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ASYMPTOTICS FOR NONLOCAL EVOLUTION

PROBLEMS BY SCALING ARGUMENTS

TATIANA I. IGNAT

(Communicated by Philippe Souplet)

Abstract. In this paper we consider a nonlocal evolution problem and obtain by a scaling method
the first term in the asymptotic behavior of the solutions. The method employed treats in different
way the smooth and the rough part of the solution.

1. Introduction

In this paper we study a nonlocal equation of the form:⎧⎨
⎩

ut(x,t) =
∫
R

J(x− y)(u(y,t)−u(x,t))dy, x ∈ R, t > 0,

u(x,0) = u0(x), x ∈ R.
(1.1)

We consider J : R → R a nonnegative, smooth, even function rapidly decaying at infin-
ity, with

∫
R

J(s)ds = 1 and the initial data u0 ∈ L1(R)∩L∞(R) .
Equations like (1.1) and variations of it, have been recently widely used to model

diffusion processes, for example, in biology, dislocations dynamics, etc. For the inter-
ested reader we refer to [2], [3], [8], [9] and the references therein.

In this paper we will obtain the first term in the asymptotic behavior of the solution
of system (1.1) by using a scaling method. The main result of this paper is the following
one:

THEOREM 1.1. Let u0 ∈ L1(R)∩L∞(R) . For any p ∈ [1,∞] the solution u(x,t)
of equation (1.1) satisfies:

lim
t→∞

t
1
2 (1− 1

p )‖u(t)−MGAt‖Lp(R) = 0 (1.2)

where

Gt(x) =
1√
4πt

exp(−x2

4t
)
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is the heat kernel and

M =
∫

R

u0(x)dx, A =
1
2

∫
R

J(z)z2dz.

Similar results have been obtained in [4] and [12] by using different methods,
under various assumptions on the regularity of the initial data u0 and on J . The goal of
this paper is to prove that the asymptotic behavior of the nonlocal evolution problems of
type (1.1) can be analyzed by scaling arguments even if the equation does not support
a self-similar solution due to the lack of homogeneity of the kernel J .

The main difficulty in applying scaling arguments in nonlocal problems is the lack
of smoothness of the solution. As observed in [4], the solution at any positive time is
as smooth as the initial data is. More precisely the solution of equation (1.1) can be
written as

u(x,t) = e−t u0(x)+ v(x,t), (1.3)

where v is the smooth part of the solution while e−tu0 remains as smooth as the initial
data is. By a simple computation, it follows that v(x,t) verifies the equation:

⎧⎨
⎩

vt(x,t) = e−t(J ∗ u0)(x)+ (J ∗ v− v)(x,t), x ∈ R, t > 0,

v(x,0) = 0, x ∈ R.
(1.4)

The key point in using the scaling method to the nonlocal model considered here
is to apply this method to the regular part of the solution v . To obtain the decay in
Theorem 1.1 we will prove a similar asymptotic behavior for v :

lim
t→∞

t1/2(1−1/p)‖v(t)−MGAt‖Lp(R) = 0. (1.5)

To fix the ideas, for v(x,t) solution of problem (1.4) we define a family of func-
tions {vλ}λ>0 as follows:

vλ (x,t) = λv(λx,λ 2t), x ∈ R,t � 0.

In order to obtain the asymptotic behavior of v in (1.5) we will prove that, at the time
t = 1 the rescaled family vλ (1) strongly converges as λ →∞ in the Lp(R)-norm to the
solution of the heat equation, vt = Avxx with Mδ0 initial data, i.e. converges to MGA .
To do that we prove that for any 0 < t1 < t2 < ∞ the sequence {vλ}λ>0 is relatively
compact on C([t1, t2],L1(R)) and that the limit point is the solution of the heat equation.

When we rescale function v in fact we can write a similar scaling for u with the
difference that for the new family {uλ}λ>0 we will not be able to prove the compact-
ness (by the lack of regularity with respect to the initial data). Our method not only
rescale the solution but also the initial data. The limit of the rescaled solutions uλ
when the initial data remains unchanged, i.e. the hyperbolic-parabolic relaxation limit,
has been considered in [1, Ch. 1, p. 23].

In the context of classical diffusion problems, linear or nonlinear, the scaling
method has been successfully applied. We cite here just a few references [6], [7], [14].
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This paper shows that the nonlocal evolution problems involving operators as in (1.1),
where the smoothing effect is not present, could be treated by means of scaling meth-
ods. The extension of the method to nonlinear models as the ones analyzed in [11, 5]
remains open. However, the main difficulty in the context of the nonlinear problems
will be to separate the smooth and rough parts of the solutions, an argument that is im-
mediate in the case of linear problems. We recall that there are cases when nonlinearity
can help. We recall here the results in [15] where a simplified model for radiating gases
has been analyzed. The asymptotic profile is obtained there by using some Oleinik type
estimates which are not available for the model we have considered here.

We have considered here the case when J is a smooth function rapidly decaying
at infinity. In fact more general kernels can be considered. Essentially, as observed in
[12] we need the following assumptions on J :

Ĵ(ξ ) = 1−Aξ 2 +o(ξ 2) asξ → 0 (1.6)

and for some m > 2

|Ĵ(ξ )| � C
|ξ |m asξ → ∞. (1.7)

Obviously when J is an even function and has decay faster than 1/|x|2 at infinity, i.e.
J ∈ L1(1+ |x|2) for example, the first hypothesis (1.6) is satisfied with

A =
1
2

∫
R

J(z)z2dz.

Condition (1.7) holds for example when J has at least three derivatives in L1(R) . These
restrictions are assumed in order to prove decay properties for the solution v of system
(1.4) and its derivative in the Lp -norms for all 2 � p � ∞ . If we only need to have
estimates in the L2(R) norm then only m > 3/2 is needed (see carefully the proof of
Lemma 1.16 in [1]). This happens if J is of class W 2,1(R)∩L1(1+ |x|2) .

We recall here that in order to obtain L1 −L2 estimates for u , a solution of (1.1),
and thus for v solution of (1.4), only J ∈ L1(1+ |x|2) is sufficient as proved by energy
methods in [13], [16]. The obtention of all the estimates involved in the proof by using
energy methods (see [10, Ch. 1, p. 25] for the case of the heat equation) remains to be
analyzed.

2. Proof of main results

We first recall some preliminary results that will help us during the proof.
We point out that as long as the initial data u0 is nonnegative, v a solution of

system (1.4) is a supersolution for system (1.1) with initial data identically zero. Then
v is nonnegative since the comparison principle holds (see [1, Ch. 2, p. 37]). We will
consider here, without loss of generality, the case of nonnegative initial data u0 , so
nonnegative solutions.

The following lemma shows that (1.5) is equivalent with the strong convergence
of the sequence {vλ (t0)} toward the heat kernel at the time t0 multiplied by the mass
of the initial data MGAt0 .
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LEMMA 2.1. Let p ∈ [1,∞] . The following statements are equivalent:

lim
t→∞

t
1
2 (1− 1

p )‖v(t)−MGAt‖Lp(R) = 0 (2.1)

and
vλ (1) → MGA (2.2)

in the Lp(R)-norm as λ → ∞ , i.e.

lim
λ→∞

‖vλ (1)−MGA‖Lp(R) = 0.

Proof. Observe that at time t0 = 1 the rescaled solution vλ satisfies

‖vλ (x,1)−MGA(x)‖Lp(R) = ‖λv(λx,λ 2)−MλGλ 2A(λx)‖Lp(R)

= λ 1−1/p‖v(x,λ 2)−MGλ 2A(x)‖Lp(R)

= t1/2(1−1/p)‖v(x,t)−MGAt(x)‖Lp(R),

where t = λ 2. Then (2.1) holds if and only if (2.2) holds.
In the following we prove

lim
λ→∞

‖vλ (1)−MGA‖L1(R) = 0. (2.3)

The proof is divided into four steps. We mainly follow the ideas of [14]. In Step I we
obtain estimates on vλ and its derivative. In Step II, using the Aubin-Lions compactness
principle (see for example [17]) we prove that vλ strongly converges to a function v in
C([t1, t2],L1

loc(R)). We then improve the convergence to C([t1,t2],L1(R)). In Step III
we finish the proof of (2.3) by showing that any limit point v satisfies the heat equation
vt = Avxx with Mδ0 as initial data. Since the limit point is unique then the whole family
{vλ}λ>0 converges to that limit. We then use (1.3) to prove the result stated in Theorem
1.1.

Before starting the proof of the main result let us recall that the smooth part v can
be written as

v(x,t) = Kt ∗ u0

where
Kt(x) =

∫
R

(et(Ĵ(ξ )−1)− e−t)eixξ dξ (2.4)

or in terms of the Fourier transform

K̂t(ξ ) = et(Ĵ(ξ )−1)− e−t. (2.5)

Moreover, the rescaled solutions {vλ}λ>0 satisfy the following system
⎧⎨
⎩

(vλ )t = λ 2e−λ 2t(Jλ ∗ u0λ )+ λ 2(Jλ ∗ vλ − vλ ), x ∈ R,t > 0,

vλ (x,0) = 0, x ∈ R.
(2.6)
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Observe that the L1(R)-norm of the nonnegative solution vλ is uniformly bounded
by the mass of the initial data:

∫
R

vλ (x,t)dx = (1− e−λ 2t)
∫

R

u0(x)dx. (2.7)

Step I. Estimates for vλ . We estimate the Lp(R)-norm, p � 2 of vλ and (vλ )x .
Similar estimates could be obtained for p ∈ [1,2) under stronger assumptions on func-
tion J (see [12]). We point out that if only the case p = 2 is needed then we only need
to assume hypotesis (1.7) with m > 1/2 in Lemma 2.2 and m > 3/2 in Lemma 2.3
below.

LEMMA 2.2. For any p∈ [2,∞] there exists a positive constant C(p,J) such that:

‖vλ (t)‖Lp(R) � C(p,J)t−
1
2 (1− 1

p )‖u0‖L1(R)

for any t > 0 and any λ > 0 .

REMARK 2.1. We emphasize that Lemma 2.2 can be proved under weaker as-
sumptions on J as in [13], [16]. Essentially J ∈ L1(1+ |x|2) is enough to obtain bounds
for u solution of (1.1), so for v and vλ . We point out that we do not know if the energy
methods (see [10, Ch. 1, p. 25]) that work in the classical heat equation to establish
a bound of the type ‖ux(t)‖L2 � t−1/4‖ϕ‖L1 can be adapted to the nonlocal setting to
obtain similar estimates for v and then for vλ .

Proof. Using the definition of vλ we have

‖vλ (t)‖Lp(R) = λ 1− 1
p ‖v(λ 2t)‖Lp(R).

It is then sufficient to prove the same estimate for v . Using the results in [12], under
the hypotheses (1.6) and (1.7) the kernel Kt defined by (2.4) satisfies

‖Kt‖Lp(R) � C(p,J)t−
1
2 (1− 1

p ).

Therefore
‖v(t)‖Lp(R) � C(p,J)t−

1
2 (1− 1

p )‖u0‖L1(R)

and the proof of the Lemma is finished.

LEMMA 2.3. For each p ∈ [2,∞] there exists a positive constant C such that:

‖(vλ (t))x‖Lp(R) � Ct−
1
2 (1− 1

p )− 1
2 ‖u0‖L1(R)

for any t > 0 and any λ > 0 .
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Proof. Using the same arguments as in the previous lemma it is sufficient to prove
that

‖(Kt)x‖Lp(R) � Ct−
1
2 (1− 1

p )− 1
2 .

Previous results in [12] guarantee the desired estimates for Kt and the proof is finished.

Step II. Compactness in C([t1,t2]),L1
loc(R) . Let us first recall the Aubin-Lions

compactness criterion (see [17] for related results).

THEOREM 2.1. Let X, B and Y be Banach spaces satisfying X ⊂ B ⊂ Y with
compact embedding X ⊂ B. Assume, for 1 � p � ∞ and T > 0 , that
1) F is bouned in Lp(0,T ;X)
2){( ft) : f ∈ F} is bounded in Lp(0,T ;Y ).

Then F is relatively compact in Lp(0,T ;B) (and in C(0,T ;B) if p = ∞).

The following lemma gives the compactness of {vλ}λ>0 in C([t1, t2]),L1
loc(R) .

LEMMA 2.4. For any 0 < t1 < t2 < ∞ and for each R > 0 the set

{vλ}λ>0 ⊆C([t1,t2];L1(−R,R))

is relatively compact.

Proof. We first prove the compactness in C([t1,t2];L2(−R,R)) since we need es-
timates for vλ in the L2(R)-norm and these are given by Lemma 2.2 and Lemma 2.3.
Using estimates on the L1 -norm of vλ will require more assumptions on Ĵ in these
lemmas.

We apply the above compactness principle with p = ∞ and the following spaces
X = H1(−R,R), B = L2(−R,R) and Y = H−1(−R,R) . We prove that for some M =
M(t1,R) the following estimates hold uniformly with respect to the parameter λ :

‖vλ‖L∞([t1,t2];H1(−R,R)) � M (2.8)

and
‖(vλ )t‖L∞([t1,t2];H−1(−R,R)) � M. (2.9)

Using Lemma 2.2 and Lemma 2.3 we immediately obtain estimate (2.8).
We now prove the second estimate (2.9). For a function Φ ∈C∞

c (−R,R) we set Φ
its extension as zero outside (−R,R) . Using that vλ satisfies equation (2.6) we get:

〈(vλ )t ,Φ〉H−1,H1
0 (−R,R) =

∫ R

−R
(vλ )tΦ(x)dx

=
∫

R

(vλ )tΦ(x)dx

=
∫

R

[λ 2e−λ 2t(Jλ ∗ u0λ )(x)+ λ 2(Jλ ∗ vλ − vλ )(x,t)]Φ(x)dx

= λ 2e−λ 2t
∫

R

(Jλ ∗ u0λ )(x)Φ(x)dx
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+ λ 2
∫

R

(Jλ ∗ vλ − vλ )(x,t)Φ(x)dx

= B1 +B2.

Using Hölder and Young’s inequalities, we obtain the following bounds for B1 :

|B1| � λ 2e−λ 2t‖Jλ ∗ u0λ‖L2(R)‖Φ‖L2(R)

� λ 2e−λ 2t‖Jλ‖L2(R)‖u0λ‖L1(R)‖Φ‖L2(R)

� λ 3− 1
2 e−λ 2t1‖J‖L2(R)‖u0‖L1(R)‖Φ‖L2(R)

� M‖Φ‖L2(R) = M‖Φ‖L2(−R,R).

To obtain bounds for B2 , we use Cauchy’s inequality, the identity
∫

R

∫
R

J(x− y)(φ(y)−φ(x))ψ(x)dxdy (2.10)

=− 1
2

∫
R

∫
R

J(x− y)(φ(y)−φ(x))(ψ(y)−ψ(x))dxdy

and the following Lemma.

LEMMA 2.5. There exists a positive constant C(J) =
∫
R

J(z)z2dz such that

λ 2
∫

R

∫
R

Jλ (x− y)(u(y)−u(x))2dydx � C(J)
∫

R

|ux(x)|2dx (2.11)

holds for all u ∈ H1(R) and λ > 0.

It follows that

B2 = −λ 2

2

∫
R

∫
R

Jλ (x− y)(vλ (y,t)− vλ (x,t))(Φ(y)−Φ(x))dydx.

Applying Lemma 2.5 we get

|B2| � 1
2

(
λ 2

∫
R

∫
R

Jλ (x− y)(vλ (y,t)− vλ (x,t))2dydx

) 1
2

×
(

λ 2
∫

R

∫
R

Jλ (x− y)(Φ(y)−Φ(x))2
dydx

) 1
2

� C‖(vλ )x(t)‖L2(R)‖Φx‖L2(R).

Applying Lemma 2.3 we have

|B2| � C(J)‖(vλ )x(t)‖L2(R)‖Φx‖L2((−R,R)) � C(J,t1)‖u0‖L1(R)‖Φ‖L2((−R,R)).

The above estimates on B1 and B2 show that estimate (2.9) also holds. By Theo-
rem 2.1 we obtain that {vλ}λ>0 is relatively compact in C([t1,t2];L2(−R,R)) , then in
C([t1, t2];L1(−R,R)) and the proof of Lemma 2.4 is now complete.
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Proof. [Proof of Lemma 2.5] To prove inequality (2.11) we use Cauchy’s inequal-
ity and Fubini’s theorem. Let us denote by Iλ the right hand side in (2.11). It follows
that

Iλ = λ
∫

R

∫
R

J(x− y)
(
u
( y

λ

)
−u

( x
λ

))2
dydx

=
1
λ

∫
R

∫
R

J(x− y)(y− x)2
[∫ 1

0
ux(

x
λ

+ θ
y− x

λ
)dθ

]2

dydx

� 1
λ

∫
R

∫
R

J(x− y)(y− x)2
∫ 1

0

[
ux(

x
λ

+ θ
y− x

λ
)
]2

dθdydx

=
1
λ

∫
R

J(z)z2
∫ 1

0

∫
R

[
ux(

z+ y
λ

−θ
z
λ

)
]2

dydθdz

=
∫

R

J(z)z2dz
∫

R

|ux(x)|2dx

and the proof of Lemma 2.5 is finished.

Step II. Compactness in C([t1,t2],L1(R)) . The previous step gives us that for
any R > 0 the family {vλ}λ>0 is relatively compact in C([t1, t2],L1(−R,R)) . Using a
standard diagonal argument the compactness in C([t1, t2],L1(R)) is reduced to the fact
that

sup
t∈[t1,t2]

‖vλ (t)‖L1(|x|>R) → 0, as R → ∞, (2.12)

uniformly on λ � 1. This follows from the following Lemma.

LEMMA 2.6. There exists a constant C = C(J,‖u0‖L1(R)) such that

∫
|x|>2R

vλ (t,x)dx �
∫
|x|>R

(J ∗ u0)(x)dx+C
( t

R2 +
t1/2

R

)
(2.13)

holds for any t > 0 , R > 0 , uniformly for λ � 1 .

Proof. Let Ψ ∈C∞
c (R) be a nonnegative function satisfying 0 � Ψ � 1 and

Ψ(x) =
{

0, |x| < 1,
1, |x| > 2.

Put ΨR(x) = Ψ( x
R ) for every R > 0. Multiplying equation (2.6) by ΨR(x) and integrat-

ing in space and time we obtain:
∫

R

vλ (x, t)ΨR(x)dx

=
∫ t

0

∫
R

(
λ 2e−λ 2s(Jλ ∗ u0λ)(x)+ λ 2(Jλ ∗ vλ − vλ )(x,s)

)
ΨR(x)dxds

= B1 +B2.
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Using identity (2.10) we obtain:

B2 = −λ 2

2

∫ t

0

∫
R

∫
R

Jλ (x− y)[vλ (y,t)− vλ (x,t)][ΨR(y)−ΨR(x)]dxds

= λ 2
∫ t

0

∫
R

(Jλ ∗ΨR−ΨR)(x)vλ (x,s)dxds.

We now need the following result.

LEMMA 2.7. There exists a positive constant C(J) such that

‖λ 2(Jλ ∗ψ −ψ)‖L∞(R) � C(J)‖ψxx‖L∞(R)

holds for all λ > 0 and ψ ∈C2
c (R).

Let us now recall that (2.7) shows that the mass of vλ (t) is bounded by the mass
of u0 . Using this fact and Lemma 2.7 we get

|B2| �
∫ t

0
λ 2‖Jλ ∗ΨR−ΨR‖L∞(R)‖vλ (s)‖L1(R)ds

� C(J)t‖u0‖L1(R)‖(ΨR)xx‖L∞(R) � C(J)t
R2 ‖u0‖L1(R).

Now we analyze B1 . Observe that

B1 = λ 2(1− e−λ 2t)
∫

R

∫
R

J(λ (x− y))u0(λy)ΨR(x)dydx

= (1− e−λ 2t)
∫

R

(J ∗ u0)(x)Ψ(
x

λR
)dx

� (1− e−λ 2t)
∫
|x|>Rλ

(J ∗ u0)(x)dx �
∫
|x|>R

(J ∗ u0)(x)dx.

The proof of Lemma 2.6 is now complete.

Proof. [Proof of Lemma 2.7] Using Taylor’s formula we have for any x and y that

|ψ(x)−ψ(y)− (y− x)ψx(x)| � (y− x)2

2
‖ψxx‖L∞(R).

Taking into account the symmetry of J , we obtain:

λ 2
∣∣∣
∫

R

Jλ (x− y)[ψ(y)−ψ(x)]dy
∣∣∣

� λ 2
∣∣∣
∫

R

Jλ (x− y)(y− x)ψ ′(x)dx
∣∣∣+ λ 2

2
‖ψxx‖L∞(R)

∫
R

Jλ (x− y)(y− x)2dy

=
‖ψxx‖L∞(R)

2

∫
R

J(z)z2dz

and the desired result follows.
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Step III. Identification of the limit. By Step II, for any 0 < t1 < t2 < ∞ , the family
{vλ}λ>0 is relatively compact in C([t1,t2],L1(R)) . Thus, there exists a subsequence
{vλ}λ>0 (not relabeled) and a function v ∈C((0,∞),L1(R)) such that

vλ → v in C([t1,t2],L1(R)) as λ → ∞. (2.14)

Moreover, for any t > 0, since ‖vλ (t)‖L1(R) � ‖u0‖L1(R) we also have this property for
function v : ‖v(t)‖L1(R) � ‖u0‖L1(R) .

We multiply equation (2.6) with a function ϕ ∈C∞
c ([0,T ]×R) . Integrating equa-

tion (2.6) over [0,T ]×R we get:

∫ T

0

∫
R

(vλ )t(x, t)ϕ(x,t)dxdt

=
∫ T

0

∫
R

λ 2e−λ 2t(Jλ ∗ u0λ )(x)ϕ(x,t)dxdt

+
∫ T

0

∫
R

λ 2(Jλ ∗ vλ − vλ )ϕ(x,t)dxdt.

Integrating by parts with respect to variables t and x and using that vλ (x,0) = 0, ϕ
has compact support and identity (2.10), we have:

−
∫ T

0

∫
R

vλ (x, t)ϕt(x,t)dxdt

=
∫ T

0
λ 2e−λ 2t

∫
R

(Jλ ∗ u0λ )(x)ϕ(x,t)dxdt

+
∫ T

0

∫
R

λ 2(Jλ ∗ϕ −ϕ)vλ (x,t)dxdt.

We will prove later that as λ → ∞ the following convergences hold:

∫ T

0

∫
R

vλ (x,t)ϕt(x,t)dxdt →
∫ T

0

∫
R

v(x, t)ϕt(x,t)dxdt, (2.15)

∫ T

0

∫
R

λ 2(Jλ ∗ϕ −ϕ)(x,t)vλ (x,t)dxdt →
∫ T

0

∫
R

v(x, t)Aϕxx(x,t)dxdt (2.16)

and ∫ T

0

∫
R

λ 2e−λ 2t(Jλ ∗ u0λ )(x)ϕ(x,t)dxdt → Mϕ(0,0), (2.17)

where

A =
1
2

∫
R

J(z)z2dz and M =
∫

R

u0(x)dx.

The above results show that v ∈C((0,∞),L1(R)) satisfies

−
∫ T

0

∫
R

v(x,t)ϕt(x,t)dxdt = Mϕ(0,0)+A
∫ T

0

∫
R

v(x,t)ϕxx(x, t)dxdt.
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Hence v is a solution of the heat equation
⎧⎨
⎩

vt(x,t) = Avxx(x,t)dy, x ∈ R, t > 0,

v(0) = Mδ0.
(2.18)

Since this equation has a unique solution v(t) = MGAt , Gt being the heat kernel, the
whole family {vλ}λ>0 converges to v not only to a subsequence. Hence

lim
λ→∞

‖vλ (1)−MGA‖L1(R) = 0

and by Lemma 2.1, v the solution of system (1.4) satisfies

lim
t→∞

‖v(t)−MGAt‖L1(R) = 0.

This immediately implies that u , the solution of system (1.1) satisfies

lim
t→∞

‖u(t)−MGAt‖L1(R) = 0.

The case p � 1 easily follows since by Step I,

‖u(t)‖L∞(R) � C(p,‖ϕ‖L1(R),‖ϕ‖L∞(R))t
− 1

2

and then

‖u(t)−MGAt‖Lp(R) � ‖u(t)−MGAt‖1/p
L1(R)(‖u(t)‖L∞(R) +M‖GAt‖L∞(R))

1− 1
p

= o(t−
1
2 (1− 1

p )).

To finish the proof of Theorem 1.1 it remains to prove (2.15), (2.16) and (2.17).
Before starting the proof we observe that

lim
λ→∞

∫ T

0
‖vλ (t)− v(t)‖L1(R)dt = 0. (2.19)

Indeed, for any ε > 0 we have

∫ T

0
‖vλ (t)− v(t)‖L1(R)dt =

∫ ε

0
‖vλ (t)− v(t)‖L1(R)dt +

∫ T

ε
‖vλ (t)− v(t)‖L1(R)dt

� 2ε‖u0‖L1(R) +
∫ T

ε
‖vλ (t)− v(t)‖L1(R)dt.

Since vλ is relatively compact in C([ε,T ],L1(R)) we obtain that (2.19) holds.
Let us now prove (2.15). We have

∣∣∣∣
∫ T

0

∫
R

(vλ (x, t)− v(x,t))ϕt (x,t)dxdt

∣∣∣∣ �
∫ T

0
‖vλ (t)− v(t)‖L1(R)‖ϕt(t)‖L∞(R)dt
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� C(ϕ)
∫ T

0
‖vλ (t)− v(t)‖L1(R)dt,

and (2.19) shows that (2.15) holds.
In the case of (2.16) we have∣∣∣∣

∫ T

0

∫
R

λ 2(Jλ ∗ϕ −ϕ)(x,t)vλ (x,t)dxdt−
∫ T

0

∫
R

v(x,t)Aϕxx(x, t)dxdt

∣∣∣∣
�

∣∣∣∣
∫ T

0

∫
R

λ 2(Jλ ∗ϕ −ϕ)(x,t)(vλ (x,t)− v(x,t))dxdt

∣∣∣∣
+

∣∣∣∣
∫ T

0

∫
R

v(x,t)
(

λ 2(Jλ ∗ϕ −ϕ)(x,t)−Aϕxx(x,t)
)
dxdt

∣∣∣∣
= Aλ +Bλ .

For the first term, we have

Aλ �
∫ T

0

∫
R

∣∣λ 2(Jλ ∗ϕ −ϕ)(x,t)
∣∣ |vλ (x,t)− v(x,t)|dxdt

�
∫ T

0
‖λ 2(Jλ ∗ϕ −ϕ)(t)‖L∞(R)‖vλ (t)− v(t)‖L1(R)dt.

Using Lemma 2.7 and (2.19) we obtain that Aλ → 0 as λ → ∞ .
For the second term, Bλ , we obtain:

Bλ �
∫ T

0

∫
R

|v(x,t)| ∣∣λ 2(Jλ ∗ϕ −ϕ)(x,t)−Aϕxx(x,t)
∣∣dxdt

=
∫ T

0

∫
R

|v(x,t)|
∣∣∣∣λ 3

∫
R

J(λ (x− y))(ϕ(y,t)−ϕ(x,t))dy−Aϕxx(x,t)
∣∣∣∣dxdt.

Since v belongs to L1((0,T )×R) it is sufficient to prove that the second term in the
last integral goes to zero. Let us observe that

λ 3
∫

R

J(λ (x− y))(ϕ(y,t)−ϕ(x,t))dy = λ 2
∫

R

J(z)
(
ϕ(x− z

λ
)−ϕ(x)

)
dz

= λ 2
∫

R

J(z)
[
− z

λ
ϕx(x)+

1
λ 2

∫ 1

0
(1− s)ϕxx(x− sz

λ
)z2ds

]
dz

= −ϕx(x)
λ

∫
R

J(z)zdz+
∫

R

J(z)z2
∫ 1

0
(1− s)ϕxx(x− sz

λ
)dsdz

=
∫

R

J(z)z2
∫ 1

0
(1− s)ϕxx(x− sz

λ
)dsdz → Aϕxx(x) asλ → ∞.

Using the Lebesgue dominated convergence theorem we obtain that Bλ goes to zero as
λ → ∞ .

Before entering in the proof of (2.17) let us remark that
∫ ∞

0
e−t

∫
R

(J ∗ u0)(x)dxdt =
∫

R

u0(x)dx = M. (2.20)
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Since ϕ has compact support we have that

∣∣∣ϕ ( x
λ

,
t

λ 2

)
−ϕ(0,0)

∣∣∣ �
( |x|

λ
+

t
λ 2

)
‖∇ϕ‖L∞(R2) � C(ϕ)

λ
. (2.21)

Using (2.20) and (2.21) we have that when λ → ∞
∣∣∣
∫ ∞

0

∫
R

λ 2e−λ 2t(Jλ ∗ u0λ )(x)ϕ(x,t)dxdt −Mϕ(0,0)
∣∣∣

=
∣∣∣∣
∫ ∞

0

∫
R

λ 2e−λ 2tλ (J ∗ u0)(λx)ϕ(x, t)dxdt−Mϕ(0,0)
∣∣∣∣

�
∫ ∞

0
e−t

∫
R

(J ∗ u0)(x)
∣∣∣ϕ(

x
λ

,
t

λ 2 )−ϕ(0,0)
∣∣∣dxdt

� C(ϕ)
λ

∫ ∞

0
e−t

∫
R

(J ∗ u0)(x)dxdt =
C(ϕ)

λ
M → 0.

The proof of (2.15), (2.16), (2.17) is now complete and the proof of the main result
finishes.
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