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POSITIVE SOLUTIONS FOR SINGULAR NONLOCAL BOUNDARY VALUE

PROBLEMS INVOLVING NONLINEAR INTEGRAL CONDITIONS

BAOQIANG YAN, DONAL O’REGAN AND RAVI P. AGARWAL

(Communicated by Qingkai Kong)

Abstract. In this paper, using the fixed point theory on a cone and Leray-Schauder fixed point
theorem, we present some existence results for singular nonlocal boundary value problems in-
volving nonlinear integral conditions. Our nonlinearity may be singular in its dependent variable
and it is allowed to change sign.

1. Introduction

In this paper, we consider the existence of positive solutions of nonlinear nonlocal
boundary value problem(BVP) of the form

−y′′ = q(t) f (t,y(t)),t ∈ (0,1) (1.1)

with integral boundary conditions

y′(0) = 0,y(1) = α[y] =
∫ 1

0
(y(s))β dA(s) (1.2)

involving a Stieltjes integral, which generalizes the boundary conditions in [9-10].
J.R.L. Webb, G. Infante, G.S.Goodrich discussed the existence of at least one posi-
tive solutions and multiplicity of positive solutions for BVP(1.1)-(1.2) under the non-
linear boundary conditions or the case β = 1 and f (t,y) is positive and continuous
on (0,1)× [0,+∞) , that is, f has no singularity at y = 0(see [6, 8, 13-14]). But
the study of singular boundary value problems (singular in the dependent variable) is
very important and there are many results on the existence of positive solutions(see
[1-4,11-12,15]). Inspired by the above works, we consider the case that f is singular
at y = 0 and may be sign changing. In order to get the existence of positive solutions
for BVP(1.1)-(1.2), we establish some new conditions. Using the fixed point theorems
on a cone and the Leray-Schauder fixed point theorem, some new existence results are
obtained for the BVP(1.1)-(1.2).

Our paper is organized as follows. In Section 2, we present some lemmas and pre-
liminaries. Section 3 discusses the existence of multiple positive solutions for BVP(1.1)
-(1.2) when f is positive. In Section 4, we discuss the multiplicity of positive solutions
for the semi-positone BVP(1.1)-(1.2). In sction 5, we present the existence of positive
solutions of BVP(1.1)-(1.2) when f is changing sign and singular at y = 0.
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2. Preliminaries

Let C[0,1] = {y : [0,1]→ R|y(t) is continuous on [0,1]} with norm

‖y‖ = max
t∈[0,1]

|y(t)|.

It is easy to see that C[0,1] is a Banach space. Define

P =
{
y ∈C[0,1]|y is concave and nonincreasing on [0,1]

with y(t) � 0 for all t ∈ [0,1]
}
.

It is easy to prove P is a cone of C[0,1] .

LEMMA 2.1. (see [7]) Let Ω be a bounded open set in real Banach space E ,
P be a cone of E , θ ∈ Ω and A : Ω∩P → P be continuous and compact. Suppose
λAx �= x , ∀x ∈ ∂Ω∩P, λ ∈ (0,1] . Then

i(A,Ω∩P,P) = 1.

LEMMA 2.2. (see [7]) Let Ω be a bounded open set in real Banach space E , P
be a cone of E , θ ∈ Ω and A : Ω∩P→P be continuous and compact. Suppose Ax �� x ,
∀x ∈ ∂Ω∩P. Then

i(A,Ω∩P,P) = 0.

LEMMA 2.3. (see [5]) Let E be a Banach space, R > 0 , BR = {x ∈ E : ‖x‖� R} ,
F : BR → E be a continuous compact operator. If x �= λF(x) for any x ∈ E with
‖x‖ = R and 0 < λ < 1 , then F has a fixed point in BR .

LEMMA 2.4. Let y ∈ P. Then

y(t) � (1− t)‖y‖ for t ∈ [0,1]. (2.1)

Proof. For t ∈ (0,1) , since y(t) � 0 is nonincreasing on (0,1) , we have y(0) =
‖y‖ . From the concavity of y , we have

y(t) = y((1− t)0+ t ·1) � (1− t)y(0)+ ty(1) � (1− t)‖y‖.

Then (2.1) is true. The proof is complete. �

Now we present following conditions for convenience:

(C1) A is of bounded variation with a positive measure, 0 <
∫ 1
0 dA(s) < 1, 0 < β � 1,

(C2) ⎧⎨
⎩

for each constant r > 0 there exists a function ψr

continuous on [0,1] and positive on (0,1) such that
f (t,y) � ψr(t) on (0,1)× (0,r]
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(C3)

q ∈C(0,1), q > 0 on (0,1) and
∫ 1

0
(1− t)q(t)dt < ∞,

(C4)
f : [0,1]× (0,∞)→ (0,∞) is continuous.

REMARK 2.5. From (C4) , if y ∈C([0,1],R) is a solution to BVP(1.1)-(1.2), it is
easy to see that y ∈ C([0,1],R)∩C2((0,1),R) . Then the solution space to BVP(1.1)-
(1.2) must be at least C([0,1],R)∩C2((0,1),R).

3. Multiplicity of positive solutions for singular boundary value problems with
positive nonlinearities

In this section, we consider the existence of multiple positive solutions for BVP(1.1)
- (1.2). To show that BVP(1.1)-(1.2) has a solution, since f may be singular at y = 0,
for y ∈ P , define

(Tcy)(t) = α[y]+
∫ 1

0
k(t,s)q(s) f (s,max{c,y(s)})ds, t ∈ [0,1], c > 0 (3.1)

where

k(t,s) =
{

1− t, 0 � s � t � 1;
1− s, 0 � t � s � 1.

REMARK 3.1. The idea of the definition of Tc comes from [1-2, 10].

LEMMA 3.2. Suppose (C1)-(C4) hold. Then Tc : P → P is continuous and com-
pact for all c > 0 .

Proof. It is easy to prove that Tc is well defined and (Tcy)(t) � 0 for all t ∈ P .
For y ∈ P , we have {

(Tc y)′′(t) � 0 on (0,1)
(Tc y)′(0) = 0, (Tcy)(1) = α[y], (3.2)

so
Tc y(t) is concave and nonincreasing on [0,1]. (3.3)

Consequently, Tc : P → P . A standard argument shows that Tc : P → P is contin-
uous and compact(see [5-8,13]). �

THEOREM 3.3. Suppose (C1)-(C4) hold and the following conditions are satis-
fied: ⎧⎪⎪⎨

⎪⎪⎩

0 � f (t,y) � g(y)+h(y) on [0,1]× (0,∞) with
g > 0 continuous and nonincreasing on (0,∞),
h � 0 continuous on [0,∞), and h

g
nondecreasing on (0,∞)

(3.4)
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and

sup
r∈(0,+∞)

1{
1+ h(r)

g(r)

} ∫ r

c0rβ

dy
g(y)

> b0 (3.5)

hold; here

c0 =
∫ 1

0
dA(s), b0 =

∫ 1

0
(1− t)q(t)dt; (3.6)

there exists an a ∈ (
0 , 1

2

)
such that

lim
y→+∞

f (t,y)
y

= +∞ (3.7)

uniformly on [a,1−a] . Then BVP(1.1)-(1.2) has at least two positive solutions.

Proof. Choose ε > 0 and r > 0 with ε < min{1,c0rβ} and

1{
1+ h(r)

g(r)

} ∫ r

c0rβ

dy
g(y)

> b0. (3.8)

From (3.7), there exists an R > r such that

f (t,y) � N∗y,∀y � R, (3.9)

where

N∗ >
2

a
∫ 1−a
a (1− s)q(s)ds

.

Let
Ω1 = {y ∈C[0,1]|‖y‖< r},

Ω2 = {y ∈C[0,1]|‖y‖ <
R
a
}.

For y ∈ P , define

(Tεy)(t) = α[y]+
∫ 1

0
k(t,s)q(s) f (s,max{ε,y(s)})ds, t ∈ [0,1],

where k(t,s) is defined in (3.1). Lemma 3.1 shows that Tε : P → P is continuous and
compact.

Now we show that

y �= λTεy,∀y ∈ ∂Ω1∩P,λ ∈ [0,1]. (3.10)

Suppose that there is a y0 ∈ ∂Ω1 ∩P and λ0 ∈ [0,1] with y0 = λ0Tεy0 . Then, y0

satisfies {
y′′0 + λ0q(t) f (t,max{ε,y0(t)}) = 0, 0 < t < 1,
y′0(0) = 0,y0(1) = α[y0].

(3.11)
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Then y′′0(t) � 0 on (0,1) and y′0(0) = 0 , y0(1) = α[y0] � rβ ∫ 1
0 dA(s) = c0rβ < r . For

t ∈ (0,1) we have

−y′′0(t) � g(max{ε,y0(t)})
{

1+
h(max{ε,y0(t)})
g(max{ε,y0(t)})

}
q(t)

� g(max{ε,y0(t)})
{

1+ h(r)
g(r)

}
q(t), t ∈ (0,1).

(3.12)

Integrate from 0 to t to obtain

−y′0(t) � g(max{ε,y0(t)})
{

1+
h(r)
g(r)

}∫ t

0
q(s)ds � g(y0(t))

{
1+

h(r)
g(r)

}∫ t

0
q(s)ds

and then integrate from 0 to 1 to obtain

∫ y0(0)

α [y0]

dy
g(y)

�
{

1+
h(r)
g(r)

}∫ 1

0
(1− s)q(s)ds,

which together with α[y0] � c0rβ means that

∫ r

c0rβ

dy
g(y)

�
∫ r

α [y0]

dy
g(y)

�
{

1+
h(r)
g(r)

}∫ 1

0
(1− s)q(s)ds.

This contradict (3.8), which yields (3.10) is true. Lemma 2.1 implies that

i(Tε ,Ω1∩P,P) = 1. (3.13)

Next we show
Tεy �� y for y ∈ P∩∂Ω2. (3.14)

Suppose that there exists a y0 ∈ P∩∂Ω2 with Tε y0 � y0 . Then, ‖y0‖ = R
a . Also

since y0(t) is concave on [0,1] (since y0 ∈ P) we have from Lemma 2.4 that y0(t) �
(1− t)‖y0‖ � (1− t) R

a for t ∈ [0,1] . Also for s ∈ [a,1−a] we have

y0(t) � a
R
a

= R, ∀ t ∈ [a,1−a],

which together with (3.9) yields that

f (t,y0(t) � N∗y0(t) � N∗R, ∀ t ∈ [a,1−a]. (3.15)

Then we have using (3.15) ,

y0(0) � Tε y0(0) = α[y0]+
∫ 1

0
(1− s)q(s) f (s,max{ε,y0(s)})ds

�
∫ 1−a

a
(1− s)q(s) f (s,max{ε,y0(s)})ds

=
∫ 1−a

a
(1− s)q(s) f (s,y0(s))ds
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� N∗R
a

a
∫ 1−a

a
(1− s)q(s)ds

>
R
a

= ‖y0‖,

which is a contradiction. Hence (3.14) is true. Lemma 2.2 guarantees that

i(Tε ,Ω2∩P,P) = 0,

and so
i(Tε ,(Ω2 −Ω1)∩P,P) = −1. (3.16)

Now (3.13) and (3.16) imply that there exists a y1 ∈ Ω1 ∩P and a y2 ∈ (Ω2 −Ω1)∩P
such that

Tεy1 = y1, Tεy2 = y2.

Define

H =
{

x ∈C([0,1],R)∩C1([0,1),R)∩C((0,1),(0,+∞))∩C2((0,1),R)

| x satisfies x′′(t)+q(t) f (t,max{ε,x(t)}) = 0, 0 < t < 1,

x′(0) = 0, x(1) = α[x] =
∫ 1

0
xβ (s)dA(s), ∀ε > 0

}
.

Since y1 , y2 ∈ H , we know that H �= /0 . Let c = infx∈H mint∈[0,1] x(t) . Now we
show that

c > 0.

In fact, if x ∈ H , there are two cases to consider:
(1) ‖x‖ > 1. Lemma 2.4 implies that

x(t) � (1− t)‖x‖� (1− t), t ∈ [0,1]

and so

x(t) = α[x]+
∫ 1

0
k(t,s)q(s) f (s,max{ε,x(s)})ds �

∫ 1

0
(1− s)βdA(s), t ∈ [0,1].

(2) 0 < ‖x‖ � 1. Then (C2) means that

x(t) = α[x]+
∫ 1

0
k(t,s)q(s) f (s,max{ε,x(s)})ds

�
∫ 1

0
k(t,s)q(s)ψ1(s)ds = γ0(t), t ∈ [0,1]

and so

x(t) = α[x]+
∫ 1

0
k(t,s)q(s) f (s,max{ε,x(s)})ds �

∫ 1

0
γβ
0 (s)dA(s), t ∈ [0,1].
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Then

c � min{
∫ 1

0
(1− s)βdA(s),

∫ 1

0
γβ
0 (s)dA(s)} > 0.

Let 0 < ε < c and ε < r (r is defined in (3.8)). (3.13) and (3.16) guarantee that
there exists a y1 ∈ Ω1∩P and a y2 ∈ (Ω2 −Ω1)∩P such that

Tεy1 = y1, Tεy2 = y2,

i.e., y1 and y2 satisfy
{

y′′1 +q(t) f (t,max{ε,y1(t)}) = 0, 0 < t < 1,
y′1(0) = 0,y1(1) = α[y1],

(3.17)

{
y′′2 +q(t) f (t,max{ε,y2(t)}) = 0, 0 < t < 1,
y′2(0) = 0,y2(1) = α[y2],

(3.18)

and mint∈[0,1] y1(t) � c > ε , mint∈[0,1] y2(t) � c > ε . And then
{

y′′1 +q(t) f (t,y1(t)) = 0, 0 < t < 1,
y′1(0) = 0,y1(1) = α[y1]

(3.19)

and {
y′′2 +q(t) f (t,y2(t)) = 0, 0 < t < 1,
y′2(0) = 0,y2(1) = α[y2].

(3.20)

(3.19) and (3.20) guarantee that y1 and y2 are two positive solutions. �

EXAMPLE 3.4. Consider

y′′(t)+ μ(y−δ1(t)+ yδ2(t)) = 0, 0 < t < 1, (3.21)

y′(0) = 0, y(1) =
∫ 1

0
y

1
2 (s)dA(s),dA(s) =

1
2
ds, (3.22)

where δ1 > 0, δ2 > 1. Let

q(t) = μ , f (t,y) = y−δ1 + yδ2 , g(y) = y−δ1 , h(y) = yδ2 ,

c0 =
∫ 1

0
dA(s) =

1
2
, b0 =

1
4

μ .

It is easy to see that (C1)-(C4) and (3.4) hold. Since

1

1+ h(1)
g(1)

∫ 1

c01
1
2

1
g(y)

dy =
1− ( 1

2)
δ1+1

2(1+ δ1)
,

letting μ0 < 2
1−( 1

2 )δ1+1

2(1+δ1)
, we have

sup
r∈(0,+∞)

1

1+ h(r)
g(r)

∫ r

c0r
1
2

1
g(y)

dy >
∫ 1

0
(1− t)q(t)dt = b0
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for all μ � μ0 , which means that (3.5) is true. Moreover, since

lim
y→+∞

f (t,y)
y

= +∞

uniformly on [0,1] , (3.7) is true.
Then, Theorem 3.1 implies that (3.21)-(3.22) has at least two positive solutions.

4. Multiplicity of positive solutions for singular semi-positone boundary value
problems

In this section, we consider the case

f (t,y) = F(t,y)− γ(t), t ∈ (0,1),

where the conditions (C1) , (C3) , (C4) for F(t,y) instead of f (t,y) hold and γ ∈
C((0,1),(0,+∞))

w(t) =
∫ 1

0
k(t,s)γ(s)ds < +∞, t ∈ [0,1]

throughout this section, where k(t,s) is the same as one in (3.1).

THEOREM 4.1. Suppose the following conditions are satisfied:⎧⎪⎪⎨
⎪⎪⎩

0 � F(t,y) � g(y)+h(y) on [0,1]× (0,∞) with
g > 0 continuous and nonincreasing on (0,∞),
h � 0 continuous on [0,∞), and h

g
nondecreasing on (0,∞),

(4.1)

⎧⎨
⎩

there exists a function ψ4c1

continuous on [0,1] and positive on (0,1) such that
F(t,y) � ψ4c1(t) on (0,1)× (0,4c1],

(4.2)

with ∫ 1

0
(1− s)q(s)ψ4c1(s)ds > 2c1

and

sup
r∈(2c1,+∞)

1

1+ h(r)
g(r)

∫ r

c0rβ

dy

g( 1
2y)

> b0 (4.3)

hold; here

c0 =
∫ 1

0
dA(s), c1 =

∫ 1

0
γ(s)ds, b0 =

∫ 1

0
(1− t)q(t)dt; (4.4)

there exists an a ∈ (
0 , 1

2

)
such that

lim
y→+∞

F(t,y)
y

= +∞ (4.5)

uniformly on [a,1−a] . Then BVP(1.1)-(1.2) has at least two positive solutions.
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Proof. From (4.3), choose r > 2c1 , ε > 0 with ε < min{ 1
2c0rβ ,r} with

1

1+ h(r)
g(r)

∫ r

c0rβ

dy

g( 1
2y)

> b0. (4.6)

From (4.5), there exists an R > r such that

F(t,y) � N∗y,∀y � R, (4.7)

where

N∗ >
2

a
∫ 1−a
a (1− s)q(s)ds

.

Let
Ω1 = {y ∈C[0,1]|‖y‖< r},

Ω2 = {y ∈C[0,1]|‖y‖<
2R
a
}.

For y ∈ P , define

(Tεy)(t) = α[[y−w]∗]+
∫ 1

0
k(t,s)q(s)F(s,max{ε, [y(s)−w(s)]∗})ds, t ∈ [0,1],

where k(t,s) is defined in (3.1) and

[y(t)−w(t)]∗ =
{

y(t)−w(t), if y(t)−w(t) > 0,
0, if y(t)−w(t) � 0.

Lemma 3.1 guarantees that Tε : P → P is continuous and compact.
Now we show that

y �= λTεy,∀y ∈ ∂Ω1∩P,λ ∈ [0,1]. (4.8)

Suppose that there is a y0 ∈ ∂Ω1 ∩P and λ0 ∈ [0,1] with y0 = λ0Tεy0 . Since
y0(t) � (1− t)‖y0‖ � (1− t)2c1 and

w(t) =
∫ 1

0
k(t,s)γ(s)ds � (1− t)

∫ 1

0
γ(s)ds

= c1(1− t) =
c1

‖y0‖ (1− t)‖y0‖ � 1
2
y0(t),

we have

y0(t)−w(t) � 1
2
y0(t), t ∈ [0,1].

Since y0 satisfies
{

y′′0 + λ0q(t)F(t,max{ε, [y0(t)−w(t)]∗}) = 0, 0 < t < 1,
y′0(0) = 0,y0(1) = α[[y0−w]∗]. (4.9)
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we get y′′0(t) � 0 on (0,1) and y′0(0) = 0 , y0(1) = α[[y0 −w]∗] � rβ ∫ 1
0 dA(s) < rβ .

For t ∈ (0,1) it is easy o see that

−y′′0(t) � g(max{ε, [y0(t)−w(t)]∗})
{

1+
h(max{ε, [y0(t)−w(t)]∗})
g(max{ε, [y0(t)−w(t)]∗})

}
q(t)

� g(max{ε, [y0(t)−w(t)]∗})
{

1+
h(r)
g(r)

}
q(t), t ∈ (0,1).

(4.10)

Integrate from 0 to t to obtain

−y′0(t) � g(max{ε, [y0(t)−w(t)]∗})
{

1+
h(r)
g(r)

}∫ t

0
q(s)ds

� g(max{ε,
1
2
y0(t)})

{
1+

h(r)
g(r)

}∫ t

0
q(s)ds

� g(
1
2
y0(t))

{
1+

h(r)
g(r)

}∫ t

0
q(s)ds

and then integrate from 0 to 1 to obtain

∫ y0(0)

α [[y0−w]∗]

dy

g( 1
2y)

�
{

1+
h(r)
g(r)

}∫ 1

0
(1− s)q(s)ds,

which together with α[[y0−w]∗] � α[y0] � c0rβ yields

∫ r

c0rβ

dy

g( 1
2y)

�
∫ r

α [[y0−w]∗]

dy

g( 1
2y)

�
{

1+
h(r)
g(r)

}
b0.

This contradicts (4.6), which means that (4.8) is true. Lemma 2.1 implies that

i(Tε ,Ω1∩P,P) = 1. (4.11)

Next we show
Tεy �� y for y ∈ P∩∂Ω2. (4.12)

Suppose that there exists a y0 ∈ P∩∂Ω2 with Tε y0 � y0 . Then, ‖y0‖ = 2R
a . Also

since y0(t) is concave and nonincreaing on [0,1] (since y0 ∈ P) we have from Lemma
2.4 that y0(t) � (1− t)‖y0‖ � (1− t) 2R

a for t ∈ [0,1] . Also for s ∈ [a,1−a] we have

[y0(t)−w(t)]∗ � 1
2
y0(t) � 1

2
2R
a

= R, ∀ t ∈ [a,1−a],

which together with (4.7) yields that

F(t,max{ε, [y0(t)−w(t)]∗) � N∗[y0(t)−w(t)]∗ � N∗R, ∀t ∈ [a,1−a]. (4.13)

Then we have using (4.13) ,

y0(0) � Tε y0(0) = α[y0]+
∫ 1

0
(1− s)q(s)F(s,max{ε, [y0(s)−w(s)]∗})ds
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�
∫ 1−a

a
(1− s)q(s)F(s,max{ε, [y0(s)−w(s)]∗})ds

=
∫ 1−a

a
(1− s)q(s)F(s, [y0(s)−w(s)]∗)ds

� N∗R
∫ 1−a

a
(1− s)q(s)ds

= N∗ 2R
a

a
2

∫ 1−a

a
(1− s)q(s)ds

>
2R
a

= ‖y0‖,

which is a contradiction. Hence (4.12) is true. Then Lemma 2.2 guarantees that

i(Tε ,Ω2∩P,P) = 0,

and so
i(Tε ,(Ω2 −Ω1)∩P,P) = −1. (4.14)

Now (4.11) and (4.14) imply that there exists a y1 ∈ Ω1 ∩P and a y2 ∈ (Ω2 −Ω1)∩P
such that

Tεy1 = y1, Tεy2 = y2.

Define

H =
{

x ∈C([0,1],R)∩C1([0,1),R)∩C((0,1),(0,+∞))∩C2((0,1),R)

|x satisfies x′′(t)+q(t)F(t,max{ε, [x(t)−w(t)]∗}) = 0, 0 < t < 1,

x′(0) = 0,x(1) = α[[x−w]∗] =
∫ 1

0
([x(s)−w(s)]∗)β dA(s), ∀ε > 0

}
.

Since y1 , y2 ∈ H , we know that H �= /0 . Let c = infx∈H mint∈[0,1][x(t)−w(t)]∗ .
Now we show that

c > 0. (4.15)

In fact, if x ∈ H , there are two cases to consider:
(1) ‖x‖ � 4c1 . Since

w(t) � (1− t)
∫ 1

0
γ(s)ds = c1(1− t), (4.16)

we have

w(t) � c1

4c1
4c1(1− t) � 1

4
‖x‖(1− t).

Lemma 2.4 implies that

[x(t)−w(t)]∗ � 3
4
x(t) � 3

4
4c1(1− t) = 3c1(1− t), t ∈ [0,1]
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and so

x(t) = α[[x−w]∗]+
∫ 1

0
k(t,s)q(s)F(s,max{ε, [x(s)−w(s)]∗})ds

�
∫ 1

0
(3c1(1− s))β dA(s), t ∈ [0,1].

Then

[x(t)−w(t)]∗ � 3
4
x(t) � 3

4

∫ 1

0
(3c1(1− s))β dA(s), t ∈ [0,1]. (4.17)

(2) 0 < ‖xΨ‖ � 4c1 . Then (4.2) means that

x(0) = α[[x−w]∗]+
∫ 1

0
(1− s)q(s)F(s,max{ε, [x(s)−w(s)]∗})ds

�
∫ 1

0
(1− s)q(s)ψ4c1(s)ds > 2c1, t ∈ [0,1],

which together with x ∈ P implies that

x(t) � (1− t)‖x‖� 2c1(1− t), t ∈ [0,1]. (4.18)

From (4.16) and (4.18), we have

w(t) � c1(1− t) =
1
2
2c1(1− t) � 1

2
x(t), t ∈ [0,1]

and so

[x(t)−w(t)]∗ � 1
2
x(t) � c1(1− t), t ∈ [0,1].

Then

x(t) = α[[x−w]∗]+
∫ 1

0
k(t,s)q(s)F(s,max{ε, [x(s)−w(s)]∗})ds

�
∫ 1

0
(c1(1− s))βdA(s), t ∈ [0,1],

which implies

[x(t)−w(t)]∗ � 1
2
x(t) � 1

2

∫ 1

0
(c1(1− s))βdA(s). (4.19)

(4.17) and (4.19) guarantee that

c � 1
2

∫ 1

0
(c1(1− s))βdA(s) > 0.

Then (4.15) is true.
Let 0 < ε < c and ε < r (r is defined in (4.6)). (4.11) and (4.14) guarantee that

there exists a y1 ∈ Ω1∩P and a y2 ∈ (Ω2 −Ω1)∩P such that

Tεy1 = y1, Tεy2 = y2,
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i.e., y1 and y2 satisfy

{
y′′1 +q(t)F(t,max{ε, [y1(t)−w(t)]∗}) = 0, 0 < t < 1,
y′1(0) = 0,y1(1) = α[[y1−w]∗], (4.20)

{
y′′2 +q(t)F(t,max{ε, [y2(t)−w(t)]∗}) = 0, 0 < t < 1,
y′2(0) = 0,y2(1) = α[[y2−w]∗], (4.21)

and
[y1(t)−w(t)]∗ > ε, [y2(t)−w(t)]∗ > ε, t ∈ [0,1].

Hence, y1 and y2 satisfy

{
y′′1 +q(t)F(t,y1(t)−w(t)) = 0, 0 < t < 1,
y′1(0) = 0,y1(1) = α[y1 −w] (4.22)

and {
y′′2 +q(t)F(t,y2(t)−w(t)) = 0, 0 < t < 1,
y′2(0) = 0,y2(1) = α[y2 −w]. (4.23)

Let x1(t) = y1(t)−w(t) , x2(t) = y2(t)−w(t) . It is easy to see that x1 and x2 are
two positive solutions of BVP(1.1)-(1.2). �

EXAMPLE 4.2. Consider

y′′(t)+ μ
(
y−2(t)+ yδ2(t)− 1

1000
1

1− t

)
= 0, 0 < t < 1, (4.24)

y′(0) = 0, y(1) =
∫ 1

0
(y(s))

1
2 dA(s),dA(s) =

1
2
ds, (4.25)

where δ2 > 1. Let

q(t) = μ , F(t,y) = y−2 + yδ2 , g(y) = y−2, h(y) = yδ2 ,

c0 =
∫ 1

0
dA(s) =

1
2
, b0 =

1
2

μ ,

γ(t) =
1

1000
1

1− t
, c1 =

∫ 1

0
(1− s)γ(s)ds =

1
1000

.

It is easy to see that (C1) , (C3)-(C4) and (4.1) hold, and since F(t,y) � 1
(4c1)2

= (250)2

and ∫ 1

0
(1− s)q(s)(250)2ds > 2c1.

Then (4.2) is true.
Since

1

1+ h(1)
g(1)

∫ 1

c01
1
2

1

g( 1
2y)

dy =
1− 1

8

24
,
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letting μ0 < 2
1− 1

8
24 , we have

sup
r∈(2c1,+∞)

1

1+ h(r)
g(r)

∫ r

c0r
1
2

1

g( 1
2y)

dy >

∫ 1

0
(1− t)q(t)dt = b0

for all μ � μ0 , which means that (4.4) is true. Moreover, since

lim
y→+∞

f (t,y)
y

= +∞

uniformly on [0,1] , (4.5) is true. Then, Theorem 4.1 implies that (4.24)-(4.25) has at
least two positive solutions.

5. Positive solutions for singular boundary value problems with sign-changing
nonlinearities

(H1) f (t,y) ∈C([0,1]× (0,+∞),(−∞,+∞)) ,

(H2) a(t) ∈C([0,1],(0,+∞)) , (1− t)q(t)∈ L(0,1] ,

(H3) there exist F(y) ∈ C((0,+∞),(0,+∞)) , G(y) ∈ C([0,+∞), [0,+∞)) such that
f (t,y) � F(y)+G(y) .

(S1) f (t,y) � a(t) hold for 0 < y < b ,

(S2) F(y) is decreasing in (0,+∞) ,

(S3) there exist R > 1, such that
∫ R
c0Rβ

dy
F(y) · (1 + G(R)

F(R) )
−1 >

∫ 1
0 (1− s)q(s)ds , where

G(R) = maxs∈[0,R] G(s) .

For y ∈C[0,1] , we define T as

(Ty)(t) =
∫ 1

0
(y(s))β dA(s)+

∫ 1

0
k(t,s)q(s) f (s,max{ b

k0
,y(s)})ds, t ∈ [0,1],

where b
k0

< min{R, b
2} .

From a standard argument, we have the following result.

LEMMA 5.1. Suppose (C1) , (H1)-(H3) and (S1)-(S2) hold. Then the operator
T is continuous and compact from C[0,1] to C[0,1] .

THEOREM 5.2. label5.1 Suppose (C1) , (H1)-(H3) and (S1)-(S3) hold. Then
BVP(1.1)-(1.2) has at least one positive solution y ∈C[0,1] with

b
k0

� y(t) � R, t ∈ [0,1]. (5.1)
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Proof. Let Ω = {y ∈C|‖y‖ < R} . For y ∈ ∂Ω , we now prove that

y(t) �= λ (Ty)(t) = λ
∫ 1

0
(y(s))β dA(s)+ λ

∫ 1

0
k(t,s)q(s) f (s,max{ b

k0
,y(s)})ds (5.2)

for t ∈ [0,1] any λ ∈ (0,1) .
Suppose (5.2) is not true. Then there exists y∈C[0,1] with ‖y‖= R and 0 < λ < 1

such that for t ∈ [0,1] ,

y(t) = λ (Ty)(t) = λ
∫ 1

0
(y(s))β dA(s)+ λ

∫ 1

0
k(t,s)q(s) f (s,max{ b

k0
,y(s)})ds. (5.3)

It is easy to see that y′(0) = 0, y(1) = λ
∫ 1
0 yβ (s)dA(s) .

We first claim that y(t) � λ b
k0

for any t ∈ [0,1] .

Suppose there exists an η ∈ (0,1) with y(η) < λ b
k0

. Let

γ0 = inf{t1 : y(s) < λ
b
k0

,∀s ∈ [t1,η ]},

γ1 = sup{t1 : y(s) < λ
b
k0

,∀s ∈ [η ,t1]}.

There are two cases to consider:
(1) γ0 = 0 and γ1 = 1. Then, y(0) � λ b

k0
, y(1) � λ b

k0
and y(t) < λ b

k0
for all

t ∈ (0,1) , which implies

y′′(t) = −λ f (t,
b
k0

) < 0,t ∈ (0,1)

and so y(t) is concave down on [0,1] . Since y′(0) = 0, we have y′(t) < 0 for all
t ∈ (0,1) , which implies that |y(1)| = R . However (C1) guarantees that

|y(1)| = |λ
∫ 1

0
(y(s))β dA(s)| � Rβ

∫ 1

0
|dA(s)| < R.

This is a contradiction.
(2) γ0 > 0 or γ1 < 1. We assume that γ0 > 0. Then, y(γ0) = λ b

k0
, y(γ1) � λ b

k0

and y(t) < λ b
k0

for all t ∈ (γ0,γ1) , which implies

y′′(t) = −λ f (t,
b
k0

) < 0,t ∈ (γ0,γ1)

and so y(t) is concave down on [γ0,γ1] . If γ1 = 1, from ‖y‖= R , the concavity of y(t)
implies that |y(1)| = R . However (C1) guarantees that

|y(1)| = |λ
∫ 1

0
yβ (s)dA(s)| � Rβ

∫ 1

0
|dA(s)| < R.
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This is a contradiction. If γ1 < 1, we have y(γ1) = λ b
k0

. Then the concavity of y(t)
implies that y(t) � λ b

k0
. This is a contradiction also.

Next we claim that

∫ R

c0Rβ

dy
F(y)

�
(
1+

G(R)
F(R)

)∫ 1

0
(1− s)q(s)ds. (5.4)

Since y(1) = λ [
∫ 1
0 yβ (s)dA(s)] � c0Rβ < R and y′(0) = 0, there exist t∗ ∈ [0,1)

such that y(t∗) = R , y′(t∗) = 0. Setting t ′ = sup{t∗ : t∗ ∈ [0,1),y′(t∗) = 0,y(t∗) = ‖y‖=
R} , we obtain t ′ ∈ [0,1),y′(t ′)= 0,y(t ′)= ‖y‖= R . Let t1 = inf{0< t � 1|y(t)= y(1)} .
It is easy to see that t ′ < t1 � 1 and y(t) > y(t1) for all t ∈ (t ′,t1) . Furthermore we get
a countable set {ti} of (0,1] such that

1. t ′ > · · · � t2m > t2m−1 > · · · > t5 � t4 > t3 � t2 > t1 , t2m → t ′ ,

2. y(t2i) = y(t2i+1) , y′(t2i) = 0, i = 1,2,3 · · · ,
3. y(t) is strictly decreasing in [t2i,t2i−1] , i = 1,2,3 · · · (if y(t) is strictly decreasing

in [t ′, t1] , put m = 1; i.e, [t2,t1] = [t ′,t1]).

Differentiating (5.3) and using the assumptions (H3) , (S1)-(S3) , we obtain

−y′′(t) = λq(t) f (t,max{ b
k0

,y(t)})

� λq(t)(F(max{ b
k0

,y(t)})+G(max{ b
k0

,y(t)}))

= λq(t)F(max{ b
k0

,y(t)})(1+
G(max{ b

k0
,y(t)})

F(max{ b
k0

,y(t)}) )

< q(t)F(max{ b
k0

,y(t)})(1+
G(R)
F(R)

)

� q(t)F(y(t))(1+
G(R)
F(R)

), t ∈ [t2i,t2i−1), i = 1,2,3 · · · .

(5.5)

Integrating (5.5) from t2i to t , we have by the decreasing property of F(y) ,

−
∫ t

t2i

y′′(s)ds � (1+
G(R)
F(R)

)
∫ t

t2i

q(s)F(y(s))ds � F(y(t))(1+
G(R)
F(R)

)
∫ t

t2i

q(s)ds,

for t ∈ [t2i, t2i−1) , i = 1,2,3 · · · ; that is to say

−y′(t) � F(y(t))(1+
G(R)
F(R)

)
∫ t

t2i

q(s)ds, t ∈ [t2i,t2i−1), i = 1,2,3 · · · . (5.6)

It follows from (5.6) that

− y′(t)
F(y(t))

� (1+
G(R)
F(R)

)
∫ t

t2i

q(s)ds � (1+
G(R)
F(R)

)
∫ t

0
q(s)ds, (5.7)
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for t ∈ [t2i, t2i−1) , i = 1,2,3 · · · .
On the other hand, for any z ∈ (0,1) with y(z) > c0Rβ , we can choose i0 and

z′ ∈ (t ′, t1) such that z′ ∈ [t2i0 ,t2i0−1) , y(z′) = y(z) and z � z′ . Integrating (5.7) from
t2i to t2i−1, i = 1,2,3...i0−1 and from t2i0 to z′ , we have

∫ y(t2i)

y(t2i−1)

dy
F(y)

� (1+
G(R)
F(R)

)
∫ t2i−1

t2i

∫ t

0
q(s)dsdt, i = 1,2,3 · · · i0 −1, (5.8)

and ∫ y(z′)

y(t2i0
)

dy
F(y)

� (1+
G(R)
F(R)

)
∫ t2i0

z′

∫ t

0
q(s)dsdt. (5.9)

Summing (5.8) from 1 to i0 −1, we have by (5.9) and y(t2i) = y(t2i+1) , that

∫ y(z′)

y(t1)

dy
F(y)

� (1+
G(R)
F(R)

)
∫ t1

z′

∫ t

0
q(s)dsdt � (1+

G(R)
F(R)

)
∫ t1

z

∫ t

0
q(s)dsdt.

Since y(z) = y(z′) ,

∫ y(z)

y(t1)

dy
F(y)

� (1+
G(R)
F(R)

)
∫ t1

z

∫ t

0
q(s)dsdt. (5.10)

Letting z → t ′ in (5.10), we have

∫ R

c0Rβ

dy
F(y)

�
∫ R

y(t1)

dy
F(y)

� (1+
G(R)
F(R)

)
∫ t1

t′

∫ 1

t
q(s)dsdt

� (1+
G(R)
F(R)

)
∫ 1

0

∫ t

0
q(s)dsdt

= (1+
G(R)
F(R)

)
∫ 1

0
(1− s)q(s)ds.

Then, (5.4) is true, which contradicts
∫ R
c0Rβ

dy
F(y) > (1+ G(R)

F(R) )
∫ 1
0 (1− s)q(s)ds . Hence

(5.2) holds.
It follows from Lemma 2.3 that T has a fixed point y in C . Using y and 1 in place

of y and λ in (5.3), we obtain easily b
k0

� y(t) � R,t ∈ [0,1] . And y satisfies that

y(t) =
∫ 1

0
(y(s))β dA(s)+

∫ 1

0
k(t,s)q(s) f (s,y(s))ds, t ∈ [0,1],

i.e., y is a positive solution for BVP(1.1)-(1.2). The proof is complete. �

COROLLARY 5.3. Suppose the assumptions of Theorem 5.1 hold. If further f (t, ·)
is non-increasing in (0,+∞) for each t ∈ (0,1) and β = 1 , the solution of BVP(1.1)-
(1.2) is unique.
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Proof. Suppose y1(t) and y2(t) are two solutions of BVP(1.1)-(1.2) . We need to
prove that y1(t) ≡ y2(t),t ∈ [0,1] . Let z(t) = y1(t)− y2(t),t ∈ [0,1] .

We claim that z(t)≡ 0,t ∈ (0,1) . In fact, if it is not true, without loss of generality,
we assume z(t0) > 0 for some t0 ∈ (0,1) . Let t3 = max{t ∈ (0,t0),z(t) = 0},t4 =
min{t ∈ (t0,1),z(t) = 0} .

There are two cases to consider:
(1) t3 = 0, t4 = 1, which implies that z(t) > 0, t ∈ (0,1) and

0 < z(1) =
∫ 1

0
z(s)dA(s) � max

t∈[0,1]
z(t)

∫ 1

0
dA(s) < max

t∈[0,1]
z(t).

Then

−z′′(t) = q(t) f (t,y1(t))−q(t) f (t,y2(t))
� 0,∀t ∈ (0,1),

which yields that z(t) is convex on (0,1) . Since z′(0) = 0, we have z(t) is nondecreas-
ing on (0,1) . And so z(1) = maxt∈[0,1] z(t) . This contradicts z(1) =

∫ 1
0 z(s)dA(s) <

maxt∈[0,1] z(t) .
(2) t3 � 0, t4 < 0, which implies that z(t) > 0, t ∈ (t3,t4) , z(t4) = 0. Then

−z′′(t) = q(t) f (t,y1(t))−q(t) f (t,y2(t))
� 0,∀t ∈ (t3,t4),

which yields that z(t) is convex on (t3,t4) . If t3 > 0, we have z(t3) = 0. This con-
tradicts maxt∈[t3,t4] z(t) > z(t3) = z(t4) = 0. If t3 = 0, we have z′(t3) = 0 and z(t) is
nondecreasing on (t3,t4) , which together with z(t4) = 0 means that z(t) � 0 for all
t ∈ (t3, t4) . This contradicts z(t) > 0 for all t ∈ (t3,t3) .

Hence we get y1(t) = y2(t),t ∈ [0,1] . Thus the result is proved. �

EXAMPLE 5.4. Consider

y′′(t)+
1
4
(cos2 t +

1
y2(t)

− y2(t)) = 0, 0 < t < 1, (5.11)

y′(0) = 0, y(1) =
∫ 1

0
y(s)dA(s),dA(s) = sds, (5.12)

Let

q(t) =
1
8
, f (t,y) = cos2 t +

1
y2 − y2, G(y) = 1+ y2, F(y) =

1
y2 , b =

1
2
, a(t) =

11
4

.

It is easy to see that (H1)-(H3) and (S1)-(S2) hold. Let R = 2. We have

∫ 2

1

1
F(y)

dy =
8
3
, (1+

G(2)
F(2)

)
∫ 1

0
(1− s)q(s)ds =

21
16

,

so (S3) holds. Corollary 5.1 implies that (5.13)-(5.14) has at least one positive solution.
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