(H4) and (H1’)-
(H4’) of Theorems 1 and 2 holds:

F(x,u,v) = |u|θ sin(u)+ |v|γ sin(v), (u,v) ∈ (0,
γπ
2

]× (0,
γπ
2

],
1
p

< θ ,γ <
1
2
.

Then

∂F
∂u

= θ |u|θ−2usin(u)+ |u|θ cos(u), (u,v) ∈
(
0,

γπ
2

]
×

(
0,

γπ
2

]
,

∂F
∂v

= γ|v|γ−2vsin(v)+ |v|γ cos(v), (u,v) ∈
(
0,

γπ
2

]
×

(
0,

γπ
2

]
,

now, by the Formulas of F(x,u,v) , ∂F
∂u and ∂F

∂v it is obvious that the (H1) and (H1’)
hold true. We know that sin(u) � cos(u) for u∈ (0, γπ

2 ] ; therefore, (H2) and (H2’) hold
true. By the inequality sin(u) � u , if we get p1 = θ + 1 and p2 = γ + 1; then (H3)
and (H3’) hold true with pi (i = 1,2) in the certain interval. By the Mountain-Pass
Theorem, we can show that a given functional F having a local extremum, so (H4) and
(H4’) hold true.

In recent years, much attention has been paid to the existence of nontrivial solu-
tions for the singular elliptic problems concerning the operator �u−μ u

|x|2 (0 � μ < μ )

with Sobolev critical exponents (the case that a = b = 0) (see [5, 6, 8] and their ref-
erences). Some authors have also studied the singular problems with Hardy-Sobolev
critical exponents (the case that a �= 0, b �= 0) (see [9, 10, 11, 12, 13, 16]). Since the
embedding H1

0 (Ω, |x|−2a) ↪→ L2∗(Ω) is not compact, the corresponding energy func-
tional does not satisfy the (PS) condition globally, which caused a serious difficulty
when trying to find critical points by standard variational methods. However, we use
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argument of Brezis and Nirenberg [3] to verify that the associated functional satisfies
the Palais-Smale condition on a given interval of the real line.

In this work, motivated by the above works we are interested to study the problem
(1) by using the Mountain-Pass Theorem due to Rabinowitz [14].

This paper is divided into three sections, organized as follows. In Section 2, we
establish preliminaries and some elementary results. Finally, in Section 3, we prove our
main results (Theorems 1 and 2).

2. Preliminaries

Let u± = max{±u,0} . The corresponding energy functional of problem (1.1) is
defined by

J(u,v) =
1
2

∫
Ω

(
|x|−2a|∇u|2 + |x|−2a|∇v|2 − μ

|u|2
|x|2(1+a) − μ

|v|2
|x|2(1+a)

)
dx

− 2
α + β

∫
Ω

(u+)α(v+)β

|x|bp dx−λ
∫

Ω
F(x,u+,v+)dx,

for each (u,v)∈H . Then J ∈C1(H,R) . Now, it is well known that there exists a one to
one correspondence between the weak solutions of problem (1.1) and the critical points
of J on H . More precisely, we say that (u,v) ∈ H is a weak solution of problem (1.1),
if for any (ϕ1,ϕ2) ∈ H , there holds

〈J′(u,v),(ϕ1,ϕ2)〉 =
1
2

∫
Ω

(
|x|−2a∇u∇ϕ1 + |x|−2a∇v∇ϕ2− μ

uϕ1 + vϕ2

|x|2(1+a)

)
dx

− 2α
α + β

∫
Ω

(u+)α−1(v+)β

|x|bp
ϕ1dx

− 2β
α + β

∫
Ω

(u+)α(v+)β−1

|x|bp ϕ2dx

−λ
∫

Ω
(

∂F
∂u

(x,u+,v+)ϕ1 +
∂F
∂v

(x,u+,v+)ϕ2)dx.

LEMMA 1. Assume that

N � 3(1+a) , 0 � a <
√

μ , 0 � μ < (
√

μ −a)2 , a � b < a+1 and λ > 0 .

Suppose that (H1)-(H3) and (1.7) hold. Then the functional J satisfies the (PS)c con-
dition for all

0 < c < c∗ :=
p(a,b)−2

2p
(Ãa,b,μ(Ω))

p
p−2 .

Proof. Suppose {(un,vn)} ⊂ H satisfies J(un,vn) → c and J′(un,vn) → 0 with
c < c∗ . Together (H2), we get as n → ∞ the following:



566 NEMAT NYAMORADI AND MOHSEN SHEKARBIGI

c+ ||(un,vn)||+on(1) � J(un,vn)−〈J′(un,vn),(e1un,e2vn)〉
=

(1
2
− e1

)||un||2 +
(1
2
− e2

)||vn||2

λ
∫

Ω

(
e1u

+
n

∂F
∂u

(x,u+
n ,v+

n )+ e2v
+
n

∂F
∂v

(x,u+
n ,v+

n )

−F(x,u+
n ,v+

n )
)
dx+

2(αe1 + βe2−1)
α + β

∫
Ω

(u+)α(v+)β

|x|bp dx

�
(1
2
− e1

)||un||2 +
(1
2
− e2

)||vn||2

� min
{1

2
− e1,

1
2
− e2

}
||(un,vn)||2.

Hence, we conclude {(un,vn)} is a bounded sequence in H and there exists (u,v)
such that (un,vn) ⇀ (u,v) up to a subsequence. Moreover, we may assume⎧⎪⎨

⎪⎩
un ⇀ u, vn ⇀ v, weakly in H1

0 (Ω),
un → u, un → u, strongly in Lr(Ω), 1 < r < 2∗

un → u, un → u, a.e. on Ω.

By (H1) and (H3), there exists a positive constant M > 0 such that

F(x,u+
n ,v+

n ) � R1

2
((u+

n )p1 +(v+
n )p2)+M. (2.1)

Now, by absolutely continuity of integral, for any ε > 0, there exists δ = ε
2M > 0, when

E ⊂ Ω , mes(E) < δ , we have∫
E
((u+

n )p1 +(v+
n )p2)dx <

ε
R1

.

Hence, by (2.1), we have

∫
E

F(x,u+
n ,v+

n )dx � R1

2

∫
E
((u+

n )p1 +(v+
n )p2)dx+mes(E)M

� R1

2
ε
R1

+Mδ =
ε
2

+
ε
2

= ε.

Thus,
{∫

Ω F(x,u+
n ,v+

n )dx, j ∈N

}
is equi-absolutely continuous. It follows easily from

Vitali Convergence Theorem that

∫
Ω

F(x,u+
n ,v+

n )dx →
∫

Ω
F(x,u+,v+)dx,

as n → ∞ . Using the same methods, we can prove that
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∫
Ω

∂F(x,u+
n ,v+

n )
∂u

u+
n dx → ∂F(x,u+,v+)

∂u
u+dx,

∫
Ω

∂F(x,u+
n ,v+

n )
∂v

v+
n dx → ∂F(x,u+,v+)

∂v
v+dx, (2.2)

as n → ∞ . Hence, we have J′(u,v) = 0 by the weak continuity of J . Let ũn = un−u ,
ṽn = vn− v . Then we have

∫
Ω

(
|x|−2a|∇ũn|2 + |x|−2a|∇ṽn|2 − μ

|ũn|2 + |ṽn|2
|x|2(1+a)

)
dx

=
∫

Ω

(
|x|−2a|∇un|2 + |x|−2a|∇vn|2− μ

|un|2 + |vn|2
|x|2(1+a)

)
dx

−
∫

Ω

(
|x|−2a|∇u|2 + |x|−2a|∇v|2− μ

|u|2 + |v|2
|x|2(1+a)

)
dx+o(1).

By the Brèzis-Lieb lemma [2], we obtain

||(ũn, ṽn)||2 → ||(un,vn)||2−||(u,v)||2, as n → ∞, (2.3)

and ∫
Ω

|ũn|α |ṽn|β
|x|bp dx =

∫
Ω

|un|α |vn|β
|x|bp dx−

∫
Ω

|u|α |v|α
|x|bp dx+o(1). (2.4)

Since J′(un,vn) → 0, we obtain

||(un,vn)||2 −2
∫

Ω

(u+
n )α(v+

n )α

|x|bp dx

−λ
∫

Ω

(∂F(x,u+
n ,v+

n )
∂u

u+
n +

∂F(x,u+
n ,v+

n )
∂v

v+
n

)
dx = o(1).

Now, by (2.2), (2.3) and (2.4), we have

‖(ũn, ṽn)‖2 + ||(u,v)||2−2
∫

Ω

(ũ+
n )α(ṽ+

n )α

|x|bp dx−2
∫

Ω

(u+)α(v+)α

|x|bp dx

−λ
∫

Ω

(∂F(x,u+,v+)
∂u

u+ +
∂F(x,u+,v+)

∂v
v+

)
dx = o(1). (2.5)

And

lim
n→∞

〈J′(un,vn),(u,v)〉 = ||(u,v)||2−2
∫

Ω

(u+)α (v+)α

|x|bp dx

−λ
∫

Ω

(∂F(x,u+,v+)
∂u

u+ +
∂F(x,u+,v+)

∂v
v+

)
dx = 0. (2.6)
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It derives from (2.6) that

J(u,v) =
(
1− 2

α + β

)∫
Ω

(u+)α(v+)α

|x|bp dx+ λ
∫

Ω

[1
2

(∂F(x,u+,v+)
∂u

u+

+
∂F(x,u+,v+)

∂v
v+

)
−F(x,u+,v+)

]
dx.

Together with (H2), we can conclude that

J(u,v) � 0. (2.7)

Since J(un,vn) → c as n → ∞ , we obtain

J(un,vn) =
1
2
||(ũn, ṽn)||2 +

1
2
||(u,v)||2− 2

α + β

∫
Ω

(ũ+
n )α (ṽ+

n )α

|x|bp dx

− 2
α + β

∫
Ω

(u+)α (v+)α

|x|bp dx−λ
∫

Ω
F(x,u+,v+)dx+o(1)

= J(u,v)+
1
2
||(ũn, ṽn)||2− 2

α + β

∫
Ω

(ũ+
n )α(ṽ+

n )α

|x|bp dx+o(1)

= c+o(1).

Therefore

J(u,v)+
1
2
||(ũn, ṽn)||2 − 2

α + β

∫
Ω

(ũ+
n )α (ṽ+

n )α

|x|bp dx = c+o(1). (2.8)

From (2.5) and (2.6), we have

||(ũn, ṽn)||2−2
∫

Ω

(ũ+
n )α(ṽ+

n )α

|x|bp dx = o(1).

Let us prove that ||(ũn, ṽn)|| → 0 as n→ ∞ . Otherwise, there exists a subsequence (still
denoted by (ũn, ṽn)) such that

||(ũn, ṽn)||2 → l, 2
∫

Ω

(ũ+
n )α(ṽ+

n )α

|x|bp dx → l. (2.9)

From definition of Ãa,b,μ(Ω) , we obtain

||(ũn, ṽn)||2 � Ãa,b,μ(Ω)
(∫

Ω

(ũ+
n )α(ṽ+

n )α

|x|bp dx
) 2

α+β
,
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then l � Ãa,b,μ(Ω)l
2
p , i.e., l �

(
Ãa,b,μ(Ω)

) p
p−2 , which, together with (2.8) and (2.9),

shows that

J(u,v) = c− 1
2
l +

1
p
l � c− p−2

2p
Ã

p
p−2
a,b,μ < 0,

which contradicts (2.7). Therefore, we get

||(ũn, ṽn)|| → 0 as n → ∞.

This proves (un,vn) → (u,v) in H as n → ∞ .
Thus, J satisfies (PS)c condition.

The author in [11] proved that, for:

0 � a <
√

μ , 0 � μ < (
√

μ −a)2, and a � b < a+1,

Aa,b,μ is attained when Ω = R
N by the functions

yε(x) =
(2ε pβ 2)

1
p

|x|γ ′(ε + |x|(p−2)β)
2
p

,

for all ε > 0, where γ ′ �
√

μ−a−β . Moreover, the functions yε(x) solve the equation

−div(|x|−2a∇u)− μ
u

|x|2(1+a) =
|u|p−2

|x|bp u, in R
N \ {0}.

Let

Cε = (2ε pβ 2)
1
p and Uε(x) =

yε(x)
Cε

.

Define a cut-off function ϕ ∈C+
0 (Ω) such that ϕ(x) = 1 for |x|� r , ϕ(x) = 0 for

|x| � 2r , 0 � ϕ(x) � 1, where B2r(0) ⊂ Ω . Set uε(x) = ϕ(x)Uε(x) ,

vε(x) =
uε(x)

(
∫

Ω |uε |p|x|−bpdx)1/p
,

so that
∫

Ω |vε |p|x|−bpdx = 1. The author in [9] proved that

Aa,b,μ(Ω)+C2ε
2

p−2 � ||vε ||2 � Aa,b,μ(Ω)+C3ε
2

p−2 , (2.10)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C4ε
q

p−2 �
∫

Ω |vε |qdx � C5ε
q

p−2 , 1 � q < N
γ ,

C4ε
q

p−2 | lnε| � ∫
Ω |vε |qdx � C5ε

q
p−2 | lnε|, q = N

γ ,

C4ε
N−q(

√
μ−a)

(p−2)β �
∫

Ω |vε |qdx � C5ε
N−q(

√
μ−a)

(p−2)β , N
γ < q < 2∗.

(2.11)
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LEMMA 2. Assume that

0 � a <
√

μ , 0 � μ < (
√

μ −a)2, and a � b < a+1.

Suppose that (H1)-(H4) hold. Then there exists (u0,v0) ∈ H , u0 �= 0 , v0 �= 0 and
λ ∗

1 > 0 such that

sup
t�0

J(tu0,tv0) <
p−2
2p

( Ãa,b,μ(Ω)
2

) p
p−2

,

for every λ ∈ (0,λ ∗
1 ) .

Proof. Let u =
√

αvε and v =
√

βvε , then we consider the functions

g(t) = J(t
√

αvε , t
√

βvε) =
t2

2
(α + β )||vε ||2− 2tα+β

α + β
α

α
2 β

β
2

−λ
∫

Ω
F(x,t

√
αvε ,t

√
βvε)dx,

and

g̃(t) = J(t
√

αvε ,t
√

βvε) =
t2

2
(α + β )||vε ||2 − 2tα+β

α + β
α

α
2 β

β
2 .

Note that limt→+∞ g(t) = −∞ , g(0) = 0, g(t) > 0 for t → 0+ , so supt�0 g(t) is
attained for some tε > 0. Since (H2) and

0 = g′(tε ) = tε (α + β )||vε ||2−2tα+β−1
ε α

α
2 β

β
2

−λ
∫

Ω

(∂F(x,t
√

αvε ,t
√

βvε)
∂u

√
αvε

+
∂F(x, t

√
αvε ,t

√
βvε)

∂v

√
βvε

)
dx,

we have

||vε ||2 =
2α

α
2 β

β
2

α + β
tα+β−2
ε +

λ
tε(α + β )

∫
Ω

(∂F(x,t
√

αvε ,t
√

βvε)
∂u

√
αvε

+
∂F(x,t

√
αvε ,t

√
βvε)

∂v

√
βvε

)
dx

� 2α α
2 β

β
2

α + β
tα+β−2
ε . (2.12)

Therefore, by the last inequality, we can write

tε �
[ (α + β )||vε ||2

2α α
2 β

β
2

] 1
α+β−2 � t0ε . (2.13)
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By (2.10) and (2.11), we get

||vε ||2 → Aa,b,μ ,

∫
Ω

vp1
ε dx → 0, and

∫
Ω

vp12
ε dx → 0, (2.14)

as n → ∞ . Now, by (H1) and (H3), we deduce that

∂F(x, t
√

αvε , t
√

βvε)
∂u

√
αvε +

∂F(x,t
√

αvε ,t
√

βvε)
∂v

√
βvε

� R1(t
p1−1
ε α

p1
2 vp1

ε + t p2−1
ε β

p2
2 vp2

ε )+C5tε ,

for some constant C5 > 0. By (2.12)-(2.14) and Hölder inequality, we obtain

||vε ||2 � 2α
α
2 β

β
2

α + β
tα+β−2
ε +

λ
(α + β )

R1

(
(t0ε )p1−2α

p1
2

∫
Ω

vp1
ε dx

+(t0ε )p2−2β
p2
2

∫
Ω

vp2
ε dx

)
+

λC5|Ω|
α + β

=
2α

α
2 β

β
2

α + β
tα+β−2
ε +

λ
(α + β )

(R1 +C5|Ω|)+o(1),

as n → ∞ . Thus, there exists λ ∗
1 = α+β

2(R1+C5|Ω|)Aa,b,μ(Ω) > 0 such that

tε �
( α + β

2α
α
2 β

β
2

· Aa,b,μ

2

) 1
α+β−2 � T0, (2.15)

for all λ ∈ (0,λ ∗
1 ) .

From (H2), we get

F(x,u,v) � e1u
∂F
∂u

(x,u,v)+ e2v
∂F
∂v

(x,u,v)

� max{e1,e2} · 〈∇F(x,u,v),(u,v)〉
=

1
ρ
〈∇F(x,u,v),(u,v)〉. (2.16)

Now, we consider the function L : [1,+∞) → R defined by

L(t) := F(x,
u
t
,
v
t
)tρ , (2.17)

clearly, by (2.16), the function L is non-increasing. Thus, for |(u,v)| � 1, we have
L(1) � L(|(u,v)|) . Together with (H4), it derives

F(x,u,v) � F(x,
(u,v)
|(u,v)| )|(u,v)|ρ

� inf
|(u,v)|=1

F(x,u,v)|(u,v)|ρ = η |(u,v)|ρ . (2.18)
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If |(u,v)| � 1, by the continuity of F , we can write,

F(x,u,v) � η |(u,v)|ρ −C7,

where C7 � max{0,η −min|(u,v)|�1 F(x,u,v)} . Together with (2.18), we deduce that

F(x,u,v) � η |(u,v)|ρ −C7, for all (u,v) ∈ R
+×R

+. (2.19)

On one hand, from (2.10), we get

||vε ||
2p
p−2 �

(
Aa,b,μ(Ω)

) p
p−2 +C6ε

2
p−2 . (2.20)

On the other hand, the function g̃(t) attains its maximum at t0ε and is increasing the
interval [0, t0ε ] , together with (2.11), (2.15), (2.19) and (2.20), we deduce that

g(tε) = g̃(tε )−λ
∫

Ω
F(x,tε

√
αvε ,tε

√
βvε)dx

� g̃(t0ε )−λ
∫

Ω
F(x,tε

√
αvε ,tε

√
βvε)dx

�
(1

2
− 1

α + β

)[ (α + β )||vε ||2
2α

α
2 β

β
2

] 2
α+β−2 (α + β )||vε ||2

−λ η(α + β )
ρ
2 tρ

ε

∫
Ω

vρ
ε dx−λC7|Ω|

� 2
(1

2
− 1

α + β

)[ (α + β )

2α
α

α+β β
β

α+β

] α+β
α+β−2 (α + β )||vε ||

p
p−2 −λC7|Ω|

−λ η(α + β )
ρ
2 T ρ

0 C3ε
N−ρ(

√
μ−a)

(p−2)β

� p−2
2p

[((α
β

) β
α+β +

(α
β

) −α
α+β

)Aa,b,μ(Ω)
2

] p
p−2 +C8ε

2
p−2

−C9ε
N−ρ(

√
μ−a)

(p−2)β −λC7|Ω|, (2.21)

where

C8 =
p−2
2p

[1
2

((α
β

) β
α+β +

(α
β

) −α
α+β

)Aa,b,μ(Ω)
2

] p
p−2

C6,

C9 = λ η(α + β )
ρ
2 T ρ

0 C3.

By the definition of ρ in Theorem 1, we obtain that

2
p−2

>
N−ρ(

√
μ −a)

(p−2)β
.
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Choosing ε small enough, we have

sup
t�0

J(tu,tv) = g(tε) <
p−2
2p

( Ãa,b,μ(Ω)
2

) p
p−2

.

3. Proof of main results

Proof of Theorem 1. From the Caffarelli-Kohn-Nirenberg inequality (1.3), we
can easily get:

∫
Ω

up1dx � C10||u||p1 ,

∫
Ω

up2dx � C10||u||p2 , (3.1)

for all u ∈ H1
0 (Ω, |x|−2a) . For every ε > 0, fix λ ∗∗ ∈ (0,ε) . If λ ∈ (0,λ ∗∗) , by (1.7),

(2.1), (3.1) and (H2), for any (u,v) ∈ H , we have

J(u,v) � 1
2
||(u,v)||2 − 2

α + β
(Ãa,b,μ(Ω))−

p
2 ||(u,v)||p−λ

∫
Ω

F(x,u+,v+)dx

� 1
2
||(u,v)||2 − 2

α + β
(Ãa,b,μ(Ω))−

p
2 ||(u,v)||p

−λ
∫

Ω

(
e1

∂F(x,u+,v+)
∂u

u+ e2
∂F(x,u+,v+)

∂v
v
)
dx

� 1
2
||(u,v)||2 − 2

α + β
(Ãa,b,μ(Ω))−

p
2 ||(u,v)||p

−λR1

2

∫
Ω

(
(u+)p1 +(v+)p2

)
dx−λM|Ω|

� 1
2
||(u,v)||2 − 2

α + β
(Ãa,b,μ(Ω))−

p
2 ||(u,v)||p

−λR1

2
C10

(
||u+||p1 + ||v+||p2

)
dx−λM|Ω|

� 1
2
||(u,v)||2 − 2

α + β
(Ãa,b,μ(Ω))−

p
2 ||(u,v)||p

−λ ∗∗R1

2
C10

(
||(u,v)||p1 + ||(u,v)||p2

)
dx−λ ∗∗M|Ω|

� 1
2
||(u,v)||2 − 2

α + β
(Ãa,b,μ(Ω))−

p
2 ||(u,v)||p

−εR1

2
C10

(
||(u,v)||p1 + ||(u,v)||p2

)
dx− εM|Ω|,

for ε small enough. Thus, there exists ρ > 0 such that J(u,v) � ρ for all (u,v) ∈
∂Br = {(u,v)∈H, ||(u,v)||= r} , where r > 0 small enough. Let λ ∗ = min{λ ∗

1 ,λ ∗∗} .
By Lemma 2, for λ ∈ (0,λ ∗) , there exists (u0,v0) ∈ H , u0 �= 0, v0 �= 0, such that
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sup
t�0

J(tu0,tv0) <
p−2
2p

( Ãa,b,μ(Ω)
2

) p
p−2

.

By the nonnegativity of F(x,u,v) , we get

J(tu0, tv0) =
1
2
t2||(u0,v0)||2− 2tα+β

α + β

∫
Ω

(u+
0 )α (v+

0 )β

|x|bp dx−λ
∫

Ω
F(x,tu0,tv0)dx

� 1
2
t2||(u0,v0)||2− 2tα+β

α + β

∫
Ω

(u+
0 )α (v+

0 )β

|x|bp dx,

which implies that limt→+∞ J(tu0,tv0) →−∞ . Hence, we can choose t0 > 0 such that
||(t0u0, t0v0)|| > r and J(tu0,tv0) � 0. Applying the Mountain Pass Lemma in [14],
there is a sequence (un,vn) ⊂ H satisfying

J(un,vn) → c � ρ , and J′(un,vn) → 0,

where

c = inf
h∈τ

max
t∈[0,1]

J(h(t)),

τ = {h ∈ ([0,1],H2)|h(0) = 0,h(1) = (t0u0, t0v0)}.
Note that

0 < ρ � c = inf
h∈τ

max
t∈[0,1]

J(h(t)) � max
t∈[0,1]

J(tt0u0, tt0v0)

� sup
t�0

J(tu0,tv0) <
p−2
2p

( Ãa,b,μ(Ω)
2

) p
p−2

.

By Lemma 1 there exists a subsequence of {(un,vn)} , still denoted by {(un,vn)} , such
that (un,vn) → (u,v) strongly in H . Thus, we get a critical point (u,v) of J satisfying
(1.1) and c is a critical value.
In J(u,v) , by replacing the terms of

∫
Ω

|u|α |v|β
|x|bp dx,

∫
Ω

F(x,u,v)dx

instead of

∫
Ω

|u+|α |v+|β
|x|bp dx,

∫
Ω

F(x,u+,v+)dx
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respectively and repeating the above process, we get a nonnegative solution (u,v) to
(1.1). Also, by the maximum principle we deduce that u > 0, v > 0 in Ω . �

Proof of Theorem 2. By Theorem 1, there exist λ ∗ > 0 such that the problem
(1.1) has a positive solution (u1,v1) for each λ ∈ (0,λ ∗) . Set G(x,s,t)=−F(x,−s,−t)
for (s, t)∈R

2 . It follows from Theorem 1 that there exists λ ′∗ > 0 such that the system

⎧⎪⎪⎨
⎪⎪⎩
−div(|x|−2a∇u)− μ u

|x|2(1+a) = 2α
α+β

|u|α−2|v|β u
|x|bp + λ ∂

∂uG(x,u,v), x ∈ Ω,

−div(|x|−2a∇v)− μ v
|x|2(1+a) = 2β

α+β
|u|α |v|β−2v

|x|bp + λ ∂
∂vG(x,u,v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

has at least a positive solution (u,v) for each λ ∈ (0,λ ′∗) . Let (u2,v2) = −(u,v) , then
(u2,v2) is a solution of system

⎧⎪⎪⎨
⎪⎪⎩
−div(|x|−2a∇u)− μ u

|x|2(1+a) = 2α
α+β

|u|α−2|v|β u
|x|bp + λ ∂

∂uF(x,u,v), x ∈ Ω,

−div(|x|−2a∇v)− μ v
|x|2(1+a) = 2β

α+β
|u|α |v|β−2v

|x|bp + λ ∂
∂vF(x,u,v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Set λ = min{λ ∗,λ ′∗} . It is obvious that:

(u1,v1) �= (0,0) , (u2,v2) �= (0,0) and (u1,v1) �= (u2,v2) .

So the system (1.1) has at least two distinct nontrivial solutions for every λ ∈ (0,λ ) .
Therefore, Theorem 2 holds. �

Acknowledgements. The authors would like to thank the anonymous referees for
his/her valuable suggestions and comments.

RE F ER EN C ES

[1] C. O. ALVES, D. C. DE MORAIS FILHO, M. A. S. SOUTO, On systems of elliptic equations involving
subcritical or critical Sobolev exponents, Nonlinear Anal., 42 (2000), 771–787.
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