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EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO

A p(x)–LAPLACIAN EQUATION WITH NONLINEAR

BOUNDARY CONDITION ON UNBOUNDED DOMAIN

QIAO LIU AND DUCHAO LIU

(Communicated by Qihu Zhang)

Abstract. We study the existence and multiplicity of positive solutions for the nonlinear bound-
ary value problems involving the p(x) -Laplacian of the form{−div(a(x)|∇u|p(x)−2∇u)+b(x)|u|p(x)−2u = f (x,u) in Ω ⊂ R

N ,

a(x)|∇u|p(x)−2 ∂u
∂ ν = g(x,u) on Γ = ∂Ω,

where Ω ⊂ R
N is an unbounded domain with non-compact, smooth boundary Γ = ∂Ω , p ∈

C0,1(Ω) and 1 < p− � p(x) � p+ < N , a,b are suitable weights. By using the variational
methods, we prove that there exist multiple solutions provided f and g are given appropriate
assumptions.

1. Introduction

In this paper, we study the existence and multiplicity of solutions for the nonlinear
elliptic boundary value problem{

−div(a(x)|∇u|p(x)−2∇u)+b(x)|u|p(x)−2u = f (x,u) in Ω ⊂ R
N ,

a(x)|∇u|p(x)−2 ∂u
∂ν = g(x,u) on Γ = ∂Ω,

(1.1)

where Ω ⊂ R
N is an unbounded domain with non-compact, smooth boundary Γ = ∂Ω

(for example Ω is a cylinder domain); ∂
∂ν is the outer unite normal derivative; p(x) ∈

C0,1(Ω) , 1 < p− � p(x) � p+ < N , 0 < a0 < a(x) ∈ L∞(Ω) , and b(x) is a positive and
continuous function defined in R

N , such that

c

(1+ p(x))p(x) � b(x) � C

(1+ p(x))p(x) ,

where c,C are two positive constants; f (x,u) and g(x,u) , are two Carathéodory func-
tions defined on Ω×R and Γ×R respectively, and satisfy
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( f0 ), f (·,0) = 0, | f (x,t)| � f0(x)+ f1(x)|t|q(x)−1 , and

1 < q− � q(x) <<
Np(x)

N− p(x)
,1

where fi are nonnegative, measurable functions which satisfy the hypothesis: There
exists a function α1(x) defined in R

N such that −N << α1 << q(x)N−p(x)
Np(x) −N , and

for w1 = 1
(1+|x|)α1 , we have

0 � fi(x) � Cf w1 a.e. x ∈ Ω, i = 1,2, and f1 ∈ L
q(x)

q(x)−1 (Ω;w
1

1−q(x)
1 ),

where Cf is a positive constant;

(g0 ), g(·,0) = 0, |g(x,t)| � g0(x)+g1(x)|t|r(x)−1 , and

1 < r− � r(x) <<
(N−1)p(x)
N− p(x)

,

where gi are nonnegative, measurable functions which satisfy the hypothesis: There
exists a function α2(x) defined in R

N such that −N < α2 << r(x)N−p(x)
p(x) −N +1, and

for w2 = 1
(1+|x|)α2 , we have

0 � gi(x) � Cgw2 a.e. x ∈ Γ, i = 1,2, and g0 ∈ L
r(x)

r(x)−1 (Ω;w
1

1−r(x)
2 ),

where Cg is a positive constant.

Throughout this paper, we also assume that

( f1 ), limt→0
f (x,t)

|t|p+−1
= 0, uniformly in x ;

( f2 ), ∃M1 > 1 and θ1 > p+ , such that, 0 < θ1F(x,t) � f (x,t)t for all |t| � M1

a.e. x ∈ Ω ;
( f3 ), f (x,−t) = − f (x,t) for all x ∈ Ω,t ∈ R

N ;

(g1 ), limt→0
g(x,t)
|t|p+−1 = 0 uniformly in x ;

(g2 ), ∃M2 > 1 and θ2 > p+ , such that 0 < θ2G(x,t) � g(x,t)t , for all |t| � M2

a.e. x ∈ Γ ;
(g3 ), g(x,−t) = −g(x,t) .

The p(x)-Laplace operator in (1.1) is a special case of the divergence form oper-
ator −div(a(x,∇u)) which appears in many fields such as nonlinear electrorheological
fluid (see [21]) and elastic mechanics (see [28]), the nonlinear boundary condition de-
scribes a flux through the boundary which depends on the solution itself in a nonlinear
manner. For the physical motivation of such boundary conditions, we refer to [17].

In recent years, many authors have studied the nonlinear boundary problems in-
volving the p(x)-Laplacian when Ω is bounded or unbounded domain, see e.g. [11,

1We say f (x) << g(x) on Ω to indicate the fact that infx∈Ω(g(x)− f (x)) > 0 .
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15, 24]. When p(x) ≡ p ( p is a constant), there have been numerous studies on the
p -Laplace equation, we refer the readers to see [2, 3, 4, 6, 7, 12, 22, 23, 25, 26] and the
references therein. More precisely, In [2, 12], the authors studied the ”convex concave”
case; and in [3], P. Amster, M. C. Mariani and O. Mendez used the degree theory and
the upper and lower solutions method to studied the nonlinear bounded problem. A.
C. Cavalheiro’s paper [5] and K. Pflüger’s papers [18, 19, 20] studied the existence of
solutions to the p -Laplace equation with nonlinear boundary conditions by using vari-
ational methods. We notice that the method used in [5, 18, 20]is base on K. Pflüfer’s
works of the compact embedding and compact trace of the weighted Sobolev space de-
fined on unbounded domain (see [19]). For the p(x)-laplace equation, the correspond-
ing problems are new and interesting. J. H. Zhao and P. H. Zhao in [25, 26] studied the

p(x)-Laplace equation with the case f (x,u) = |u|
Np(x)

N−p(x)−2
u which is a critical case. X.

L. Fan in [10] studied the existence solutions of the Dirichlet problems p(x)-Laplacian
equation. Q. H. Zhang [27] studied the radial solutions of the p(x)-Laplacian problem
in R

N . For other problems for the p(x)-Laplacian, we refer the readers to [9, 10, 27].
This paper is divided into three sections. In section 2, we recall some basic facts

about the weighted variable exponent Lebesgue and Sobolev spaces. In section 3, we
give the main results, which contains four Theorems and a Corollary corresponding
to f ,g both are ”sublinear” (Theorem 1); ”superlinear” (Theorems 2 and 3) and f ,g
satisfy ”convex concave” case (Theorem 4 and Corollary 1).

2. Weighted variable exponent Lebesgue space and weighted variable exponent
Sobolev space

Let Ω ⊂ R
N be a domain with non-empty boundary ∂Ω , denote

L∞
+(Ω) = {p ∈ L∞(Ω) : ess inf

x∈Ω
p(x) > 1}.

For p ∈ L∞
+(Ω) , denote

p− = p−(Ω) = essinfx∈Ω p(x), p+ = p+(Ω) = esssupx∈Ω p(x).

Let w,v0,v1 are positive measurable real valued and a.e. finite functions defined
in R

N . For p ∈ L∞
+(Ω) , define

Lp(x)(Ω;w) =
{

u|u : Ω → R is measurable and
∫

Ω
w(x)|u(x)|p(x)dx < ∞

}
with the norm

|u|Lp(x)(Ω;w) = |u|p(x),Ω,w = inf
{

λ > 0 :
∫

Ω
w(x)

∣∣∣∣u(x)
λ

∣∣∣∣
p(x)

dx � 1
}
.

When w(x) ≡ 1, we denote Lp(x)(Ω) instead of Lp(x)(Ω;w) and denote |u|p(x),Ω in-
stead of |u|p(x),Ω,w .
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Define

W 1,p(x)(Ω;v0,v1) =
{
u ∈ Lp(x)(Ω;v0) : |∇u(x)| ∈ Lp(x)(Ω;v1)

}
with the norm

‖u‖W1,p(x)(Ω;v0,v1)
= ‖u‖1,p(x),Ω,v0,v1

= |u|p(x),Ω,v0
+ |∇u|p(x),Ω,v1

.

When v0 ≡ v1 ≡ 1, we denote W 1,p(x)(Ω) instead of W 1,p(x)(Ω;1,1) and ‖u‖1,p(x),Ω
for the norm on it.

As usual, we denote C,Ci, i = 1, ,2, · · · , by the generic positive constants through-
out his paper. We also assume throughout this paper that C∞

δ (Ω) be the space of
C∞

0 (RN) functions restricted on Ω , and E be the weighted Sobolev space as the com-
pletion of C∞

δ (Ω) under the norm

‖u‖= inf

{
λ > 0 :

∫
Ω
|∇ u

λ
|p(x) + (1+ |x|)−p(x)| u

λ
|p(x)dx � 1

}
,

and from the assumptions in Section 1, it is easy to verify that the norm

‖u‖E = inf

{
λ > 0 :

∫
Ω

a(x)|∇ u
λ
|p(x) +b(x)| u

λ
|p(x)dx � 1

}

is an equivalent norm of ‖ · ‖ .
On the basic properties of the space Lp(x)(Ω;w) and E , we refer to [1, 8, 14, 15]

for more details. Here we only display some facts that will be used later.

PROPOSITION 1. (See [8, 14].) The spaces Lp(x)(Ω;w) and E are separable and
reflexive Banach spaces.

PROPOSITION 2. (See [8, 14, 15].) Set φ(u) =
∫

Ω w(x)|u(x)|p(x)dx , for u,uk ∈
Lp(x)(Ω;w) , we have

(1) For u �= 0, |u|p(x),Ω,w = λ ⇔ φ( u
λ ) = 1;

(2) |u|p(x),Ω,w < 1(= 1;> 1) ⇔ φ(u) < 1(= 1;> 1) ;

(3) If |u|p(x),Ω,w > 1, then |u|p−p(x),Ω,w � φ(u) � |u|p+

p(x),Ω,w ;

(4) If |u|p(x),Ω,w < 1, then |u|p+

p(x),Ω,w � φ(u) � |u|p−p(x),Ω,w ;

(5) limk→∞ |uk|p(x),Ω,w = 0 ⇔ limk→∞ φ(uk) = 0;
(6) |uk|p(x),Ω,w → ∞ ⇔ φ(uk) → ∞ .

Similar to Proposition 2, we have

PROPOSITION 3. Set I(u) =
∫

Ω

(
a(x)|∇u(x)|p(x) +b(x)|u(x)|p(x)

)
dx , for u,uk ∈

E , we have
(1) For u �= 0,‖u‖E = λ ⇔ I( u

λ ) = 1;
(2) ‖u‖E < 1(= 1;> 1) ⇔ I(u) < 1(= 1;> 1) ;
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(3) If ‖u‖E > 1, then ‖u‖p−
E � I(u) � ‖u‖p+

E ;

(4) If ‖u‖E < 1, then ‖u‖p+

E � I(u) � ‖u‖p−
E ;

(5) limk→∞ ‖uk‖E = 0 ⇔ limk→∞ I(uk) = 0;
(6) ‖uk‖E → ∞ ⇔ I(uk) → ∞ .

PROPOSITION 4. (See [15].) If 1 < p(x) � q(x) < +∞,0 < w(x) � v(x) a.e. x ∈
Ω , and |Ω| < ∞ , then

|u(x)|p(x),Ω,w � C|u(x)|q(x),Ω,v,

where C is independent of u .

Let Lq(x)(Ω;w1) and Lr(x)(Γ;w2) be the weighted variable exponent Sobolev spaces
with weight functions wi = (1+ |x|)αi(x), i = 1,2,αi ∈C(RN) , then we have following
embedding and trace embedding theorem.

PROPOSITION 5. (See [15].) Let Ω be a (bounded or unbounded) domain in R
N

with smooth boundary, p,q,r ∈ L∞
+(Ω) and p ∈C0,1(Ω) , p+ < N , then

(1) If 1 < q(x) < ∞ , N
q(x) − N

p(x) +1 � 0 and

−N < α1(x) < N(p(x)−1),
α1(x)
q(x)

+
N

q(x)
− N

p(x)
+1 � 0,

then the embedding E ↪→ Lq(x)(Ω;w1) is continuous; if the two inequalities above are
replaced by

essinfx∈Ω(
N

q(x)
− N

p(x)
+1) > 0 and esssupx∈Ω(

α1(x)
q(x)

+
N

q(x)
− N

p(x)
+1) < 0,

then the corresponding embedding is compact.
(2) If 1 < r(x) < ∞ , N−1

r(x) − N
p(x) +1 � 0 and

esssup
x∈Ω

(
α2(x)
r(x)

+
N−1
r(x)

− N
p(x)

+1) < 0,

then the corresponding trace embedding is compact.

PROPOSITION 6. (see [9]) Denote

I(u) =
∫

Ω

1
p(x)

(a(x)|∇u|p(x) +b(x)|u|p(x))dx, for all u ∈ E.

Then I ∈C1(E,R) and the derivative operator I′ of I satisfies

< I′(u),v >=
∫

Ω
(a(x)|∇u|p(x)−2∇u∇v+b(x)|u|p(x)−2uv)dx,

and we have
(1), I′ : E → E∗ is a continuous, bounded and strictly monotone operator;
(2), I′ is a mapping of type (S+) , i.e., if un ⇀ u in E and limsupn→∞ < I′(un)−
I′(u),un−u >� 0, then un → u in E ;
(3), I′ : E → E∗ is a homeomorphism.
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3. Main results and proofs

DEFINITION 1. We say that u ∈ E is a weak solution of Problem (1.1) if

∫
Ω
(a(x)|∇u|p(x)−2∇u∇v+b(x)|u|p(x)−2uv)dx =

∫
Ω

f (x,u)vdx+
∫

Γ
g(x,u)vdΓ,

holds for ∀v ∈ E . The corresponding energy functional of problem (1.1) is

J(u) =
∫

Ω

1
p(x)

(a(x)|∇u|p(x) +b(x)|u|p(x))dx−
∫

Ω
F(x,u)dx−

∫
Γ
G(x,u)dΓ,

where F and G denote the primitive functions of f and g with respect to the second
variable, i.e., F(x, t) =

∫ t
0 f (x,s)ds,G(x,t) =

∫ t
0 g(x,s)ds .

We notice that the operator J is a C1 functional and the critical points of J are
weak solutions of the problem (1.1). We denote by Nf ,NF ,Ng,NG the corresponding
Nemytskii operators. Under the assumptions (f0 ), (g0 ), we have

LEMMA 1. The operators

Nf : Lq(x)(Ω;w1) → L
q(x)

q(x)−1 (Ω;w
1

1−q(x)
1 ), NF : Lq(x)(Ω;w1) → L1(Ω);

Ng : Lr(x)(Γ;w2) → L
r(x)

r(x)−1 (Γ;w
1

1−r(x)
2 ), NG : Lr(x)(Γ;w2) → L1(Γ)

are bounded and continuous.

Proof. We only prove the statements of Nf and NF , the arguments for Ng and NG

can be obtained in a similar way.

Let q′(x) = q(x)
q(x)−1 and u ∈ Lq(x)(Ω;w1) , then by assumption ( f0 )

∫
Ω
|Nf (u)|q′(x)w

1
1−q(x)
1 dx

�2q′(x)−1
(∫

Ω
f q′(x)
0 w

1
1−q(x)
1 dx+

∫
Ω

f q′(x)
1 |u|q(x)q

1
1−q(x)
1 dx

)

�2q′(x)−1
(

C+Cf

∫
Ω

w2|u|q(x)dx

)

�2(q′)+−1
(

C+Cf

∫
Ω

w1|u|q(x)−1dx

)

�2
q−

q−−1
−1

(
C+Cf

∫
Ω

w1|u|q(x)−1dx

)

�2
1

q−−1

(
C+Cf

∫
Ω

w1|u|q(x)−1dx

)
.
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This shows that Nf is bounded. In a similar way, we obtain

∫
Ω
|NF(u)|dx �

∫
Ω

f0|u|dx+
∫

Ω
f1|u|q(x)dx

� | f0|
q′(x),Ω,w

1
1−q(x)
1

|u|q(x),Ω,w1
+Cd

∫
Ω

w1|u|1(x)dx,

which implies that NF is bounded. The continuity of these operators follows from the
well-know properties of Nemytskii operators.

THEOREM 1. If ( f0 ), (g0 ) hold and q+,r+ < p− , then the Problem (1.1) has a
weak solution.

Proof. From ( f0 ), (g0 ), the aboveLemma 1 and Proposition 5, we have for ‖u‖E �
1,

J(u) =
∫

Ω

1
p(x)

(a(x)|∇u|p(x) +b(x)|u|p(x))dx−
∫

Ω
F(x,u)dx−

∫
Γ
G(x,u)dΓ

� 1
p+

∫
Ω
(a(x)|∇u|p(x) +b(x)|u|p(x))dx−

∫
Ω
( f0|u|+ 1

q(x)
f1(x)|u|q(x))dx

−
∫

Γ
(g0(x)|u|+ 1

r(x)
g1(x)|u|r(x))dΓ

� 1
p+ ‖u‖p−

E −C1|u|q(x),Ω,w1
− Cf

q−
max{|u|q−q(x),Ω,w1

, |u|q+

q(x),Ω,w1
}

−C2|u|r(x),Γ,w2
− Cg

r−
max{|u|r−r(x),Γ,w2

, |u|r+r(x),Γ,w2
}

� 1
p+ ‖u‖p−

E −C3(max{|u|q(x),Ω,w1
, |u|q−q(x),Ω,w1

, |u|q+

q(x),Ω,w1
}

+max{|u|r(x),Γ,w2
, |u|r−r(x),Γ,w2

, |u|r+r(x),Γ,w2
})

� 1
p+ ‖u‖p−

E −C(‖u‖E +‖u‖q−
E +‖u‖q+

E +‖u‖r−
E +‖u‖r+

E )

� 1
p+ ‖u‖p+

E −C′(‖u‖q+

E +‖u‖r+
E )

→∞ as ‖u‖E → ∞,

where

C1 = | f0|
q′(x),Ω,w

1
1−q(x)
1

, C2 = |g0|
r′(x),Γ,w

1
1−r(x)
2

,(r′(x) =
r(x)

1− r(x)
).

Since q+,r+ < p− , so the operator J is coercive, and from Proposition 6 and Lemma
1, it is easy to verify that the operator J is weakly lower semicontinuous. Thus J has a
minimum point u in E , i.e., u is a weak solution of (1.1).
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LEMMA 2. If ( f0 ), ( f2 ), (g0 ), (g2 ) hold, then the operator J satisfies the (PS)
condition.

Proof. Let {un ∈ E} is a (PS) sequence, i.e.,

‖J(un)‖ � M, J′(un) → 0 as n → ∞,

we want to prove that {un} has a convergence subsequence {uk} . Define

KF(u) =
∫

Ω
F(x,u)dx, KG(u) =

∫
Γ
G(x,u)dΓ.

Hence, the directional derivative of the operator J in direction v ∈ E is

< J′(u),v >=< I′(u),v > − < K′
F(u),v > − < K′

G(u),v >,

where < K′
F (u),v >=

∫
Ω f (x,u)vdx , < K′

G(u),v >=
∫

Γ g(x,u)vdΓ and < I′(u),v > is
the same as in Proposition 6.

Clearly, under the assumptions (f0 ) and (g0 ), by using Proposition 6, we have
I′ : E → E∗ is continuous; From Proposition 5 and Lemma 1, we know KF(u) and
KG(u) are both weakly continuous and their derivative operators are compact.

On the other hand, for k large enough, we have | < J′(uk),uk > | � ‖uk‖E , and
under the assumptions (f2 ), (g2 ), we have (for convenience, we suppose that ‖uk‖E �
1)

M +‖uk‖E �J(uk)− 1
θ

< J′(uk),uk >

�(
1
p+ − 1

θ
)‖uk‖p−

E −
∫

Ω
(F(x,uk)− 1

θ
f (x,uk)uk)dx

−
∫

Γ
(G(x,uk)−θg(x,uk)uk)dx

�(
1
p+ − 1

θ
)‖uk‖p−

E ,

where θ = min{θ1,θ2} , this shows that {uk} is bounded in E .
To show that {uk} is a cauchy sequence, we use the following inequalities for

ξ ,η ∈ R
N (see [9, 20]).

|ξ −η |p � C(|ξ |p−2ξ −|η |p−2η)(ξ −η), for p � 2; (3.1)

|ξ −η |2 � C(|ξ |p−2ξ −|η |p−2η)(ξ −η)(|ξ |+ |η |)2−p, for 1 < p < 2. (3.2)

Assume ‖un−uk‖E � 1, then we can obtain that in the case p � 2,

‖un−uk‖p+

E �
∫

Ω
(a(x)|∇un−∇uk|p(x) +b(x)|un−uk|p(x))dx

�C(< I′(un,un−uk) > − < I′(uk),un−uk >)
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�C(< J′(un),un −uk > − < J′(uk),un−uk > + < K′
F(un)

+K′
G(un),un−uk > − < K′

F(uk)+K′
G(uk),un −uk >)

�C(‖J′(un)‖E∗)+‖J′(uk)‖E∗ +‖K′
F(un)−K′

F(uk)‖E∗

+‖K′
G(un)−K′

G(uk)‖E∗)‖un−uk‖E .

Since J′(uk) → 0 and K′
F ,K′

G are compact, there exists a subsequence of {uk} which
convergence in E .

For the case 1 < p− � p(x) < 2, we use (3.2) and the Hölder’s inequality to obtain
that

‖un−uk‖2
E �C| < I′(un,un−uk) > − < I′(uk),un−uk > |

×max{‖un‖p−
E +‖uk‖p−

E ,‖un‖p+

E +‖uk‖p+

E }.
Since ‖uk‖E is bounded, the same arguments as the above yield a convergent subse-
quence.

THEOREM 2. If ( f0 ), ( f1 ), ( f2 ), (g0 ), (g1 ), (g2 ) hold and q−,r− > p+ , then the
Problem (1.1) has a nontrivial weak solution.

Proof. It is easy to show that problem (1.1) satisfies all the geometric assump-
tions of the Mountain Pass Theorem (see [23], Theorem 2.10), and the solution is the
Mountain Pass solution.

By Lemma 2, the operator J satisfies (PS ) condition on E . Since

p+ < q− < q(x) <<
Np(x)

N− p(x)
and p+ < r− < r(x) <<

(N−1)p(x)
N− p(x)

,

from Proposition 5, the embeddings E ↪→ Lp+
(Ω;w1) and E ↪→ Lp+

(Γ;w2) are com-
pact.

From the assumptions (f0 ), ( f1 ), (g0 ), (g1 ), we observe that for any given ε > 0,
there exists a Cε > 0 such that |F(x,u)|� ε f0(x)|u|p+

+Cε f1(x)|u|q(x) and |G(x,u)|�
εg0(x)|u|p+

+Cεg1(x)|u|r(x) , consequently, the inequality

J(u) � 1
p+

∫
Ω
(a(x)|∇u|p(x) +b(x)|u|p(x))dx−

∫
Ω
(ε f0|u|p+

+Cε f1|u|q(x))dx

−
∫

Γ
(εg0|u|p+

+Cεg1|u|q(x))dΓ

� 1
p+ ‖u‖p+

E − εC1‖u‖p+

E −CεC2(‖u‖q−
E +‖u‖r−

E )

holds for ‖u‖E � 1, and the right hand side is strictly bigger than 0. Hence, when ε
and ‖u‖E = ρ sufficiently small, we have J(u) > 0. In order to use the Mountain Pass
Theorem, it remain to show that there exists u0 ∈ E,‖u‖E > ρ satisfies J(u0) � 0.

From ( f2 ), (g2 ), it follows that

F(x,u) � C3|u|θ1 , ∀x ∈ Ω, |u| � M1;
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G(x,u) � C4|u|θ2 , ∀x ∈ Γ, |u| � M2.

for ω ∈ E \ {0} and t > 1, we have

J(tω) =
∫

Ω

1
p(x)

(a(x)|∇tω |p(x) +b(x)|tω |p(x))dx

−
∫

Ω
F(x,tω)dx−

∫
Γ
G(x,tω)dΓ

�t p+
∫

Ω
(a(x)|∇ω |p(x) +b(x)|ω |p(x))dx−Ctθ1

∫
Ω

w1|ω |θ1dx

−Ctθ2

∫
Γ
w2|ω |θ2dΓ

→−∞ as t → +∞, since θ2 > p+.

Notice that there still holds J(0) = 0, hence J satisfies the geometric conditions of the
Mountain Pass Theorem, and the operator J admits at least one nontrivial critical point.

LEMMA 3. (see [9]) Let E be a reflexive and separable Banach space, then there
exist {e j} ⊂ E and {e∗j ⊂ E∗} such that

E = span{e j| j = 1,2, · · ·}, E∗ = span{e∗j | j = 1,2, · · ·},
and

< e∗i ,e j >=
{

1, i = j,
0, i �= j.

For convenience, we write Ej = span{e j},Yk = ⊕k
j=1Ej,Zk = ⊕∞

j=kE j .

LEMMA 4. (see [9], Lemma 4.9) If q,r ∈ L∞
+(Ω) and

1 < q− � q(x) <<
Np(x)

N− p(x)
, 1 < r− � r(x) <<

(N−1)p(x)
N− p(x)

,

denote

αk = sup{|u|q(x),Ω,w1
;‖u‖E = 1,u ∈ Zk}; βk = sup{|u|r(x),Ω,w2

;‖u‖E = 1,u ∈ Zk},
then limk→∞ αk = 0, limk→∞ βk = 0 .

THEOREM 3. If ( f0 ), ( f2 ), ( f3 ), (g0 ), (g2 ), (g3 ) hold and q−,r− > p+ , then J
has a sequence of critical point {un} such that J(un) →+∞ and the problem (1.1) has
infinite many pairs of solutions.

Proof. Under the assumptions (f0 ), ( f2 ), ( f3 ), (g0 ), (g2 ), (g3 ), it is easy to show
that J is an even functional and satisfies (PS ) condition, we will prove that if k is a
large enough, then there exist ρk > γk > 0 such that

(A1) : bk = inf{J(u)|u ∈ Zk,‖u‖E = γk}→ ∞, (k → ∞)
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(A2) : ak = max{J(u)|u ∈Yk,‖u‖E = ρk} � 0.

The assertion of the Theorem can be obtained by the Fountain Theorem (see [23],
Theorem 3.6), we assume that ‖u‖E � 1.
(A1 ), For any u∈ Zk , denote ‖u‖Ω = |u|q(x),Ω,w1

,‖u‖Γ = |u|r(x),Γ,w2
for simplicity, then

J(u) =
∫

Ω

1
p(x)

(a(x)|∇u|p(x) +b(x)|u|p(x))dx−
∫

Ω
F(x,u)dx−

∫
Γ
G(x,u)dΓ

� 1
p+ ‖u‖p−

E −
∫

Ω
( f0u+

1
q(x)

f1|u|q(x))dx−
∫

Γ
(g0u+

1
r(x)

g1|u|r(x))dΓ

� 1
p+ ‖u‖p−

E −
∫

Ω
( f0u+

Cf

q−
|u|q(x))dx−

∫
Γ
(g0u+

Cg

r−
w2|u|r(x))dΓ

� 1
p+ ‖u‖p−

E −C1‖u‖Ω − Cf

q−
max{‖u‖q+

Ω ;‖u‖q−
Ω }

−C2‖u‖Γ− Cg

r−
max{‖u‖r+

Γ ;‖u‖r−
Γ }

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
p+ ‖u‖p−

E −C1− Cf
q− −C2− Cg

r− , if ‖u‖Ω � 1,‖u‖Γ � 1
1
p+ ‖u‖p−

E −C1− Cf
q− − (C2− Cg

r− )‖u‖r+
Γ if ‖u‖Ω�1,‖u‖Γ � 1

1
p+ ‖u‖p−

E − (C1 + Cf
q− )‖u‖q+

Ω −C2− Cg
r− if ‖u‖Ω � 1,‖u‖Γ � 1

1
p+ ‖u‖p−

E − (C1 + Cf
q− )‖u‖q+

Ω − (C2− Cg
r− )‖u‖r+

Γ if ‖u‖Ω � 1,‖u‖Γ � 1

� 1
p+ ‖u‖p−

E − (C1 +
Cf

q−
+C2 +

Cg

r−
) ·max{‖u‖q+

Ω ,‖u‖r+
Γ }.

If max{‖u‖q+

Ω ,‖u‖r+
Γ } = ‖u‖q+

Ω , we have

J(u) � 1
p+ ‖u‖p−

E −C‖u‖q+

Ω

� 1
p+ ‖u‖p−

E −Cαq+

k
1
p+ ‖u‖q+

E ,

choose γk = (Cαq+

k q+)
1

p−−q+ , then

J(u) � 1
p+ (Cαq+

k q+)
1

p−−q+ −Cαq+

k (Cαq+

k q+)
1

p−−q+

=
( 1

p+ − 1
q−

)
γk → ∞ (k → ∞),

because of p+ < q− and αk → 0 as k → ∞ .

If max{‖u‖q+

Ω ,‖u‖r+
Γ } = ‖u‖r+

Γ , we have

J(u) � 1
p+ ‖u‖p−

E −C‖u‖r+
Γ



606 QIAO LIU AND DUCHAO LIU

� 1
p+ ‖u‖p−

E −Cβ r+
k

1
p+ ‖u‖r+

E ,

choose γk = (Cβ r+
k r+)

1
p−−r+ , then

J(u) �
( 1

p+ − 1
r+

)
γ p−
k → ∞ (k → ∞),

because of p+ < r− and βk → 0 as k → ∞ .

(A2 ), From ( f2 ), (g2 ), we have

F(x,t) �C3|t|θ1 −C4, ∀x ∈ Ω, |t| � M1;

G(x,t) �C5|t|θ2 −C6, ∀x ∈ Γ, |t| � M2.

By θ1 > p+,θ2 > p+

J(u) =
∫

Ω

1
p(x)

(a(x)|∇u|p(x) +b(x)|u|p(x))dx−
∫

Ω
F(x,u)dx−

∫
Γ
G(x,u)dΓ

� 1
p−

‖u‖p+

E −
∫

Ω
(C3|u|θ1 −C4)dx−

∫
Γ
(C5|u|θ2 −C6)dΓ

� 1
p−

‖u‖p+

E −C3

∫
Ω
|u|θ1dx−C5

∫
Γ
|u|θ2dΓ+C.

Notice that dimYk = k implies that all norms are equivalent in Yk , hence we have

J(u) � 1
p−

‖u‖p+

E −C′
3‖u‖θ1

E −C′
5‖u‖θ2

E +C

→−∞ as ‖u‖E → ∞ for u ∈ Yk,

because of p+ < θ1,θ2 . So we can choose ρk big enough, then the proof of the Theo-
rem 3 is completed.

To study ”concave and convex” problem, we focus on the form

{
−div(a(x)|∇u|p(x)−2∇u)+b(x)|u|p(x)−2u = λ f (x,u) inΩ ⊂ R

N ,

a(x)|∇u|p(x)−2 ∂u
∂ν = μg(x,u) onΓ = ∂Ω,

(3.3)

where μ ,λ ∈ R , and Ω ⊂ R
n is still an unbounded domain with non-compact, smooth

boundary Γ ; p(x) , a(x) , b(x) as the Section 1; f (x,u) and g(x,u) are Carathéodory
functions on Ω×R

n and Γ×R
n . For the Problem (3.3), we have the following theo-

rem:

THEOREM 4. If ( f0 ), ( f2 ), ( f3 ), (g0 ), (g3 ) hold and q− > p+,r+ < p− , then
(a) for every λ > 0,μ ∈ R the problem (3.3) has a sequence of solutions {uk} such
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that Jλ ,μ(uk) → ∞,k → ∞;
(b) for every μ > 0,λ ∈ R and in ( f0 ), (g0 ), we have

| f (x,t)| = f1(x)|t|q(x)−1, |g(x,t)| = g1(x)|t|r(x)−1,

the problem (3.3) has a sequence of solutions {uk} such that

Jλ ,μ(uk) < 0 and Jλ ,μ(uk) → 0,k → ∞.

Proof. The proof of part (a) follows by the Fountain Theorem, and part (b) follows
by the Dual Fountain Theorem (see [23], Theorem 3.18).

(a). It is sufficient to prove that Jλ ,μ(u) satisfies the (PS ) condition, other proofs
are similar to the proof of Theorem 2. Assume

{un} ⊂ E,Jλ ,μ(un) < M,J
′
(un) → 0 as n → ∞.

Let ‖u‖E � 1 for convenience, by the conditions (f0 ), ( f2 ), (g0 ), Lemma 3.1 and
Proposition 5, we have for n big enough

M +‖u‖E � J(un)− 1
θ1

< J′(un),un >

� (
1
p+ − 1

θ1
)
∫

Ω

1
p(x)

(a(x)|∇un|p(x) +b(x)|un|p(x))dx

−λ
∫

Ω
(F(x,un)− 1

θ1
f (x,un)un)dx

− μ
∫

Γ
(G(x,un)− 1

θ1
g(x,un)un)dΓ

� (
1
p+ − 1

θ1
)‖un‖p+

E − μ
∫

Γ
(G(x,un)− 1

θ1
g(x,un)un)dΓ

� (
1
p+ − 1

θ1
)‖un‖p+

E − (1+
1
θ1

)|μ |
∫

Γ
(g0un +

g1

r(x)
|un|r(x))dΓ

� (
1
p+ − 1

θ1
)‖un‖p+

E

− (1+
1
θ1

)|μ |
(

C1‖un‖Ω +
Cg

r−
max{‖un‖r+

Γ ,‖un‖r−
Γ }

)

� (
1
p+ − 1

θ1
)‖un‖p+

E −C|μ |(‖un‖E +‖un‖r−
E +‖un‖r+

E ),

where C1 = C1(g0) . Since θ1 > p+,r+ < p− , it is easy to verify that {un} is bounded
in E .

(b) By the Dual Fountain Theorem, we only need to prove that: there exits ρk > γk > 0
such that

(B1) ak := inf{Jλ ,μ(u)|u ∈ Zk,‖u‖E = ρk} � 0;



608 QIAO LIU AND DUCHAO LIU

(B2) bk := max{Jλ ,μ(u)|u ∈ Yk,‖u‖E = γk} � 0;

(B3) dk := inf{Jλ ,μ(u)|u ∈ Zk,‖u‖E � ρk}→ 0,k → ∞;

(B4) Jλ ,μ(u) satisfies the (PS)∗C (see [23], Definition 3.17) condition∀C ∈ [dk0 ,0[.

Now, we show that the above conditions hold.
(B1 ) Let u ∈ Zk , for convenience, we may assume that ‖u‖E < 1, then

Jλ ,μ(u) =
∫

Ω

1
p(x)

(a(x)|∇u|p(x) +b(x)|u|p(x))dx

−λ
∫

Ω

f1
q(x)

|u|q(x)dx− μ
∫

Γ

g1

r(x)
|u|r(x)dΓ

� 1
p+ ‖u‖p+

E − Cf

q−
max{‖u‖q−

Ω ,‖u‖q+

Ω }− Cg

r−
max{‖u‖r−

Γ ,‖u‖r+
Γ }

� 1
p+ ‖u‖p+

E − Cf

q−
max{αq−

k ‖u‖q−
E ,αq+

k ‖u‖q+

E }

− Cg

r−
max{β r−

k ‖u‖r−
E ,β r+

k ‖u‖r+
E }

� 1
p+ ‖u‖p+

E −
(

Cf

q−
max{αq−

k ,αq+

k }+
Cg

r−
max{β r−

k ,β r+
k }

)
‖u‖E

=
1
p+ ‖u‖p+

E −C‖u‖E.

Choose ρk = (p+C)
1

p+−1 , then we have

Jλ ,μ(u) � 1
p+ (ρk)p+ −Cρk

� 1
p+ (p+C)

1
p+−1 −C(p+C)

1
p+−1 = 0,

which implies that (B1 ) holds.

(B2 ) For u ∈ Yk and μ > 0,λ ∈ R ,

Jλ ,μ(u) =
∫

Ω

1
p(x)

(a(x)|∇u|p(x) +b(x)|u|p(x))dx

−λ
∫

Ω

f1
q(x)

|u|q(x)dx− μ
∫

Γ

g1

r(x)
|u|r(x)dΓ

� 1
p−

‖u‖p−
E + |λ |Cf

q−

∫
Ω

w1|u|q(x)dx− μ
Cg

r−

∫
Γ
w2|u|r(x)dΓ.

Notice that dimYk < ∞ , r+ < p− and q− > p+ , we find that (B2 ) holds if we choose
γk > 0.
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(B3 ) From the proof of (B1 ) and Yk ∩Zk �= ∅ , we know for u ∈ Zk,‖u‖E � ρk

small enough,

Jλ ,μ(u) � −
(

Cf

q−
max{αq−

k ,αq+

k }+
Cg

r−
max{β r−

k ,β r+
k }

)
‖u‖E ,

since max{αq−
k ,αq+

k } → 0 and max{β r−
k ,β r+

k } → 0. That is (B3 ) holds. Moreover,
from the above proofs, we can choose that ρk > γk > 0.

(B4 ) Now we prove the (PS)∗C condition holds. For the sequence {unj} ⊂ E such that

n j → ∞, unj ∈ Ynj , Jλ ,μ(unj) →C, Jλ ,μ |′Yn j
(unj) → 0.

Assume ‖unj‖E � 1, for n big enough, we have

C+1+‖unj‖p
E � Jλ ,μ(unj)−

1
q−

< J′λ ,μ(unj),unj >

� (
1
p+ − 1

q−
)‖unj‖p−

E −λ
∫

Ω
(

1
q(x)

f1 − 1
q−

)|u|q(x)dx

− μ
∫

Γ
(

1
r(x)

− 1
q−

)g1|u|r(x)dΓ

� (
1
p+ − 1

q−
)‖unj‖p−

E − 2|λ |
q−

∫
Ω

f1|u|q(x)dx

� (
1
p+ − 1

q−
)‖unj‖p−

E − 2|λ |
q−

Cf

∫
Ω

w1|u|q(x)dx

� (
1
p+ − 1

q−
)‖unj‖p−

E − 2|λ |
q−

Cf max{αq−,αq+
0

0 }‖unj‖q+

E ,

where α0 defined in Lemma 4, and we get that {unj} is bounded in E . Going if
necessary to a subsequence, we can assume that unj ⇀ u in E , as E = ∪n jYn j , we can
choose vn j ∈ Ynj such that vn j → u , hence

lim
n j→∞

< J′λ ,μ(unj),unj −u >

= lim
n j→∞

< J′λ ,μ(unj),unj − vn j > + lim
n j→∞

< J′λ ,μ(unj),vn j −u >

= lim
n j→∞

< J′λ ,μ |′Yn j
(unj),unj −u >= 0.

From Proposition 6, we conclude that unj → u . Furthermore, we have J′λ ,μ(unj) →
J′λ ,μ(u) .

Taking arbitrary vk ∈ Yk, notice that when n j � k we have

< J′λ ,μ(u),vk >= < J′λ ,μ(u)− J′λ ,μ(unj ),vk > + < J′λ ,μ(unj),vk >

= < J′λ ,μ(u)− J′λ ,μ(unj ),vk > + < J′λ ,μ |′Yn j
(unj),vk >
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→0 as n j → ∞.

Hence J′λ ,μ(u) = 0, this shows that Jλ ,μ satisfies the (PS)∗C condition for every C ∈
[dk0 ,0[ . This completes the proof of Theorem 3.

From the the proof of Theorem 4, we can obtain the following corollary of another
concave and convex case problem.

COROLLARY 1. If ( f0 ), ( f3 ), (g0 ), (g2 ), (g3 ) hold and q+ < p−,r− > p+ , then
(a′ ) for every λ > 0,μ ∈ R the problem (3.3) has a sequence of solutions {uk} such
that Jλ ,μ(uk) → ∞,k → ∞;
(b′ ) for every μ > 0,λ ∈ R and in ( f0 ), (g0 ), we have

| f (x,t)| = f1(x)|t|q(x)−1, |g(x,t)| = g1(x)|t|r(x)−1,

the problem (3.3) has a sequence of solutions {uk} such that

Jλ ,μ(uk) < 0 and Jλ ,μ(uk) → 0,k → ∞.
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