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EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO

A p(x)–LAPLACIAN EQUATION WITH NONLINEAR

BOUNDARY CONDITION ON UNBOUNDED DOMAIN

QIAO LIU AND DUCHAO LIU

Abstract. We study the existence and multiplicity of positive solutions for the nonlinear bound-
ary value problems involving the p(x) -Laplacian of the form{−div(a(x)|∇u|p(x)−2∇u)+b(x)|u|p(x)−2u = f (x,u) in Ω ⊂ R

N ,

a(x)|∇u|p(x)−2 ∂u
∂ ν = g(x,u) on Γ = ∂Ω,

where Ω ⊂ R
N is an unbounded domain with non-compact, smooth boundary Γ = ∂Ω , p ∈

C0,1(Ω) and 1 < p− � p(x) � p+ < N , a,b are suitable weights. By using the variational
methods, we prove that there exist multiple solutions provided f and g are given appropriate
assumptions.
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[19] K. PFLÜGER, Nonlinear boundary value problems in Weighted Sobolev spaces, Nonlinear Anal., 30

(1997), 1263–1270.
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