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EXISTENCE AND CONCENTRATION OF GROUND STATE

SOLUTION TO A CRITICAL p–LAPLACIAN EQUATION

XUDONG SHANG AND JIHUI ZHANG

Abstract. In this paper, we consider the existence and concentration behavior of positive ground
state solution to the following problem{

−hpΔpu+V (x)|u|p−2u = K(x)|u|q−2u+ |u|p∗−2u, x ∈ R
N ,

u ∈W 1,p(RN ), u > 0, x ∈ R
N ,

where h is a small positive parameter, 1 < p < N , max{p, p∗ − p
p−1} < q < p∗ , p∗ = Np

N−p
is the critical Sobolev exponent, V (x) and K(x) are positive smooth functions. Under some
necessary restrictions, we show that for small h > 0 , the equation has a positive ground state
solution. Furthermore, we establish the concentration property of such solutions when h tends
to zero.

Mathematics subject classification (2010): 35J92, 35J35.
Keywords and phrases: p -Laplacian, ground state, critical growth, positive solution.

RE F ER EN C ES

[1] J.G. AZORERO, I.P. ALONSO, Multiplicity of solutions for elliptic problems with critical exponent or
with nonsymmetric term, Trans. Amer. Math. Soc. 323, 2 (1991), 877–895.

[2] A. AMBROSETTI, M. BADIALE, S. CINGOLANI,Semiclassical states of nonlinear Schrödinger equa-
tions, Arch. Rat. Mech. Anal., 140, 1 (1997), 285–300.

[3] C.O. ALVES, G.M. FIGUEIREDO, Existence and multiplicity of positive solutions to a p-Laplacian
equation in R

N , Differential Integral Equations Anal., 19 (2006), 143–162.
[4] C.O. ALVES, G.M. FIGUEIREDO, On multiplicity and concentration of positive solutions for a class

of quasilinear problems with critical exponential growth in R
N , J. Differential Equations, 246 (2009),

1288–1311.
[5] C.O. ALVES, Existence and multiplicity of solution for a class of quasilinear equations, Adv. Nonlin-

ear Studies, 5 (2005), 73–86.
[6] C.O. ALVES, M. S. SOUTO, Existence of solutions for a class of nonlinear Schrödinger equations

with potential vanishing at infinity, J. Differential Equations, 254 (2013), 1977–1991.
[7] J. BYEON, Z.Q. WANG, Standing waves with a critical frequency for nonlinear Schrödinger equa-

tions, Arch. Rational Mech. Anal. 165 (2002), 295–316.
[8] S. CINGOLANI, M. LAZZO, Multiple positive solutions to nonlinear Schrödinger equations with

competing potential functions, J. Differential Equations, 160 (2000), 118–138.
[9] M. DEL PINO, P. FELMER, Semi-classical states of nonlinear Schrödinger equations: a variational

reduction method, Math. Ann, 324 (2002), 1–32.
[10] Y. DING, F. LIN, Solutions of perturbed Schrödinger equations with critical nonlinearity, Calc. Var.

PDE., 30 (2007), 231–249.
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