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Abstract. We are concerned here with the existence of at least one continuous positive solution
of the nonlinear quadratic integral equation

x(t) = a(t) +λ
∫ t

0
k1(t,s) f (s,x(s))ds

∫ t

0
k2(t,s)g(s,x(s))ds, t ∈ [0,T ].

where f and g are L1− Carathéodory functions. The maximal and minimal solutions are also
proved.

1. Introduction and preliminaries

Quadratic integral equations have received increasing attention during recent years
due to its applications in numerous diverse fields of science and engineering for ex-
ample, the theory of radiative transfer, kinetic theory of gases, the theory of neutron
transport and the traffic theory. Many authors have studied quadratic integral equations
(see[1]-[16], [17] and [21]-[23]).

Consider the quadratic integral equation

x(t) = 1+ λ
∫ 1

t
x(s) x(s− t) ds, 0 � t � 1. (1)

This equation was presented by Dr. M. S. Wertheim, a physicist at the Los Alamos
Scientific Laboratory, as a simplified model of a certain equations arising in Statistical
Mechanics. This equation was studied by H. George and Jr. Pimbley [17].

The quadratic integral equation

x(t) = a(t)+
∫ t

0
f (s,x(s)) ds

∫ t

0
g(s,x(s)) ds (2)

has been studied in [10]. The existence of continuous solution was proved, also the
existence of the maximal and minimal solutions was proved.

The quadratic integral equations of fractional order
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x(t) = a(t)+
∫ t

0

(t − s)α−1

Γ(α)
f (s,x(s)) ds

∫ t

0

(t− s)β−1

Γ(β )
g(s,x(s)) ds, α,β ∈ (0,1) (3)

has been studied in [12]. The existence of continuous solution, maximal and minimal
solutions was proved. Also, the existence of a unique positive continuous solution for
the quadratic integral of fractional order

x(t) = a(t)+

λ
∫ t

0

(t − s)α−1

Γ(α)
f (s,x(s)) ds

∫ t

0

(t− s)β−1

Γ(β )
g(s,x(s)) ds, α,β ∈ (0,1) (4)

was proved where f and g are Carathéodory functions [15].
The existence of unique continuous solution of the quadratic integral equation

x(t) = a(t) + λ
∫ t

0
k1(t,s) f (s,x(s))ds

∫ t

0
k2(t,s)g(s,x(s))ds, t ∈ [0,T ]. (5)

was studied in [14] by using Banach fixed point Theorem, where f and g are
L1−Carathéodory functions and satisfy the Lipschitz condition with respect to the sec-
ond argument.

The quadratic integral equation (5)(with λ = 1 ) is solved by using Adomian
Decomposition method and the maximum absolute truncated error of Adomian series
solution is estimated [23]. In the paper [21], an efficient numerical technique based
on the fixed point method and quadrature rules to approximate a solution for quadratic
Volterra integral equation was prepared and the convergence of numerical scheme was
proved by some theorems.

Here we are concerned with the existence of at least one continuous positive so-
lution x ∈ C[0,T ] of the nonlinear quadratic integral equation (5), where f and g are
L1−Carathéodory functions.

The existence of the maximal and minimal positive continuous solutions of the
nonlinear quadratic integral equation (5) will be proved.

2. Existence of solutions

Consider the nonlinear quadratic integral equation (5) under the following assump-
tions

(i) a :I = [0,T ] → R+ is continuous

(ii) f ,g : I × R+ → R+ are L1 -Carathèodory functions i.e f ,g are measurable
in t for all x ∈ R+ and continuous in x for almost all t ∈ [0,T ] , and
there exist two functions m1,m2 ∈ L1[0,T ] such that

| f (t,x) | � m1(t)

| g(t,x) | � m2(t)



Differ. Equ. Appl. 6 (2014), 21–31. 23

(iii) ki : [0,T ]× [0,T ] → R+ are continuous in t ∈ [0,T ] for every s ∈ [0,T ] and
measurable in s ∈ [0,T ] for all t ∈ [0,T ] such that

∫ t

0
|ki(t,s)|mi(s)ds � Ki, i = 1,2, t ∈ [0,T ].

Now for the existence of at least one positive continuous solution of the nonlinear
quadratic integral equation (5) we have the following theorem.

THEOREM 2.1. If the assumptions (i)-(iii) are satisfied, then the nonlinear quadratic
integral equation (5) has at least one positive solution x ∈ C[0,T ] .

Proof. Let C = C[0,T ] and define the set S by

S = {x ∈ C : 0 � x(t) � r, t ∈ [0,T ]}

where r = a+ |λ |K1K2 and a = supt∈[0,T ] |a(t)| .
It is clear that S is nonempty (at least contains 0 ) and S is bounded and closed.
Let x1, x2 ∈ S and δ ∈ [0,1] , then we have

δx1(t)+ (1− δ )x2(t) � | δx1(t)+ (1− δ )x2(t) |
� δ | x1(t) | +(1− δ )| x2(t) |

and

‖δx1(t)+ (1− δ )x2(t)‖ � δ‖ x1 ‖ +(1− δ )‖ x2 ‖
� δ r +(1− δ ) r = r.

Then δx1(t)+ (1− δ )x2(t) ∈ S , which means that S is convex set.
Define the operator F associated with the quadratic integral equation (5) by

Fx(t) = a(t) + λ
∫ t

0
k1 (t,s) f (s,x(s)) ds

∫ t

0
k2 (t,s)g(s,x(s)) ds.

To show that F : S → S , let x ∈ S , then

|Fx(t) | = | a(t) + λ
∫ t

0
k1(t,s) f (s,x(s)) ds

∫ t

0
k2(t,s) g(s,x(s)) ds |

� | a(t) |+ |λ |
∫ t

0
|k1(t,s)| | f (s,x(s))|ds

∫ t

0
|k2(t,s)| |g(s,x(s))| ds

� | a(t) |+ |λ |
∫ t

0
|k1(t,s)| m1(s)ds

∫ t

0
|k2(t,s)| m2(s) ds

� |a(t)| + |λ |K1K2 � a+ |λ |K1K2 = r,

then Fx ∈ S .
This proves that F : S → S and the class of functions {F(x)} is uniformly bounded.
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Let t1, t2 ∈ [0,T ], t1 < t2 and |t2− t1| � δ , then

|Fx(t2)−Fx(t1)| =
∣∣∣∣a(t2)−a(t1)

+ λ
∫ t2

0
k1(t2,s) f (s,x(s)) ds

∫ t2

0
k2(t2,s) g(s,x(s)) ds

−λ
∫ t1

0
k1(t1,s) f (s,x(s)) ds

∫ t1

0
k2(t1,s) g(s,x(s)) ds

∣∣∣
=

∣∣∣∣a(t2)−a(t1)

+ λ
∫ t2

0
k1(t2,s) f (s,x(s)) ds

∫ t2

0
k2(t2,s) g(s,x(s)) ds

−λ
∫ t1

0
k1(t1,s) f (s,x(s)) ds

∫ t1

0
k2(t1,s) g(s,x(s)) ds

+ λ
∫ t2

0
k1(t2,s) f (s,x(s)) ds

∫ t1

0
k2(t1,s) g(s,x(s)) ds

−λ
∫ t2

0
k1(t2,s) f (s,x(s)) ds

∫ t1

0
k2(t1,s) g(s,x(s)) ds

∣∣∣∣
� |a(t2)−a(t1)|

+
∣∣∣∣λ

∫ t1

0
k2(t1,s) g(s,x(s))ds[

∫ t2

0
k1(t2,s) f (s,x(s)) ds

−
∫ t1

0
k1(t1,s) f (s,x(s)) ds]

+ λ
∫ t2

0
k1(t2,s) f (s,x(s)) ds[

∫ t2

0
k2(t2,s) g(s,x(s)) ds

−
∫ t1

0
k2(t1,s) g(s,x(s)) ds]

∣∣∣∣
� |a(t2)−a(t1)|

+
∣∣∣∣λ

∫ t1

0
k2(t1,s) g(s,x(s)) ds[

∫ t1

0
k1(t2,s) f (s,x(s)) ds

+
∫ t2

t1
k1(t2,s) f (s,x(s)) ds−

∫ t1

0
k1(t1,s) f (s,x(s)) ds]

+ λ
∫ t2

0
k1(t2,s) f (s,x(s)) ds[

∫ t1

0
k2(t2,s) g(s,x(s)) ds

+
∫ t2

t1
k2(t2,s) g(s,x(s)) ds−

∫ t1

0
k2(t1,s) g(s,x(s)) ds]

∣∣∣∣
� |a(t2)−a(t1)|

+ |λ |
∫ t1

0
|k2(t1,s)| |g(s,x(s))| ds

×
∫ t1

0
|k1(t2,s)− k1(t1,s)| | f (s,x(s))| ds
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+ |λ |
∫ t1

0
|k2(t1,s)| |g(s,x(s))| ds

∫ t2

t1
|k1(t2,s)| | f (s,x(s))| ds

+ |λ |
∫ t2

0
|k1(t2,s)| | f (s,x(s))| ds

×
∫ t1

0
|k2(t2,s)− k2(t1,s)| |g(s,x(s))| ds

+ |λ |
∫ t2

0
|k1(t2,s)| | f (s,x(s))| ds

∫ t2

t1
|k2(t2,s)| |g(s,x(s))| ds

� |a(t2)−a(t1)|
+ |λ |

∫ t1

0
|k2(t1,s)| m2(s)ds

∫ t1

0
|k1(t2,s)− k1 (t1,s)| m1(s) ds

+ |λ |
∫ t1

0
|k2(t1,s)| m2(s)ds

∫ t2

t1
|k1(t2,s)| m1(s)ds

+ |λ |
∫ t2

0
|k1(t2,s)| m1(s)ds

∫ t1

0
|k2(t2,s)− k2 (t1,s)| m2(s)ds

+ |λ |
∫ t2

0
|k1(t2,s)| m1(s)ds

∫ t2

t1
|k2(t2,s)| m2(t)ds.

This means that the class of functions {Fx} is equi-continuouson [0,T ] . Using Arzela-
Ascoli Theorem (see[19]), we fined that F is compact.

Now we prove that F : S → S is continuous.
Let {xn} ⊂ S, x ∈ S and xn → x , then

Fxn(t) = a(t) + λ
∫ t

0
k1 (t,s) f (s,xn(s)) ds

∫ t

0
k2 (t,s) g(s,xn(s)) ds

and

lim
n→∞

Fxn(t) = lim
n→∞

a(t)

+ lim
n→∞

{
λ

∫ t

0
k1 (t,s) f (s,xn(s)) ds

∫ t

0
k2 (t,s) g(s,xn(s)) ds

}
.

Now
f (s,xn) → f (s,x) ⇒ k1(t,s) f (s,xn) → k1(t,s) f (s,x)

and
g(s,xn) → g(s,x) ⇒ k2(t,s)g(s,xn) → k2(t,s)g(s,x).

Also
k1(t,s) f (s,xn) � |k1(t,s)|| f (s,xn)| � |k1(t,s)|m1(s) ∈ L1[0,T ].

Similarly
|k2(t,s)g(s,xn)| � |k2(t,s)|m2(s) ∈ L1[0,T ].

Then by using Lebesgue dominated convergence Theorem (see[19]), we have
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Fx(t) = lim
n→∞

Fxn(t) = a(t)

+ λ
∫ t

0
k1 (t,s) lim

n→∞
f (s,xn(s)) ds

∫ t

0
k2 (t,s) lim

n→∞
g(s,xn(s)) ds

and

Fx(t) = a(t) + λ
∫ t

0
k1 (t,s) f (s,x(s)) ds

∫ t

0
k2 (t,s) g(s,x(s)) ds.

Then Fxn(t) → Fx(t) . Which means that the operator F is continuous.
Since all conditions of Schauder fixed point Theorem (see[18]) are satisfied, then

the operator F has at least one fixed point x ∈ C[0,T ] , which completes the proof. �

Now let k1(t,s) = k2(t,s) = 1 and λ = 1 in equation (5), then we have the
following corollary;

COROLLARY 2.2. Let the assumptions (i)-(ii) of Theorem 2.1 be satisfied, then
the quadratic integral equation (2) has at least one continuous solution x ∈C[0,T ] .

REMARK 2.3. Corollary 2.2 is the main result in [10]. This proves the generality
of our result.

3. Existence of the maximal and minimal solutions

DEFINITION 3.1. Let q(t) be a solution of the quadratic integral equation (5).
Then q(t) is said to be a maximal solution of (5) if every solution x(t) of (5) satisfies
the inequality (see[20]).

x(t) < q(t), t ∈ [0,T ]. (6)

A minimal solution l(t) can be defined by similar way by reversing the above inequality
i.e

x(t) > l(t), t ∈ [0,T ]. (7)

Consider the following lemma

LEMMA 3.2. Let λ > 0 . Let f (t,x), g(t,x) be L1 -Carathèodory and x, y are
two continuous functions on [0,T ] satisfying

x(t) � a(t) + λ
∫ t

0
k1 (t,s) f (s,x(s))ds

∫ t

0
k2 (t,s) g(s,x(s))ds, t ∈ [0,T ]

y(t) � a(t) + λ
∫ t

0
k1 (t,s) f (s,y(s)) ds

∫ t

0
k2 (t,s) g(s,y(s)) ds, t ∈ [0,T ]

and one of them is strict.
If f , g are monotonic nondecreasing in x , then

x(t) < y(t), t ∈ [0,T ]. (8)
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Proof. Let the conclusion (8) be false, then there exists t1 such that

x(t1) = y(t1), t1 > 0

and
x(t) < y(t), 0 < t < t1,t ∈ [0,T ].

From the monotonicity of f , g in x , we get

x(t1) � a(t1) + λ
∫ t1

0
k1 (t1,s) f (s,x(s)) ds

∫ t1

0
k2 (t1,s) g(s,x(s)) ds, t ∈ [0,T ]

< a(t1) + λ
∫ t1

0
k1 (t1,s) f (s,y(s)) ds

∫ t1

0
k2 (t1,s) g(s,y(s)) ds, t ∈ [0,T ]

x(t1) < y(t1)

which contradicts the fact that x(t1) = y(t1) .
Then

x(t) < y(t). �

Now, for the existence of the continuousmaximal and minimal solutions of the quadratic
integral equation (5) we have the following theorem.

THEOREM 3.3. Let the assumptions (i)-(iii) of Theorem 2.1 are satisfied. If f (t,x)
and g(t,x) are monotonic nondecreasing in x for each t ∈ [0,T ] , then the quadratic
integral equation (5) has maximal and minimal positive continuous solutions.

Proof. Firstly we shall prove the existence of the maximal solution of (5).
Let ε > 0 be given, and consider the quadratic integral equation

xε(t) = a(t) +λ
∫ t

0
k1 (t,s) fε (s,xε(s)) ds

∫ t

0
k2 (t,s) gε(s,xε (s)) ds, t ∈ [0,T ] (9)

where
fε (t,xε(t)) = f (t,xε (t))+ ε, gε(t,xε(t)) = g(t,xε(t))+ ε.

Clearly the function fε (t,xε(t)) , gε(t,xε(t)) are L1 - Carathèodory functions, therefore
the equation (9) has a solution on C[0,T ] .

Let ε1, ε2 be such that 0 < ε2 < ε1 < ε , then

xε2(t) = a(t) + λ
∫ t

0
k1 (t,s) fε2(s,xε2(s)) ds

∫ t

0
k2 (t,s) gε2(s,xε2(s)) ds

= a(t)+ λ
∫ t

0
k1(t,s) ( f (s,xε2 (s))+ ε2) ds

∫ t

0
k2(t,s) (g(s,xε2(s))+ ε2) ds (10)

also

xε1(t) = a(t)+ λ
∫ t

0
k1(t,s) fε1(s,xε1(s)) ds

∫ t

0
k2(t,s) gε1(s,xε1(s)) ds
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= a(t)+ λ
∫ t

0
k1(t,s) ( f (s,xε1 (s))+ ε1) ds

∫ t

0
k2(t,s) (g(s,xε1(s))+ ε1) ds

xε1(t) > a(t)+λ
∫ t

0
k1 (t,s) ( f (s,xε1(s))+ε2) ds

∫ t

0
k2(t,s) (g(s,xε1(s))+ε2) ds (11)

Applying Lemma 3.2 to (10) and (11) we have xε2(t) < xε1(t), t ∈ [0,T ].
As shown before, the family of functions xε(t) is equi-continuous and uniformly

bounded. Hence, by Arzela-Ascoli Theorem (see[19]), there exists a decreasing se-
quence εn such that εn → 0 an n→∞ , and limn→∞ xεn(t) exists uniformly in [0,T ] and
denote the limit by q(t) . From the continuity of the functions fε (t,xε(t)),gε(t,xε(t)) in
the second argument, we get

fε(t,xε (t)) → f (t,q(t)) as n → ∞

gε(t,xε(t)) → g(t,q(t)) as n → ∞

and

q(t) = lim
n→∞

xεn(t) = a(t)+ λ
∫ t

0
k1(t,s) f (s,q(s))ds

∫ t

0
k2(t,s)g(s,q(s))ds

which implies that q(t) is a solution of the quadratic integral equation (5).
Finally we shall show that q(t) is the maximal solution of (5). To do this let x(t)

be any solution of (5), then

x(t) = a(t)+ λ
∫ t

0
k1(t,s) f (s,x(s))ds

∫ t

0
k2(t,s)g(s,x(s))ds (12)

also

xε(t) = a(t)+ λ
∫ t

0
k1(t,s) fε (s,xε (s))ds

∫ t

0
k2(t,s)gε(s,xε (s)) ds

xε(t) = a(t)+ λ
∫ t

0
k1(t,s)( f (s,xε (s))+ ε)ds

∫ t

0
k2(t,s)g((s,xε (s))+ ε) ds

xε(t) > a(t)+ λ
∫ t

0
k1(t,s) f (s,xε (s))ds

∫ t

0
k2(t,s)g(s,xε (s)) ds (13)

Applying Lemma 3.2 to (12) and (13) we get

x(t) < xε(t), for t ∈ [0,T ].

From the uniqueness of the maximal solution (see[20]), it is clear that xε(t) tends to
q(t) uniformly in [0,T ] as ε → 0.

By similar way we can prove the existence of the minimal solution. �

Now let k1(t,s) = k2(t,s) = 1 and λ = 1 in equation (5), then we have the
following corollary;
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COROLLARY 3.4. Let the assumptions of Theorem (2.1) be satisfied, then the
quadratic integral equation

x(t) = a(t) +
∫ t

0
f (s,x(s)) ds

∫ t

0
g(s,x(s)) ds.

has a maximal and minimal positive continuous solutions, which is the same result
obtained in [10].

4. Remarks

The quadratic integral equation of fractional order (3) has been studied in [12].
The authors proved the existence of at least one positive solution x ∈ C[0,T ] of (3)
under the following assumptions;

(i) a :I = [0,T ] → R+ is continuous function.

(ii) f ,g : I×R+ →R+ such that f ,g are measurable in t for all x ∈R+ and continu-
ous in x for each fixed t ∈ [0,T ] , and there exist two functions m1 , m2 ∈ L1(I)
such that

| f (t,x) | � m1(t) and | g(t,x) | � m2(t)

Also they proved the existence of the maximal and minimal solutions when f (t,x) and
g(t,x) are monotonic nondecreasing in x for each t ∈ [0,T ] .

It must be noticed that the quadratic integral equation (3) is a spacial case of the
quadratic integral equation (5), with

k1(t,s) =
(t− s)α−1

Γ(α)
and k2(t,s) =

(t − s)β−1

Γ(β )
, α, β ∈ (0,1). (14)

But in [12] the two kernel k1 and k2 give by (14) are not continuous.
This shows that our assumption (iii) of Theorem 2.1 is sufficient condition only.

�

Now,let us give an example which illustrate the main results in Theorems 2.1, but
such an example that is not covered by the main results of [12] and [14].

EXAMPLE 4.1. Consider the quadratic integral equation

x(t) = 1+
∫ t

0

t
t + s

(
s+

|x(s)|
1+ |x(s)|

)
ds

∫ t

0

t
t + s

( |x(s)|
1+3|x(s)|

)
ds, t ∈ [0,1]. (15)

where
k1(t,s) = k2(t,s) =

t
t + s

is the well known Chandrasekhar kernel.

f (t,x) = t +
|x(t)|

1+ |x(t)| , g(t,x) =
|x(t)|

1+3|x(t)|
We can easily verify that f ,g,k1 and k2 satisfy all the assumptions of Theorem 2.1.
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