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EXISTENCE AND MULTIPLICITY OF SOLUTIONS
FOR SEMILINEAR ELLIPTIC SYSTEMS INVOLVING
HARDY-SOBOLEV CRITICAL NONLINEARITY

NEMAT NYAMORADI AND MOHSEN SHEKARBIGI

(Communicated by Dongsheng Kang)

Abstract. This paper is concerned with a singular elliptic system, which involves the Hardy-
Sobolev critical nonlinearity. The existence and multiplicity of solutions for this system are
obtained by the variational methods.

1. Introduction

The aim of this paper is to establish the existence and multiplicity of solutions to
the following semilinear elliptic system

. B o=21,B
—div(|x| 2“Vu)—/,t‘x‘2(++a): 20 M4—7L%F(x,u,v), x€eQ,

otB  |xfor
. — v 2 u|*|v|B=2y
—div(|x| Q“Vv)—;,tlxlz(—lw):%%—f—k%F(xmm), x€eQ, (1.1)
u=v=0, X € 0Q,

where 0 € Q is a bounded domain in RV (N > 3) with smooth boundary 0Q,

0<a< T, ﬁé<¥>2, and 0< < (\/H—a),

a<b<a+1,1>0, afp >1 satisfy

2N
FB=p=plab) = g T
is the Hardy- Sobolev critical exponent. Note that
2N
_= = — = 2*
p=pla,a)=<—

is the Sobolev critical exponent. F' is a real function satisfying some assumptions.
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In the case u = 0, problem (1.1) is related to the well known Caffarelli-Kohn-
Nirenberg inequalities in [4],

2
(/ |x|7h1’\u|pdx> "< CaJ,/ x| 72| Vul?dx, forall ueCyRY), (1.2)
RN RN

where
2N

—e<a< VR a<b<atl, andp= g,

For particular constants and extremal functions, see [6]. As b=1+4+a and p=2 in
(1.2), we have the following weighted Hardy inequality [6, 7],

‘”|2 1 / -2 2 oo (N
dx < x| 74V dx, forall c Cy(R™). 1.3
/RN M2(1+a) (\/:“_ a)2 RN =Vl “ o (R7) (1.3)

When a =0, (1.3) becomes the well known Hardy inequality,

2 1
/ degz/ Vuldx, forall ue Cy(RY).
RV [x[2 I Jey

By using the inequality (1.2) and the boundedness of €2, it was proved in [15] that
there exists C > 0 such that

2
(/Q\x\—ﬁ\uvdx)’ <C/Q|x|_2“|Vu|2dx7 forall ue HY(Q X2,  (1.4)

where 1 < r < ]% , 6 < (a+1)r+ N[l — (r/2)], which is known Caffarelli-Kohn-
Nirenberg’s inequality. In other words, the embedding H{ (€, ]x|~2%) — L’ (Q, |x|~%)
is continuous if

2
1<r< N—NZ and 8 < (a+ 1)r+N[1—(r/2)].

Moreover, this embedding is compact if

2N
1<r< N3 and & < (a+1)r+N[1—(r/2)],
(see [15] Theorem 2.1).

For p € [0, (/T —a)?), we define the space H = H} (Q, |x|72¢) x H} (Q,|x|79)
with the norm

- Jul?
P = P+ P, where [Jl = [ (2192~ a,
Q |x| (1+a)
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which [|u|| is equivalent to the usual norm of H} (€, |x|7>%), resulting from (1.3). We
can also define the best Hardy-Sobolev constant:

~ 2
Aupu(Q) = inf [ )] —. (1.5)
(u,v)eH\{(0,0)} ( Ju|*|v[P V|/3 atB
f.Q ‘X‘bp >
Modifying the proof of Theorem 5 in [1], we can easily deduce that
B —a
~ o\ o8 o\ o5 8
Aunn@=[(5)"7 +(5) ™" JAsn(@), (1.6)

where

2
. u
Aupu(Q) = inf %
u€H} (x| ~20)\ {0} (fg [u|P dx)ﬁ
|x[Pr

Here are the main results of this paper.

THEOREM 1. Suppose that
N>3(1+a), 0<a< VI, 0<u<(VI—a)P, a<b<a+1,

and F satisfies:

(HI) F € C(Q,RT x R* R) and F(x,0,0) = 2E(x,0,v) = 9E (x,u,0) = 0;

(H2) 0 < F(x,s5,1) <eys2E (x,5,0) +eat 2L (x,5,1), V(s,1) eRT xR\ {(0,0)}, x€Q,
where ej,e; € (p, 3):

(H3) there exist 1 < p; < q (where q € (2,2*]), i=1,2, Ry and Ry such that

oF oF
s—=—(x,5,¢) +1—=—(x,5,) <Ry (s"' +172), if s+t >Ry e RT xRT\ {(0,0)},

u v

forall (s,t) € Rt xR* and fora.e x € Q; B
(H4) let fo = inf|(s,) -1 F(x,s,2) >0, (5,1) € RT x RT\ {(0,0)}, x € Q.
Assume that

1
max{ey, e}

2
>max{2§ N ﬁ}—ro,

Y Vi—a

p= (1.7)

where
B2 /(A pand y2 \/E-a+p.

Then there exists A* > 0 such that the problem (1.1) possesses one positive solution for
every A € (0,17).
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THEOREM 2. Suppose that

N=3(14+a), 0<a< /I, 0<pu<(VE—a)? a<b<a+l

and F satisfies:

(HI’) F € C'(Q,R*,R) and F(x,0,0) = au E(x,0,v) = 9 (x,u,0) = 0; B
(H2’) 0 < F(x,s,t) < els8 (x,s t)—l—ezt (x,5,1), V(s,1) €R*\{(0,0)}, x€ Q,
where ej,es € (117 1),

(H3’) there exist 1 < p; < q (where g € (2,2*]), i=1,2, Ry and Ry such that

JdF oF
s—=(x,8,0) +1

P1 P2
= )| < Ri(lsfrr ),

if |s|+t| =Ry e RT x RT\ {(0,0)},
forall (s,t) € Rt xR* and fora.e x € Q; B
(H#) let fy=inf|(; =1 F(x,s5,1) >0, (s,1) € R*\ {(0,0)}, x€ Q.

Assume that (1.7) holds. Then there exists A* > 0 such that the problem (1.1)
possesses one positive solution for every A € (0,A).

For example, in the following, it holds that the conditions (H1)-(H4) and (H1’)-
(H4”) of Theorems 1 and 2 holds:

1 1
Fx,u,v) = [ul® sin(u) + |7sin(v), (u,v) € (0, 2] % (0,2], ~<@,7< =
2 27 2
Then
oF _ 0-2 6 yr v
3= Olu|” “usin(u) + |u|” cos(u), (u,v) € (0,7} X <O,7],
oF S Y yr
i y-2 Y i s
o = 7l Pvsin(v) + bl eos(v), (u,v) € (o, . ] X (o, . ]
now, by the Formulas of F(x,u,v), - E and 2£ 5, itis obvious that the (H1) and (H1")

(2,
hold true. We know that sin(u) < < cos( ) forue (0, ZL]; therefore, (H2) and (H2") hold
true. By the inequality sin(u) < u, if we get p; = 0 + 1 and p, = y+ 1; then (H3)
and (H3’) hold true with p; (i = 1,2) in the certain interval. By the Mountain-Pass
Theorem, we can show that a given functional F having a local extremum, so (H4) and
(H4’) hold true.

In recent years, much attention has been paid to the existence of nontrivial solu-
tions for the singular elliptic problems concerning the operator Au — M 2 o<u<w
with Sobolev critical exponents (the case that a = b = 0) (see [5, 6, 8] and their ref-
erences). Some authors have also studied the singular problems with Hardy-Sobolev
critical exponents (the case that a # 0, b # 0) (see [9, 10, 11, 12, 13, 16]). Since the
embedding H{ (Q, |x|72%) — L* (Q) is not compact, the corresponding energy func-
tional does not satisfy the (PS) condition globally, which caused a serious difficulty
when trying to find critical points by standard variational methods. However, we use
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argument of Brezis and Nirenberg [3] to verify that the associated functional satisfies
the Palais-Smale condition on a given interval of the real line.

In this work, motivated by the above works we are interested to study the problem
(1) by using the Mountain-Pass Theorem due to Rabinowitz [14].

This paper is divided into three sections, organized as follows. In Section 2, we
establish preliminaries and some elementary results. Finally, in Section 3, we prove our
main results (Theorems 1 and 2).

2. Preliminaries

Let ™ = max{4u,0}. The corresponding energy functional of problem (1.1) is
defined by

1 —2a 2 —2a 2 |”\2 \‘42
T =5 [ (Va9 ~ M — M )4

2 (uh)* ()P
— OH—ﬂ/Q dx—?L/gF(x,uﬂvﬂdx,

[P

foreach (u,v) € H. Then J € C'(H,R). Now, it is well known that there exists a one to
one correspondence between the weak solutions of problem (1.1) and the critical points
of J on H. More precisely, we say that (u,v) € H is a weak solution of problem (1.1),
if for any (¢, @) € H, there holds

/ _1 ~2 ~2 _etves
) (o1 0)) = 5 [ (1 V¥ 4 312V, - p B o

20 (u*)""l(ﬁ)ﬁ

“atBla w0
2B [ (wh)*(vH)P!
o+ Ja |x| P P2dx

JIF + .+ JIF + o+
)L/Q(Qu (r,u” v + 5 (x,u™,v")@r)dx.
LEMMA 1. Assume that

N>=3(1+a),0<a<\/I 0<u<(y/E—a)? a<b<a+1and 2 >0.

Suppose that (H1)-(H3) and (1.7) hold. Then the functional J satisfies the (PS). con-

dition for all
pla,b) =2 ~

. =
O<c<c:= o (Agpu(Q)) 2.

Proof. Suppose {(u,vy)} C H satisfies J(un,v,) — ¢ and J'(uy,v,) — 0 with
¢ < ¢*. Together (H2), we get as n — oo the following:
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¢+ | (s va) || 4+ 00 (1) = J(un,vn) — (I (tn, Vi), (€1ttn, €2v0))

1 1
= (5 —e1)lJunl >+ (5 — e2)[Ival >

2 2
oF oF
X/Q(elu,fz(x,u:,v,f)+e2viw(x,u:{,vn+)
2 1 +ya(,+\B
—F(x,u 7)) dx + (orer + Per )/ ?) }()v ) dx
o+f o  |x|Pr
1 . 2
> (5 el + (3~ el
> min{ 2 —e1.5 — e | ()|
= 2 61’2 62 ul’l;vn .

Hence, we conclude {(u,,v,)} is a bounded sequence in H and there exists (u,v)
such that (up,v,) — (u,v) up to a subsequence. Moreover, we may assume

Up — U, Vy—V, weakly in H}(Q),
Uy — U, Uy — U, strongly in L"(Q), 1 <r<2*
Up — U, Uy — U, a.e. on Q.

By (H1) and (H3), there exists a positive constant M > 0 such that

R,
= ()7 4+ (v))P) + M. 2.1
Now, by absolutely continuity of integral, for any & > 0, there exists 6 = 55; >0, when

E C Q, mes(E) < 8, we have

Flx,ul v <

[+ 05 < -

Hence, by (2.1), we have

R
/F(x,u;{,vn*)dxg 71 ()Pt + (v)P2)dx + mes(E)M
E E
R, € e &€
<R s Eif e
2R ;T 7¢

Thus, { JoF (x,uf v )dx, j € N} is equi-absolutely continuous. It follows easily from
Vitali Convergence Theorem that

/F(x,u;[,v,f)dxa/F(x,u+,v+)dx,
Q Q

as n — oo. Using the same methods, we can prove that
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/ 8F(x,u;{,vn+)u+dx_) 8F(x’u+’v+)u+dx7
Q

du " du
+ + 4t
/ AF (x,uf, v} vy — dF (x,u™t,v )v+dx, 2.2)
Q v dv

as n — oo. Hence, we have J'(u,v) = 0 by the weak continuity of J. Let &, = u, — u,
v, = v, —v. Then we have

2 ~ 12
2a 2 "y 2 \un| + [V )
/ (bl 24V + x|~ V5~ B )4

- - [n > + [va]®
= [ (0 g - 0

Y Y ul? + v?
—/Q(|x| 2| Guf? 4 [x] 2 |vv2—u%)dx+o(1).

By the Brezis-Lieb lemma [2], we obtain

||, ) [P = 1t v) [P = |, 0)[]7, as n— oo, (2.3)
and ﬁ ﬁ
|ttn|* [V /|un\ [val Ju|*|v]*
d 1). 2.4
/ |x|bp [x[or o |xPr x+o(1) (2.4)

Since J'(up,v,) — 0, we obtain

+
u,
| () H2 2/ |x|h1’

+ ot sy
—A/ QF(x,unaVn>u++3F(x’u”’V")v+>d~x:0(1)'
Q

u " v "

Now, by (2.2), (2.3) and (2.4), we have

~ 2
nyVn -2 -2
A g R L e

+ + +
_x/ 8qu v )u++8F(x,8uV v )v+>dx=o(l). (2.5)

And

+
im 7)) = )| =2 [ & T‘i

n—oo

+ o
—JL/ 8qu )“++8F(x,8uv i )v+)dx=0~ (2.6)
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It derives from (2.6) that

B 2 (u)*(vt)e 8qu v

J(u’v>_<l_a+ﬁ>/g b dx +7L/ 7
OF (x,ut vt) | -

+TV )—F()@u V) |dx.

Together with (H2), we can conclude that

J(u,v) = 0. (2.7)

Since J(uy,vy) — ¢ as n — oo, we obtain

1o 1 2 [ @G
i) = 31 TP+ 510~ o [

o v+)a
P e [ o)
= J(uv) + 4w%wm—a+ﬂ/ |W;)m+qu
=c+o(l).
Therefore
|
J(mv)—l—EH(umv,, OH—ﬁ/ \x\”l’ =c+o(l). (2.8)

From (2.5) and (2.6), we have

| (i, V1) |\2 2/ |x|bP dx—o(l)
Let us prove that ||(#,,V,)|| — 0 as n — . Otherwise, there exists a subsequence (still

denoted by (u;,,V,)) such that

e (5

@i, )| 2 = 1, 2/ W) W0)" g, (2.9)
a |

From definition of A, ,(€2), we obtain

1G> Aas (@) ([ B0 007,

o |xr
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~ 2 ~
then [ > A, p u(Q)17, i

_P_
cie., 12 (Agpu(2)) 77, which, together with (2.8) and (2.9),
shows that

_ 1 1 P—2+%
J(M,V)—C—§l+l—)l< _gAabp<O

which contradicts (2.7). Therefore, we get

H(izna/‘;n)H — 0 as n-— oo,

This proves (uy,v,) — (4,v) in H as n — oo.
Thus, J satisfies (PS). condition.

The author in [1 1] proved that, for:

0<a<\/:, O<u<(\/ﬁ—a)2, and a <

<bhb<a+l,
Agapy is attained when Q = RY by the functions

1
2epB2)?r
Velx) = (2epB”) -
x| (€ + |x|(P=2)B) >

forall & >0, where ¥ £ /Tl —a— 8. Moreover, the functions y, (x) solve the equation

o u ulp=2
—div(|x|*Vu) — u NEE = P u, in RM\ {0}.

Let

1
Ce=(2epB?)? and Ug(x) = ygc(x).
€
Define a cut-off function ¢ € C; (€2) such that ¢(x) =1 for |x|

X <r, (x) =0 for
2r, 0 < @(x) < 1, where B,,(0) C Q. Set us(x) = ¢(x)Ue(x),

| >

VelX) = MS(X)
) = e P PP

so that [q [ve|?|x|~?Pdx = 1. The author in [9] proved that

2 2
Aapu(Q) +Coe 72 < [|vel|* < Auppu(Q) +Cae772, (2.10)
and

Cier? < < Jo [ve|%dx < C5£P2

1<g< %
q q N
Cyer2|Ing| < fQ\vg\qu<C58P*2\ln£| 9=, (2.11)
N—q(y/Ti-a) N—q(/Ti-a)
Cie PP < g lvelfdx < Cse 2B, D <g<2n.
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LEMMA 2. Assume that

0<a<\/:, 0<,u<(\/ﬁ—a)2, and a<

Suppose that (HI)-(H4) hold. Then there exists (ug,vo) € H, ug # 0, vo # 0 and

A >0 such that

supJ(tug,tvy) <

120 2p 2

forevery A € (0,A]).

Proof. Let u=\/ove and v = /Bve, then we consider the functions

ZtOHr

g(t) = J(tv/tve,1/Bre) = O€+l3)|\\’s|\2 Py

pP— 2 <Aa7b7u (Q)> P’T)Z

B,
o2 p

- k/ F(x,17/0ve, 14/ Bve )dx
Q

and

2 20+ B

8(1) = J(t\/ave,1/Bre) = (e + ) Ive -

Note that lim; . 1. g(t) = —eo, g(0) =0, g(r) >0 for t — 0%, so sup,-g(r) is

attained for some 7. > 0. Since (H2) and

1 o B
0=g'(te) = te(a+B)|lvel > 22 P a5 B2

—k/ &Fxt\/_Vg,thg \/—v

+8 X,1y/0ve,

we have

te(o+B)

+8 x,t Ocvg,t\/_vg \/_v>

v

205
o+p

o+p-2

=

Therefore, by the last inequality, we can write

2.1
fe < [(O“Fﬁ)HV«SH aip2 2.0

Za%ﬁg

2027 qip A /(ant\/_Vg,t\/_Vg o
= — Ve

B Y

(2.12)

(2.13)
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By (2.10) and (2.11), we get
Vel 2 = Aapa, /s;vlgldxﬁ 0, and /Qvglzdx 0, (2.14)
as n — co. Now, by (H1) and (H3), we deduce that

xt\/_vg7t\/_v£ aF(xJ\/avg,t\/ng)\/Bv
dv €

u

-1 P~ —1p22
SR a2 vg 17T B IvE) + Cste,

for some constant Cs > 0. By (2.12)-(2.14) and Holder inequality, we obtain

o B
200237 _ A )
vell? < 7Bta+/3 2y R1<(tg)p1 205’21/ Voldx

a+p ¢ (a+ﬂ)
pa—2 2 A‘C5‘Q|
BT [ vrdx) + 5

N\‘m

2a%ﬁ oc+/3 -2 A
ol 2 r i) +ol),

as n — oo. Thus, there exists A} = m&,?h#(ﬁ) > 0 such that

A a%
te)( a+ﬁﬁ a.,zb.,u> e (2.15)
2a2ﬁ7
forall A € (0,A]).
From (H2), we get
F

F(x,u,v) < eluz(x,u,v)+e2vw(x,u,v)

< max{ej,ea} - (VF(x,u,v), (u,v))

1
= E(VF(x,u,v),(u,v)). (2.16)
Now, we consider the function L : [1,+e0) — R defined by
P (2.17)

clearly, by (2.16), the function L is non-increasing. Thus, for |(u,v)| > 1, we have
L(1) > L(|(u,v)|). Together with (H4), it derives

> inf F(x,u,v)|[(u,v)|P = n|(u,v)P. (2.18)
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If |(u,v)| < 1, by the continuity of F', we can write,
F(X,M,V) 2 Tl|(M7V)|p _C77

where C7 > max{0,n —minj(,,, < F(x,u,v)}. Together with (2.18), we deduce that

F(x,u,v) > n|(u,v)|P —C7, forall (u,v) e R xR". (2.19)

On one hand, from (2.10), we get

2 _P_ 2
Vel 72 < (Aapu(Q))P 2 +Coe7 2. (2.20)

On the other hand, the function g(¢) attains its maximum at ¢0 and is increasing the
interval [0,2], together with (2.11), (2.15), (2.19) and (2.20), we deduce that

glte) = g(zg)—x/ F(x,1ev/Gve, 1o/ Be)dx
< gt X/Fxtg\/_vg,tg\/_vg

(%_oH—ﬁ)[ “;@)LZE' ]“*B”(wmuvsuz

—An(a+[3)%t§/gv§dx—lc7\9|

2 o+p

_otp
SZ(l 1 )[ (Ofx"f'ﬁ)ﬁ ]a+/372(06+[3)|\v5|\l’_62—lc7|9‘
20,9+B f o+B
-P(VI-a)

p N—p(
—An(a+B)I T Cse 2P

<L) () e

—Gog 2P —AG7|9, 2.21)
where
B —a
_ P21l rayaip 0 ap) Aab ()]0
%= [2<<ﬁ> +<ﬁ> )=
Co = An(a+B)STPCs.

By the definition of p in Theorem I, we obtain that

2 _N-p(VE-a)

p—2> (p—2)B
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Choosing € small enough, we have
ga,h,u (Q) ) ﬁ
— 5 .

p—2
supJ(tu,tv) = g(te) < —(
>0 ( ) ¢ 2p

3. Proof of main results

Proof of Theorem 1. From the Caffarelli-Kohn-Nirenberg inequality (1.3), we
can easily get:

/umdxgcmnuw’l, /upzdxgcmuuupz, 3.1
Q Q

for all u € H} (Q,[x|72). For every € > 0, fix A** € (0,¢). If A € (0,4*"), by (1.7),
(2.1), (3.1) and (H2), for any (u,v) € H, we have

Ha9) > 30| = 5 G @) E )P = [ P v
> 3110091 = o (R (@) Fl )

+ o+ + ot
—l/ <618F(x,u 1) JF (x,u™,v")
Q

P u+e B v)dx
2~ _p
P o @) )
—% ((Wh)Pr+ (vF)P2)dx — AM|Q|
Q
2~ _p
m(AuJa,u(Q)) 2[[ (u, )P
AR g ([ 1 ) A
2~ _p
P o R @) )
_x**Rl
2
2
a+p

€R
= Cuo ()17 ) 172 )dx — em|€,

WV

1
lIGev)

WV

1
Sl -

WV

1
lIGev)

Cuo |17+ 1] 72— 2 M1

(A (92)) 72| ()P

WV

1
SllGewIP -

for € small enough. Thus, there exists p > 0 such that J(u,v) > p for all (u,v) €
dB,={(u,v) €H, ||(u,v)|| =r}, where r > 0 small enough. Let 1* = min{A;,A**}.
By Lemma 2, for A € (0,A%), there exists (ug,vo) € H, ug # 0, vo # 0, such that
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_P_

P_—2 <ga,b,p (Q) ) P2 .

supJ(tuo,tvp) < >

>0 2p

By the nonnegativity of F(x,u,v), we get

1 ut /3
J(tug,tvo) = §t2|\(u07v0) OC—|—[3/ 0) ‘bp x—?L/QF(x,tuo,tvo)dx

ueth o (u o) ()"
oat+B o |xr

1
< EZ2H(”07V0)H2_ dx,

which implies that lim,_ ;. J(tug,7vy) — —eo. Hence, we can choose 7y > 0 such that

| (fouo,20v0)|| > r and J(rug,tvo) < 0. Applying the Mountain Pass Lemma in [14],
there is a sequence (u,,v,) C H satisfying

J(up,vy) —c=p, and J'(un,v,) — 0,

where
= inf J(h(t
¢ = inf max (h(1)),
T= {h € ([07 l}sz)‘h(O) = 07h(1) = (IOMOJOVO)}"
Note that

0 < p < ¢ = inf max J(h(r)) < max J(ttouo,ttovo)

hetrel0,1) 1€[0,1]
—2 ga.h.u(g) ﬁ
< supJ(tug,tvy) < —(7) .

By Lemma 1 there exists a subsequence of {(uy,,v,)}, still denoted by {(un,v,)}, such
that (un,v,) — (u,v) strongly in H. Thus, we get a critical point (u,v) of J satisfying
(1.1) and c is a critical value.

In J(u,v), by replacing the terms of

|u]*| V\ﬁ
/Q |x|h17 /qu v)d

instead of

‘”+| ‘V+|ﬁ +
/ |x|h17 X, /QF(x7u v )dx
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respectively and repeating the above process, we get a nonnegative solution (u,v) to
(1.1). Also, by the maximum principle we deduce that ¥ >0, v>0in Q. O

Proof of Theorem 2. By Theorem 1, there exist A* > 0 such that the problem

(1.1) has a positive solution (u,v;) foreach A € (0,A*). Set G(x,s,1) = —F(x,—s,—t)
for (s,t) € R?. It follows from Theorem 1 that there exists A”* > 0 such that the system

: —2a u a-2py|p
—div(|x| 72 Vu)—‘u‘x‘z(—lmzof%ﬁ% —|—7L%G(x,u,v), x€Q,
—div(]x| 2Vy) — gt = 25 P2y A2-G(x,u,v) xeQ
u \X\Z(H“) o+ |x|bp v s V) ’
u=v=0, x€0Q,
has at least a positive solution (u,v) for each A € (0,A™). Let (up,v2) = —(u,v), then

(un,v7) is a solution of system

: —2a u a=2|y|B
—div(|x| 2 Vu)—umzj%ﬁ%—kl%F(x,u,vL XEQ,
_di —2ay/,,) _ v 2B PRy LLF Q
1V(|x| V) “|x|2(1+a) T a+B Mbp + v (x,u,v)7 X €82,
u=v=0, x € Q.

Set A = min{A*,A”*}. It is obvious that:

(ulvvl) 7é (070)’ (uz,\/z) 7é (070) and (ulvvl) 7é (u2vv2)'

So the system (1.1) has at least two distinct nontrivial solutions for every A € (071).
Therefore, Theorem 2 holds. O
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