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Abstract. In this paper, we consider the existence and concentration behavior of positive ground
state solution to the following problem{

−hpΔpu+V (x)|u|p−2u = K(x)|u|q−2u+ |u|p∗−2u, x ∈ R
N ,

u ∈W 1,p(RN ), u > 0, x ∈ R
N ,

where h is a small positive parameter, 1 < p < N , max{p, p∗ − p
p−1} < q < p∗ , p∗ = Np

N−p
is the critical Sobolev exponent, V (x) and K(x) are positive smooth functions. Under some
necessary restrictions, we show that for small h > 0 , the equation has a positive ground state
solution. Furthermore, we establish the concentration property of such solutions when h tends
to zero.

1. Introduction and main results

In present paper, we consider the existence and concentration behavior of positive
ground state solution to the following problem{

−hpΔpu+V(x)|u|p−2u = K(x)|u|q−2u+ |u|p∗−2u, x ∈ R
N ,

u ∈W 1,p(RN), u > 0, x ∈ R
N ,

(1.1)

where h is a small positive parameter, Δpu = div(|∇u|p−2∇u) is the p -Laplacian,

1 < p < N, max{p, p∗ − p
p−1

} < q < p∗ and p∗ =
Np

N− p

is the critical Sobolev exponent, V (x) and K(x) are positive smooth functions with
V (x) bounded below by a positive constant and K(x) bounded.

We note that problem (1.1) with p = 2 arise when one seeks for the standing wave
solutions of the following nonlinear Schrödinger equation

ih
∂ϕ
∂ t

=
−h2

2m
Δϕ +W(x)ϕ − γ|ϕ |q−2ϕ , x ∈ R

N .
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We can see [15] and the references therein for more background.
The nonlinear Schrödinger equations have been extensively studied in recent years,

obtained numerous results on existence, multiplicity and concentration behavior of the
positive solutions, see for example[2, 6, 7, 8, 9, 10, 16, 17, 20, 21]. Wang and Zeng
in [26] studied the following nonlinear Schrödinger equation with competing potential
functions

−h2Δu+V(x)u = K(x)|u|p−2u+Q(x)|u|q−2u, x ∈ R
N , (1.2)

where 2 < q < p < 2N/N−2, V (x) has a positive lower bound, K(x) is positive and
bounded, Q(x) is bounded and allowed to change sign. By min-max argument, they
proved existence of a ground state solution and studied the concentration behavior of
such solutions, obtained a necessary condition for location of concentration of positive
bound state solution of (1.2).

Very recently, several papers have appeared about the p -Laplacian problems, we
can see[3, 4, 5, 11, 12, 14] and there references. Alves and Figueiredo in [3] studied
the following class of problem

−hpΔpu+V(x)|u|p−2u = f (u), x ∈ R
N . (1.3)

V (x) is a continuous function satisfying

V∞ = liminf
|x|→∞

V (x) > inf
x∈RN

V (x) = V0 > 0.

Under some assumptions on f , they established the existence, multiplicity of solutions
to (1.3). Moreover, they proved that solutions of (1.3) which concentrate around a
global minimum point of V . In [11], do Ó considered the quasilinear critical problem

−hpΔpu+V(x)up−1 = f (u)+up∗−1, x ∈ R
N , (1.4)

where f is a C1 function and satisfying some necessary conditions, V ∈C(RN ,R) and
there exists an open bounded subset Ω ⊂ R

N such that

inf
∂Ω

V (x) > inf
Ω

V (x) = V0 > 0.

Using the penalization method, the author studied the existence of bounded state which
concentrate around a local minima of V as h → 0. Furthermore, Figueiredo and Fur-
tado in [14] using Ljusternik-Schnirelmann theory obtained multiplicity result of prob-
lem (1.4). In [12], the author established the multiplicity and concentrations of positive
solutions for the supercritical problem

−hpΔpu+V(x)|u|p−2u = |u|q−2u+ λ |u|s−2u, x ∈ R
N ,

where 1 < p < N , p < q < Np/N− p � s , and V is a positive continuous function.
Based on the above reviews and observations, we know that the existence of pos-

itive ground states along with the concentration behavior of solutions to the problem
(1.1) has not been studied. More precisely, motivated by the argument used in [26, 8],
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we will consider the existence and concentration behavior of positive ground state solu-
tions of quasilinear problem with competing functions. We will prove that solutions of
(1.1) which concentrate around a global minimum points of a ground energy function
G(ξ ) , which is defined to be the ground energy associated with the equation

−Δpu+V(ξ )|u|p−2u = K(ξ )|u|q−2u+ |u|p∗−2u, x ∈ R
N , (1.5)

where ξ ∈ R
N is regard as a parameter instead of an independent variable.

In this paper, we assume
(V) V (x) is a continuous function in R

N and

inf
x∈RN

V (x) = V0 > 0.

(K) K(x) is a positive and bounded continuous function in R
N .

Now, we consider the following equation with constant coefficients

−Δpu+ λ |u|p−2u = μ |u|q−2u+ |u|p∗−2u, x ∈ R
N . (1.6)

The functional is defined as

I(u) =
1
p

∫
RN

(|∇u|p + λ |u|p)dx− 1
q

∫
RN

μ |u|qdx− 1
p∗

∫
RN

|u|p∗dx. (1.7)

Define c(λ ,μ) = infu∈N I(u) , where N ∗ is the Nehari manifold with

N ∗ =
{

u ∈W 1,p(RN)\{0} :
∫

RN
(|∇u|p + λ |u|p)dx =

∫
RN

(μ |u|q + |u|p∗)dx.

}
(1.8)

By the Sobolev embedding theorem, c(λ ,μ) is finite and positive. Furthermore, using
the similar proof of Lemma 2.2 of [26], we obtain that c(λ ,μ) satisfy a monotonicity
property: If λ1 � λ2 , μ1 � μ2 , then c(λ1,λ2) � c(μ1,μ2) .

Next, for each ξ ∈ R
N , we consider the functional associated to problem (1.5)

given by

Iξ (u) =
1
p

∫
RN

(|∇u|p +V(ξ )|u|p)dx− 1
q

∫
RN

K(ξ )|u|qdx− 1
p∗

∫
RN

|u|p∗dx. (1.9)

Define the ground energy function of by

G(ξ ) = c(V (ξ ),K(ξ )) = inf
u∈M ξ

Iξ (u),

where M ξ is the Nehari manifold defined as (1.8). By the continuity of V , K and
Sobolev embedding theorem , we know that G is a continuous, positive map. By [13],
we know that for each ξ ∈ R

N , problem (1.5) possesses a ground state solution.
Define

c∞ = inf
u∈N ∞

I∞(u),
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where

I∞(u) =
1
p

∫
RN

(|∇u|p +V∞|u|p)dx− 1
q

∫
RN

K∞|u|qdx− 1
p∗

∫
RN

|u|p∗dx,

liminf
|x|→∞

V (x) = V∞, liminf
|x|→∞

K(x) = K∞,

and always assume V∞ < ∞ . The main result of this paper is stated as follows:

THEOREM 1. Assume

inf
ξ∈RN

G(ξ ) < c∞, (1.10)

then problem (1.1) has a positive ground state solution uh for small h > 0 . Moreover,
if xh ∈ R

N is maximum point of uh , then

lim
h→0

G(xh) = G(x0) = inf
ξ∈RN

G(ξ ).

The plan of this paper is as follows. In Section 2, we present some notation and
some technical results, including the estimates for the critical levels and the geometric
hypotheses of the Mountain Pass Theorem. In Section 3, we show that the correspond-
ing energy functional satisfies the Palais-Smale condition and the existence of ground
state solution. Finally we establish the concentration property of the ground state solu-
tion when h tends to zero.

2. Notation and preliminaries

In this section, we will use the following notation frequently. The letters C,C1,C2, ··
denote positive constants, BR(0) denotes the ball centered at the origin with radius
R > 0, ‖ ·‖∞ denotes the norm in L∞ . Let us consider the energy functional associated
with problem (1.1)

Jh(u) =
1
p

∫
RN

(hp|∇u|p +V (x)|u|p)dx− 1
q

∫
RN

K(x)|u|qdx− 1
p∗

∫
RN

|u|p∗dx, (2.1)

which is well defined on the Banach space Xh , where

Xh =
{

u ∈W 1,p(RN) :
∫

RN
hp|∇u|p +V(x)|u|pdx < ∞

}

endowed with the norm

‖u‖p
X =

∫
RN

(hp|∇u|p +V (x)|u|p)dx.

We can always assume that critical points of Jh are nonnegative functions since Jh is
even. Furthermore, let us define the Nehari manifold associated to Jh by

Nh = {u ∈ Xh\{0} :
∫

RN
hp|∇u|p +V(x)|u|pdx =

∫
RN

|u|p∗dx+
∫

RN
K(x)|u|qdx}.
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Now, we start recalling that the functional Jh satisfies the mountain-pass geometry
conditions and its proof is standard.

LEMMA 1. The functional Jh satisfies the following conditions:
(i) There exist β ,ρ > 0 , such that Jh(u) � β if ‖u‖Xh = ρ .
(ii) There exists an e ∈ Xh with ‖e‖Xh > ρ such that Jh(e) < 0 .

From the Lemma above, by virtue of the mountain pass theorem without the Palais-
Smale condition ([25]), there exists a sequence {un} ⊂ Xh satisfying Jh(un) → ch and
J
′
h(un) → 0 in X−1

h at the minimax level

ch = inf
γ∈Γ

sup
t∈[0,1]

Jh(γ(t)) > 0,

where Γ = {γ ∈C1([0,1],Xh) : γ(0) = 0,γ(1) = e} . By the same proof of Lemma 2.1
in [26], We have the following lemma

LEMMA 2. For any u∈ Xh \{0} , there exists a unique tu > 0 such that tuu∈Nh .
Moreover, Jh(tuu) = maxt�0 Jh(tu) .

In order to show the existence of ground state solution, we first define the ground
state energy associated with Jh by

c∗h = inf
u∈Nh

Jh(u).

Next, we define another minimax value

c∗∗h = inf
u∈Eh\{0}

sup
t�0

Jh(tu).

As in Proposition 3.11 of [22], we shall have the following equivalent characterization
of ch .

LEMMA 3. ch = c∗h = c∗∗h .

We denote by S the Sobolev constant, that is

S = inf

{ ∫
RN |∇u|pdx

(
∫
RN |u|p∗dx)

p
p∗

: u ∈W 1,p(RN),u �= 0

}
, (2.2)

and S is attained by the functions

uε(x) =
ε

N−p
p2

(ε + |x|p/(p−1))
N−p

p

,

for any x ∈ R
N , ε > 0. Now, we recall the concentration-compactness principle due to

Lions.
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LEMMA 4. ([18]) Let {un} converge weakly to u in W 1,p(RN) such that |un|p∗
and |∇un|p converge weakly to nonnegative measures ν and μ on R

N respectively.
Then, for some at most countable set J , we have
(i) ν = |u|p∗ + ∑ j∈J ν jδx j ,
(ii) μ � |∇u|p + ∑ j∈J μ jδx j ,

(iii) Sν
p
p∗
j � μ j , where x j ∈ R

N , δx j is the Dirac measure at x j , and ν j and μ j are
constants.

Making the change of variable x 	→ hx , we can rewrite (1.1) as the following
equivalent equation

−Δpu+V(hx)|u|p−2u = K(hx)|u|q−2u+ |u|p∗−2u, x ∈ R
N . (2.3)

We know that its solution are the critical points of the functional given by

Ih(u) =
1
p

∫
RN

(|∇u|p +V(hx)|u|p)dx− 1
q

∫
RN

K(hx)|u|qdx− 1
p∗

∫
RN

|u|p∗dx, (2.4)

which is well defined on the Banach space Eh , where

Eh =
{

u ∈W 1,p(RN) :
∫

RN
V (hx)|u|pdx < ∞

}

endowed with the norm

‖u‖p
h =

∫
RN

(|∇u|p +V(hx)|u|p)dx.

Next we state the result which provides an appropriate estimate on the minimax level.

LEMMA 5. Assume the assumptions (V ) and (K) hold. Then the number ch sat-
isfies

0 < ch <
hN

N
SN/p.

Proof. Given ε > 0, we consider the function

wε(x) =
φ(x)

(ε + |x|p/p−1)N−p/p
and vε(x) =

wε (x)
‖wε(x)‖p∗

,

where φ ∈C∞
0 (RN , [0,1]) be such that 0 � φ(x) � 1 and φ(x)≡ 1 on B(0,1) , φ(x)≡ 0

in R
N \B(0,2) . Then, as ε → 0, we obtain the following estimates inspired by [1].∫

RN
|∇vε |pdx = S+O(εN−p/p). (2.5)

∫
RN

|vε |pdx �

⎧⎪⎨
⎪⎩

Cε p−1, if N > p2,

Cε p−1 log(1/ε), if N = p2,

CεN−p/p, if N < p2.

(2.6)
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∫
RN

|vε |qdx =

⎧⎪⎨
⎪⎩

O
(
ε(p−1)/p·(N−q(N−p)/p)), if q > p∗(1−1/p),

O
(
ε(N−p)q/p2

log(1/ε)
)
, if q = p∗(1−1/p),

O
(
ε(N−p)q/p2)

, if q < p∗(1−1/p).
(2.7)

Define

g(t) = Ih(tvε) =
t p

p

∫
RN

(|∇vε |p +V(hx)|vε |p)dx− tq

q

∫
RN

K(hx)|vε |qdx− t p∗

p∗
.

It’s easy to see that g(t) attains its maximum at some tε ∈ (0,∞) with g
′
(tε) = 0. That

is

0 = g
′
(tε ) = t p−1

ε

(∫
RN

(|∇vε |p +V(hx)|vε |p)dx− tq−p
ε

∫
RN

K(hx)|vε |qdx− t p∗−p
ε

)
,

it implies that,∫
RN

(|∇vε |p +V(hx)|vε |p)dx = tq−p
ε

∫
RN

K(hx)|vε |qdx+ t p∗−p
ε . (2.8)

Thus, we have

t p∗−p
ε �

∫
RN

(|∇vε |p +V(hx)|vε |p)dx, (2.9)

by Sobolev embedding theorem and (2.5), there exist an A > 0 independent of ε such
that

tε < A. (2.10)

Thus, by (2.8) and (2.9), we obtain

∫
RN

|∇vε |pdx � t p∗−p
ε +‖K‖∞

[∫
RN

(|∇vε |p +V(hx)|vε |p)dx

] q−p
p∗−p

∫
RN

|vε |qdx.

Choosing ε small, by combining (2.5), (2.7) and (2.10), it follows that

t p∗−p
ε � S

2
.

Hence,

g(tε) � t p
ε
p

∫
RN

(|∇vε |p +V(hx)|vε |p)dx

− minx∈B(0,2) K(x)
q

(S
2

) q
p∗−p

∫
RN

|vε |qdx− t p∗
ε
p∗

� t p
ε
p

∫
RN

|∇vε |pdx+C
∫

RN
|vε |pdx−C

∫
RN

|vε |qdx− t p∗
ε
p∗

. (2.11)
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Consider the function

s(t) =
t p

p

∫
RN

|∇vε |pdx− t p∗

p∗
,

we know that t = (
∫
RN |∇vε |pdx)

1
p∗−p is an maximum point of s(t) and

s(t) =
1
N

(∫
RN

|∇vε |pdx

)N
p

.

Thus, by (2.9), (2.11), q > max{p, p∗ − p
p−1} and inequality

|a+b|p �
{

(1+ ε)p−1|a|p +(1+1/ε)p−1|b|p, for 1 � p < ∞,

|a|p + |b|p for 0 < p < 1,

∀a,b ∈ R and ε > 0, we have

g(tε) � 1
N

S
N
p +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C2ε
N−p

p +C2ε p−1−C1ε
p−1
p (N− q(N−p)

p ), if N > p2,

C2ε
N−p

p +C4ε p−1|logε|−C1ε
p−1
p (N− q(N−p)

p ), if N = p2,

C5ε
N−p

p −C1ε
p−1
p (N− q(N−p)

p ), if N < p2.

We conclude from the above that, for ε > 0 small enough, Ih(tεvε) < 1
N S

N
p . By the

relation (2.1) and (2.4), we conclude the result. �

By the proof of Lemma 3 and 5, it is easy to see that 0 < c∞ < 1
N SN/p and 0 <

G(ξ ) < 1
N SN/p .

3. Existence of a ground state solution to (1.1)

In this section, we shall study the existence of ground state solution. To begin
with, we first show some compactness results for the functional Jh . Let {un} ⊂ Xh be
a (PS)c sequence of Jh , i.e

Jh(un) → c and J
′
h(un) → 0, (3.1)

with c < hN

N SN/p . We have

c+o(1) = Jh(un)− 1
q
〈J ′

h(un),un〉

=
( 1

p
− 1

q

)
‖un‖p

X +
(1

q
− 1

p∗
)∫

RN
|un|p∗dx

�
( 1

p
− 1

q

)
‖un‖p

X .
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Hence {un} is bounded Xh , then there exists a u ∈ Xh such that

un ⇀ u weakly in Xμ and un(x) → u(x) a.e. in R
N . (3.2)

In order to prove that un → u strongly in Xh , we first show the following lemma.

LEMMA 6. For h > 0 small, if c < hNc∞ , then∫
RN

K(x)|un|qdx →
∫

RN
K(x)|u|qdx, p < q < p∗.

Proof. By the boundedness of {un} and Sobolev embedding theorem, we have
un → u in Ls

loc(R
N) for p � s < p∗ . Hence, we only consider

lim
R→∞

lim
n→∞

∫
|x|�R

K(x)|un|qdx = 0. (3.3)

We claim for any ε > 0, there exists R > 0 such that

limsup
n→∞

∫
|x|�R

hp|∇un|p +V(x)|un|pdx < ε.

Otherwise, for some subsequence {unk} and some δ > 0 such that∫
|x|�R

hp|∇unk |p +V(x)|unk |pdx � δ . (3.4)

Take ρ > 0 such that c < hNc(V∞ −ρ ,K∞−ρ) = cρ . Let R(ρ) > 0 be such that

V (x) � V∞ −ρ , K(x) � K∞ −ρ for |x| � R(ρ). (3.5)

It is not difficult to show that there exists r > R(ρ) satisfying∫
r�|x|�r+1

(hp|∇unk |p +V(x)|unk |p)dx < ρ , (3.6)

for any k . Let η ∈ C∞(RN , [0,1]) be such that η = 1 for |x| � r , η = 0 for |x| �
r + 1 and 0 � η � 1, |∇η | � C

r . Define wk = ηunk and vk = (1−η)unk . A direct
computation shows∣∣∣〈J ′

h(unk),wk〉− 〈J ′
h(wk),wk〉

∣∣∣ � C
∫

r�|x|�r+1
(hp|∇unk |p +V(x)|unk |p)dx (3.7)

and ∣∣∣〈J ′
h(unk),vk〉− 〈J ′

h(vk),vk〉
∣∣∣ � C

∫
r�|x|�r+1

(hp|∇unk |p +V(x)|unk |p)dx. (3.8)

Using 〈J ′
h(unk),wk〉 = o(1) and (3.5)-(3.8), we have

〈J ′
h(wk),wk〉 = O(ρ)+o(1), 〈J ′

h(vk),vk〉 = O(ρ)+o(1). (3.9)
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Thus, by (3.1), (3.9) and Sobolev embedding theorem, we obtain

c+o(1) = Jh(unk) = Jh(wk)+ Jh(vk)+O(ρ) � Jh(vk)+O(ρ). (3.10)

From (3.4), we have∫
RN

(hp|∇vk|p +V(x)|vk|p)dx =
∫
|x|�r+1

(hp|∇unk |p +V(x)|unk |p)dx

+
∫
r�|x|�r+1

(hp|∇vk|p +V (x)|vk|p)dx

� δ . (3.11)

By Lemma 2, there exists θk > 0 such that θkvk ∈ Nh , it follows from (3.11) that θk

has a positive lower bound. Hence, by (3.9), we have

Jh(θkvk) = Jh(vk)+O(ρ)+o(1). (3.12)

Let vk(x) = θkvk(hx) and let tk be such that tkvk ∈N ρ , where N ρ denote the solution
manifold defined as (1.8) by V∞ −ρ and K∞ −ρ . Hence, we have

hN
∫

RN
(|∇vk|p +(V∞−ρ)|vk|p)dx =

∫
RN

(hp|∇(θkvk)|p +(V∞−ρ)|θkvk|p)dx

�
∫

RN
(hp|∇(θkvk)|p +V(x)|θkvk|p)dx

=
∫

RN
(K(x)|θkvk|q + |θkvk|p∗)dx

�
∫

RN
((K∞ + ρ)|θkvk|q + |θkvk|p∗)dx

= hN
∫

RN
((K∞ + ρ)|vk|q + |vk|p∗)dx.

Thus, by tkvk ∈ N ρ , we obtain

tq−p
k

∫
RN

(K∞ + ρ)|vk|qdx+ t p∗−p
k

∫
RN

|vk|p∗dx �
∫

RN
((K∞ + ρ)|vk|q + |vk|p∗)dx,

it follows that tk � 1. Furthermore, by (3.1), (3.10), (3.12) and θkvk ∈ Nh , we get

hNcρ � hN
[
t p
k

p

∫
RN

(|∇vk|p +(V∞−ρ)|vk|p)dx

− tqk
q

∫
RN

(K∞ + ρ)|vk|qdx− t p∗
k

p∗

∫
RN

|vk|p∗dx

]

=
t p
k

p

∫
RN

hp|∇θkvk|p +(V∞−ρ)|θkvk|pdx

− tqk
q

∫
RN

(K∞ + ρ)|θkvk|qdx− t p∗
k

p∗

∫
RN

|θkvk|p∗dx
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� t p
k

p

∫
RN

hp|∇θkvk|p +V(x)|θkvk|pdx

− tqk
q

∫
RN

K(x)|θkvk|qdx− t p∗
k

p∗

∫
RN

|θkvk|p∗dx

=
t p
k

p

(∫
RN

(K(x)|θkvk|q + |θkvk|p∗)dx

)

− tqk
q

∫
RN

K(x)|θkvk|qdx− t p∗
k

p∗

∫
RN

|θkvk|p∗dx

� 1
p

(∫
RN

(K(x)|θkvk|q + |θkvk|p∗)dx

)

− 1
q

∫
RN

K(x)|θkvk|qdx− 1
p∗

∫
RN

|θkvk|p∗dx

= Jh(θkvk) = Jh(vk)+O(ρ)+o(1)
� c+O(ρ)+o(1).

Letting k → ∞ and ρ → 0, we have hNc∞ � c . This is a contradiction. Hence, by the
Gagliardo-Nirenberg inequality, we have (3.3). Thus,∫

RN
K(x)|un|qdx →

∫
RN

K(x)|u|qdx. (3.13)

Thus the Lemma is proved.�

LEMMA 7.
∫
RN |un|p∗dx → ∫

RN |u|p∗dx.

Proof. Let vn(x) = un(hx) , then Jh(un) = hNIh(vn) . By the boundedness of un ,
we may suppose that vn ⇀ v weakly in Eh . By Lemma 4, we assume that⎧⎨

⎩
|vn|p∗ ⇀ ν = |v|p∗ + ∑ j∈J ν jδx j ,

|∇vn|p ⇀ μ � |∇v|p + ∑ j∈J μ jδx j .
(3.14)

Take x j ∈ {x j ∈ R
N , j ∈ Λ} , φ j ∈C∞

0 (RN) , for ε > 0, such that

φ j ≡ 1 on B(x j,ε) , φ j ≡ 0 on R
N \B(x j,2ε) and ∇φ j � 2

ε .

From (3.1), we have limn→∞〈I ′h(un),φ jun〉 = 0, that is

∫
RN

|∇vn|p−2vn〈∇vn,∇φ j〉dx+
∫

RN
|∇un|pφ jdx+

∫
RN

V (hx)|vn|pφ jdx

=
∫

RN
K(hx)|un|qφ jdx+

∫
RN

|un|p∗φ jdx+o(1).

By (3.14) and Sobolev embedding theorem, we have
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lim
n→∞

∫
RN

|∇vn|p−2vn〈∇vn,∇φ j〉dx+
∫

RN
V (hx)|v|pφ jdx+

∫
RN

φ jdμ

=
∫

RN
K(hx)|v|qφ jdx+

∫
RN

φ jdν. (3.15)

It follows from the Hölder inequality and the boundedness of {vn} that

0 �
∣∣∣∣ limn→∞

∫
RN

|∇vn|p−2vn〈∇vn,∇φ j〉dx

∣∣∣∣
� C

(∫
RN

|∇vn|pdx

)(p−1)/p

·
(∫

B(x j ,2ε)
|vn|pdx

)1/p∗

→ 0

as ε → 0. It hence follows from (3.14 ) and (3.15) that, as ε → 0,

ν j � μ j.

We thus conclude from Lemma 4 that

ν j = 0 or ν j � SN/p.

Assume ν j �= 0 for some j ∈ Λ , by (3.1), (3.14) and Lemma 4,

h−Nc = lim
n→∞

(Ih(vn)− 1
p
〈I ′h(vn),vn〉)

= lim
n→∞

[( 1
p
− 1

q

)∫
RN

K(hx)|vn|qdx+
1
N

∫
RN

|vn|p∗dx

]

�
(1

p
− 1

q

)∫
RN

K(hx)|v|qdx+
1
N

∫
RN

|v|p∗dx+
1
N

SN/p

� 1
N

SN/p,

which is impossible. Thus, ν j = 0 for all j ∈ Λ . Hence,∫
RN

|vn|p∗dx →
∫

RN
|v|p∗dx.

Thus the Lemma is proved.�

LEMMA 8. For h > 0 small, the functional Jh satisfies the (PS)c condition pro-
vided c < hNc∞ .

Proof. The weak convergence of (3.2) implies that J
′
h(u) = 0, by Lemma 6 and

Lemma 7, we have

lim
n→∞

∫
RN

hp|∇un|p +V(x)|un|pdx = lim
n→∞

(∫
RN

K(x)|un|qdx+
∫

RN
|un|p∗dx

)

=
∫

RN
K(x)|u|qdx+

∫
RN

|u|p∗dx



Differ. Equ. Appl. 5 (2013), 577–594. 589

=
∫

RN
hp|∇u|p +V(x)|u|pdx.

Hence, un → u strongly in Xh .�

LEMMA 9. For h > 0 small,

limsup
h→0

ch � hN inf
ξ∈RN

G(ξ ).

Proof. For any ξ ∈ R
N , let ω(x) = ω(V (ξ ),K(ξ ),x) be a ground state solution

of (1.5). Define ϕ ∈ C∞
0 (R+, [0,1]) such that ϕ(s) ≡ 1 if 0 � s � 1, and ϕ(s) ≡ 0 if

s � 2. Let

ωh(x) = ϕ(|x− ξ |)ω
(x− ξ

h

)
.

Then,

Jh(ωh(x)) = hN
(

1
p

∫
RN

(|∇(ϕ(h|x|)ω(x))|p +V (hx+ ξ )|ϕ(h|x|)ω(x)|p)dx

− 1
q

∫
RN

K(hx+ ξ )|ϕ(h|x|)ω(x)|qdx− 1
p∗

∫
RN

|ϕ(h|x|)ω(x)|p∗dx

)
.

Let h → 0, it is easy to check that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
RN (|∇(ϕ(h|x|)ω(x))|p +V(hx+ ξ )|ϕ(h|x|)ω(x)|p)dx

→ ∫
RN (|∇ω |p +V (ξ )|ω |p)dx,∫

RN K(hx+ ξ )|ϕ(h|x|)ω(x)|qdx → ∫
RN K(ξ )|ω |qdx,∫

RN |ϕ(h|x|)ω(x)|p∗dx → ∫
RN |ω |p∗dx.

By the definition of ωh , we can find a L > 0 large enough such that Jh(Lωh) < 0.
Hence, we can construct a path gh(t) = tLωh , t ∈ [0,1] . By Lemma 2, we have

ch � max
0�t�1

Jh(gh(t)) = max
0�t�1

Jh(tLωh)

= max
0�t�1

hN
(

(tL)p

p

∫
RN

(|∇ω |p +V(ξ )|ω |p)dx− (tL)q

q

∫
RN

K(ξ )|ω |qdx

− (tL)p∗

p∗

∫
RN

|ω |p∗dx+o(1)
)

= hN(G(ξ )+o(1)).

Since ξ is arbitrary and the smallness of h is independent of ξ . �

Proof of the existence of Theorem 1.1. By Lemma 1, 8 and 9, the standard Moun-
tain pass theorem implies that problem (1.1) has a nontrivial nonegative solution. Then,
a Harnack’s inequality of [23] implies that it’s a positive ground state. �
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4. The concentration of the ground state

In this section, uh is always referred to a positive ground state of (1.1). We see
vh(x) = uh(hx) is always a positive ground state of

−Δpvh +V(hx)vp−1
h = K(hx)vq−1

h + vp∗−1
h , x ∈ R

N .

Conversely, uh(x) = vh( x
h ) is a positive ground state of (1.1).

LEMMA 10. There exist R,σ > 0 and a sequence {yh} ⊂ R
N such that

liminf
h→0

∫
BR(yh)

|vh|pdx � σ > 0.

Proof. We observe that since

h−Nch = Ih(vh)− 1
q
〈I ′h(vh),vh〉

=
( 1

p
− 1

q

)∫
RN

(|∇vh|p +V(hx)|vh|p)dx+
(1

q
− 1

p∗
)∫

RN
|vh|p∗dx.

It follows from Lemma 9, {vh} is bounded as h → 0.
If for any R > 0, there is a sequence hn → 0 such that

lim
n→∞

sup
y∈RN

∫
BR(y)

|vhn |pdx = 0.

Then from Lemma 1.1 in [19], we conclude that

vhn → 0 in Ls(RN) for s ∈ (p, p∗). (4.1)

Moreover, it follows from I
′
h(vhn) = 0 that∫

RN
(|∇vhn |p +V(hnx)|vhn |p)dx =

∫
RN

K(hnx)|vhn |qdx+
∫

RN
|vhn |p

∗
dx. (4.2)

Assume that l � 0 be such that∫
RN

(|∇vhn |p +V(hnx)|vhn |p)dx → l. (4.3)

If l > 0, by (4.1) and (4.2), let n → ∞∫
RN

|vhn |p
∗
dx → l. (4.4)

Hence, from (4.3) and (4.4), we have

lim
n→∞

h−N
n chn = lim

n→∞
Ihhn

(vhn) =
l
N

. (4.5)
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By (2.2), we have

l � S
N
p .

This combine with (4.5), we have

lim
n→∞

h−N
n chn � 1

N
SN/p.

This contradicts with G(ξ ) < 1
N S

N
p and Lemma 9. Thus, l = 0. But chn > 0 and Jh is

continuous, we see that l �= 0. It is a contradiction. The lemma is proved. �

Now, let wh(x) = vh(x+yn) = uh(hx+hyh) . Then, by Lemma 10, wh �≡ 0. Hence,
wh(x) is a positive ground state of

−Δpwh +V(hx+hyn)w
p−1
h = K(hx+hyn)w

q−1
h +wp∗−1

h x ∈ R
N . (4.6)

LEMMA 11. For small h > 0 , then the sequence {hyh} is bounded.

Proof. Suppose that there exists a subsequence hn → 0 such that |hnyhn | → ∞ .
Obviously, wn = whn is bounded in W 1,p(RN) . Then, up to a subsequence, wn ⇀ w
weakly in W 1,p(RN) , wn → w strongly in Ls

loc(R
N) , p < s < p∗ and wn → w a.e in

R
N . From Lemma 10, w �≡ 0. By (1.10), we choose ε > 0 small such that

cε = c(V∞ − ε,K∞ − ε) > inf
ξ∈RN

G(ξ ). (4.7)

According to the assumption |hnyhn | → ∞ , we have

Δpw− (V∞− ε
2
)wp−1 +(K∞ +

ε
2
)wq−1 + |w|p∗−1 � 0 in H−1.

In particular,∫
RN

(|∇w|p +(V∞− ε)|w|p)dx �
∫

RN
(K∞ − ε)|w|qdx+

∫
RN

|w|p∗dx. (4.8)

Take θ > 0 such that θw ∈ N ε , by (4.8), we have θ < 1. Thus, by Fatou’s lemma,

cε � θ p

p

∫
RN

(|∇w|p +(V∞− ε)|w|p)dx

− θ q

q

∫
RN

(K∞ + ε)|w|qdx− θ p∗

p∗

∫
RN

|w|p∗dx

� liminf
hh→0

[
θ p

p

∫
RN

(|∇wn|p +V(hnx+hnyn)|wn|p)dx

− θ q

q

∫
RN

K(hnx+hnyn)|wn|qdx− θ p∗

p∗

∫
RN

|wn|p∗dx

]
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� liminf
hh→0

[
1
p

∫
RN

(|∇wn|p +V(hnx+hnyn)|wn|p)dx

− 1
q

∫
RN

K(hnx+hnyn)|wn|qdx− 1
p∗

∫
RN

|wn|p∗dx

]
= liminf

hh→0
h−N

n chn � inf
ξ∈RN

G(ξ ).

This contradicts with (4.7). Hence, {hyh} is bounded. The lemma is proved. �

Proof of the concentration of Theorem 1.1. By Lemma 11, there exist a subse-
quence hn → 0 such that xn = hnyhn → x0 , wn = whn ⇀ w weakly in W 1,p(RN) and
a.e in R

N , where w � 0, �≡ 0. Applying the regularity result due to [24], we have
wn → w in C1,α

loc (RN) , where α ∈ (0,1) , and

−Δpw+V(x0)wp−1 = K(x0)wq−1 +wp∗−1, x ∈ R
N .

Consequently, by Lemma 9 and Fatou’s lemma,

inf
ξ∈RN

G(ξ ) � G(x0)

�
( 1

p
− 1

q

)∫
RN

(|∇w|p +V (x0)|w|p)dx+
(1

q
− 1

p∗
)∫

RN
|w|p∗dx

� liminf
n→∞

[(1
p
− 1

q

)∫
RN

(|∇wn|p +V(x0)|wn|p)dx

−
(1

q
− 1

p∗
)∫

RN
|wn|p∗dx

]

� limsup
n→∞

[(1
p
− 1

q

)∫
RN

(|∇wn|p +V(x0)|wn|p)dx

−
(1

q
− 1

p∗
)∫

RN
|wn|p∗dx

]

� limsup
n→∞

[(1
p
− 1

q

)∫
RN

(|∇wn|p +V(hnx+ xn)|wn|p)dx

−
(1

q
− 1

p∗
)∫

RN
|wn|p∗dx

]
= limsup

n→∞
h−N

n chn � inf
ξ∈RN

G(ξ ).

This implies that G(x0)= infξ∈RN G(ξ ) . Moreover, by the above inequality and Lemma
7, it implies that∫

RN
(|∇wn|q +V(x0)|wn|p)dx →

∫
RN

(|∇w|q +V(x0)|w|p)dx.

Hence, wn →w strongly in W 1,p(RN) . In particular, as the result of [11, 12], we obtain
wn ∈ L∞(RN) , ‖wn‖∞ � C , and

lim
|x|→∞

wn(x) = 0 uniformly in n. (4.9)
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Now, we claim that there exists a δ > 0 such that ‖wn‖∞ � δ for all n . If we assume,
contrary to the claim, that ‖wn‖∞ → 0. Then by (4.6), we have

∫
RN

(|∇wn|p +V(x0)|wn|p)dx � ‖K‖∞

∫
RN

|wn|qdx+
∫

RN
|wn|p∗dx.

It follows that wn → 0 in W 1,p(RN) , which is impossible. Then claim is true.
Let zn be the global maximum point of wn , by (4.9) and the claim above, we

obtain that zn ∈ BR(0) for some R > 0. Thus the global maximum point of un(x) =
uhn(x) = wn( x−xn

hn
) given by xn = hnzn + xn . Since {zn} is bounded, we know that

xn → x0 as n → ∞ . Thus, limn→∞ G(xn) = G(x0) = infξ∈RN G(ξ ) . �
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