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Abstract. In this paper, we establish some new oscillation criteria for the second-order nonlinear
functional dynamic equation with forced term

(r(t)xΔ(t))Δ ± p(t) f (x(τ(t))) = e(t),

on a time scale T . No restriction is imposed on the forcing term e(t) to satisfy the Kartsatos
condition. p(t) and r(t) are real-valued rd-continuous functions defined on T . There are many
cases have been taken into consideration: (i) p(t) > 0 , τ(t) � t(� t) and τ(t) � σ(t)(� σ(t))
(ii) p(t) changes its sign, τ(t) � t(� t) , τ : T→T is a strictly increasing differentiable function
and limt→∞ τ(t) = ∞ . Our results not only generalize and extend some existing results but also
can be applied to the oscillation problems that are not covered in literature. Finally, we give
some examples to illustrate our main results.

1. Introduction

The theory of time scales was introduced by Hilger [6] in order to unify, extend
and generalize ideas from discrete calculus, quantum calculus and continuous calculus
to arbitrary time scale calculus, where a time scale is an arbitrary closed subset of the
reals. The cases when time scale is equal to the reals or to the integers represent the
classical theories of differential and difference equations. Many other interesting time
scales exist, e.g., T = qN0 := {qt : t ∈ N0 for q > 1} (which has important applications
in quantum theory), T = hN with h > 0, T = N

2 and T = T
n the space of the harmonic

numbers. For an introduction to time scale calculus and dynamic equations, we refer to
the seminal books by Bohner and Peterson [1, 2].

In recent years, there has been much research activity concerning the oscillation
of solutions of various forced second-order dynamic equations on time scales, we refer
the reader to the articles [3, 4, 7, 8, 9, 10, 11, 13] and references cited thereien. Bohner
and Tisdell [3] examined oscillation and non oscillation for

(r(t)xΔ(t))Δ + p(t)x(σ(t)) = e(t), t ∈ T,
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Huang and Feng [7] considered the following second-order forced nonlinear dynamic
equations

xΔΔ(t)+ p(t) f (x(σ(t))) = e(t), t ∈ T,

and in [8], the authors studied the oscillation of the forced dynamic equations

xΔΔ(t)+ p(t) f (x(t)) = e(t), t ∈ T,

Tongxin li et al. [9] studied the oscillation of the forced dynamic equations

xΔΔ(t)+ p(t) f (x(q(t))) = e(t), t ∈ T,

Peiguang Wang et al. [13] studied the oscillation of the forced dynamic equations of
the form

xΔΔ(t)± p(t) f (x(σ(t))) = e(t), t ∈ T,

Yuangang Sun [11] investigated the second-order forced dynamic equations of the form

xΔΔ(t)− p(t)|x(q(t)|λ−1x(q(t)) = e(t), t ∈ T,

Oscillatory criteria for the forced dynamic equations

(a(t)xΔ(t))Δ + p(t) f (x(σ(t))) = r(t), t ∈ T,

where
∫ ∞
t0
|r(s)|Δs < ∞ are analyzed in [10].

We are concerning here with the following second-order forced nonlinear func-
tional dynamic equations of the form

(r(t)xΔ(t))Δ + p(t) f (x(τ(t))) = e(t), t ∈ T, t � t0, (1.1)

and
(r(t)xΔ(t))Δ − p(t) f (x(τ(t))) = e(t), t ∈ T, t � t0, (1.2)

where T is a time scale unbounded above with t0 ∈ T ; r(t) , p(t) and e(t) are real-
valued right continuous functions on T with p(t) > 0. The function τ(t) also satisfies
τ : T → T , τ(t) → ∞ as t → ∞ and f ∈C(R,R) , x f (x) > 0 whenever x �= 0.

The main purpose of this paper is to extend and generalize the forementioned
equations and some existing results. Our results not only include existing results as
special cases, but also can be used to answer the oscillation problem of Eq. (1.1) and
Eq. (1.2) that are not covered by existing results.

By a solution of (1.1) or (1.2), we mean that a nontrivial real-valued function x

satisfies (1.1) or (1.2) for t ∈ T . A solution x of (1.1) or (1.2) is called oscillatory if
it has arbitrarily large zeros. Otherwise, it is called nonoscillatory. Eq. (1.1) or (1.2)
is said to be oscillatory if all of its nonconstant solutions defined for all large t are
oscillatory.
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2. Main results

In this section, we establish some sufficient conditions for the oscillation of equa-
tions (1.1) and (1.2). Our approach is based largely on the application of H(t,s) and
the following lemma. Let

D = {(t,s) ∈ T×T : t > s � t0}, D0 = {(t,s) ∈ T×T : t � s � t0}.

We say that the function H ∈Crd(D,R) belongs to the class ℑ , if

(H1) H(t, t) = 0, t � t0 , H(t,s) > 0 on D0 ,

(H2) H has a non positive continuous Δ-partial derivative HΔs(t,s) and a non nega-

tive continuous second-order Δ-partial derivative HΔ2
s2 (t,s) with respect to the second

variable,

(H3) HΔs(t, t) = 0, limt→∞
HΔs (t, t0)
H(t, t0)

= O(1) .

LEMMA 2.1. (see [5]). If A and B are positive constants, then

Aλ +(λ −1)Bλ −λABλ−1 � 0, λ > 1.

I- Oscillatory behavior of solutions of Eq. (1.1):

THEOREM 2.1. Assume that f ∈C(R,R) satisfies x f (x) > 0 for x �= 0 . If there

exists a function H ∈ ℑ , such that

(HΔs(t,s)r(s))Δs � 0, (2.1)

limsup
t→∞

1
H(t,t0)

∫ t

t0
H(t,σ(s))e(s)Δs = ∞, (2.2)

liminf
t→∞

1
H(t,t0)

∫ t

t0
H(t,σ(s))e(s)Δs = −∞. (2.3)

Then Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.1). Suppose that x(t) > 0
for t � t0 (when x(t) is eventually negative, the proof follows the same argument).
Multiplying Eq. (1.1) by H(t,σ(s)) for t � t0 and integrating from t0 to t , we get

∫ t

t0
H(t,σ(s))(r(s)xΔ(s))ΔΔs+

∫ t

t0
H(t,σ(s))p(s) f (x(τ(s)))Δs

=
∫ t

t0
H(t,σ(s))e(s)Δs. (2.4)
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Using the integration by parts two times, we have

∫ t

t0
H(t,σ(s))(r(s)xΔ(s))ΔΔs

= −H(t,t0)r(t0)xΔ(t0)−
∫ t

t0
HΔs(t,s)r(s)xΔ(s)Δs

= −H(t,t0)r(t0)xΔ(t0)+HΔs(t,t0)r(t0)x(t0)

+
∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs

= M(t,t0)+
∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs, (2.5)

where M(t, t0)=−H(t,t0)r(t0)xΔ(t0)+HΔs(t,t0)r(t0)x(t0) . Substituting (2.5) into (2.4),
we have

∫ t

t0
H(t,σ(s))e(s)Δs = M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs

+
∫ t

t0
H(t,σ(s))p(s) f (x(τ(s)))Δs. (2.6)

Dividing through by H(t,t0) , we have

1
H(t, t0)

∫ t

t0
H(t,σ(s))e(s)Δs =

M(t,t0)
H(t,t0)

+
1

H(t,t0)

∫ t

t0
[(HΔs(t,s)r(s))Δs x(σ(s))

+H(t,σ(s))p(s) f (x(τ(s)))]Δs. (2.7)

Taking liminf as t → ∞ , we derive a contradiction. The proof is completed.

REMARK 2.1. 1. Theorem 2.1 is delay-independent. 2. This Theorem is true for
τ(t) = σ(t) , for τ(t) � σ(t) and for τ(t) � σ(t) .

EXAMPLE 2.1. Consider the equation (T = R)

(1
t
x′(t)

)′ + p(t) f (x(τ(t))) = tα sin t, (2.8)

where α > 0 and x f (x) > 0. Here, r(t) = 1
t and e(t) = tα sin t . To apply Theorem

2.1, let us take H(t,s) = (t− s)β , β > 1. Therefore, we have

(H
′
(t,s)r(s))

′
=

β (t− s)β−1

s2 +
β (β −1)(t− s)β−2

s
> 0,
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limsup
t→∞

1

(t− t0)β

∫ t

t0
(t− s)β e(s)ds = ∞,

liminf
t→∞

1

(t− t0)β

∫ t

t0
(t − s)β e(s)ds = −∞.

Hence, by Theorem 2.1, Eq. (2.8) is oscillatory.

REMARK 2.2. The results of [9, 13] can not be applied to Eq. (2.8) for r(t) = 1
t .

But, according to Theorem 2.1, when (T = R) and H(t,s) = (t − s)β , β > 1, this
equation is oscillatory for α > 0.

THEOREM 2.2. Assume that

(i) τ(t) � σ(t) ,

(ii) there exist two positive constants c and ν such that

| f (x)| � c|x|ν , ν > 1,

(iii) if there exist a kernel function H(t,s) satisfying (H1)-(H3) such that

(HΔs(t,s)r(s))Δs � 0, (2.9)

limsup
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs−

∫ τ(t)

σ(t0)
P(t,s)Δs] = ∞, (2.10)

liminf
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs+

∫ τ(t)

σ(t0)
P(t,s)Δs] = −∞, (2.11)

where

P(t,s) = (ν −1)ν
ν

1−ν [|(HΔs(t,σ∗(s))r(σ∗(s)))Δs |(σ∗(s))Δ]
ν

ν−1

× [cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δ]
1

1−ν ,

τ∗(t) and σ∗(t) are the inverse functions of τ(t) and σ(t) respectively, then Eq. (1.1)
is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.1). Suppose that x(t) > 0
for t � t0 (when x(t) is eventually negative, the proof follows the same argument).
Proceeding as in the proof of Theorem 2.1 to get (2.6), i.e.,

∫ t

t0
H(t,σ(s))e(s)Δs = M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs

+
∫ t

t0
H(t,σ(s))p(s) f (x(τ(s)))Δs.
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Since | f (x)| � c|x|ν , ν > 1, we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs

+ c
∫ t

t0
H(t,σ(s))p(s)xν (τ(s))Δs. (2.12)

Since
∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs

=
∫ σ(t)

σ(t0)
(HΔ(t,σ∗(θ ))r(σ∗(θ )))Δ(σ∗(θ ))Δx(θ )Δθ , (2.13)

and

∫ t

t0
H(t,σ(s))p(s)xν (τ(s))Δs

=
∫ τ(t)

τ(t0)
cH(t, ,σ(τ∗(ξ )))p(τ∗(ξ ))(τ∗(ξ ))Δxν (ξ )Δξ , (2.14)

then (2.12), becomes

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)

+
∫ σ(t)

σ(t0)
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)Δs

+ c
∫ τ(t)

τ(t0)
H(t,σ(τ∗(s))p(τ∗(s))(τ∗(s))Δxν (s)Δs. (2.15)

Since τ(t) � σ(t) , we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)

−
∫ τ(t)

σ(t0)
|(HΔs(t,σ∗(s))r(σ∗(s)))Δs |(σ∗(s))Δx(s)Δs

+ c
∫ τ(t)

τ(t0)
H(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν(s)Δs,

∫ t

t0
H(t,σ(s))e(s)Δs = M(t,t0)

− c
∫ τ(t0)

σ(t0)
H(t,σ(τ∗(s))p(τ∗(s))(τ∗(s))Δxν (s)Δs
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+
∫ τ(t)

σ(t0)
[cH(t,σ(τ∗(s))p(τ∗(s))(τ∗(s))Δxν (s)

−|(HΔs(t,σ∗(s))r(σ∗(s)))Δs |(σ∗(s))Δx(s)]Δs,

∫ t

t0
H(t,σ(s))e(s)Δs � N(t,t0)

+
∫ τ(t)

σ(t0)
[cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν(s)

−|(HΔs(t,σ∗(s)r(σ∗(s)))Δs |(σ∗(s))Δx(s)]Δs,

where

N(t, t0) = M(t,t0)−
∫ τ(t0)

σ(t0)
cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν(s)Δs.

Set

Aν = [cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δ]xν(s),

Bν−1 =
|(HΔs(t,σ∗(s))r(σ∗(s)))Δs |(σ∗(s))Δ

ν[cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δ]
1
ν
.

Applying Lemma 2.1, we get

∫ t

t0
H(t,σ(s))e(s)Δs � N(t,t0)−

∫ τ(t)

σ(t0)
P(t,s)Δs,

∫ t

t0
H(t,σ(s))e(s)Δs+

∫ τ(t)

σ(t0)
P(t,s)Δs � N(t,t0). (2.16)

Thus, multiplying (2.16) by H−1(t,t0) and taking the lower limit of (2.16), we get a
contradiction with (2.11). This completes the proof.

THEOREM 2.3. Assume that:

(i) τ(t) � σ(t) ,

(ii) there exist two positive constants c and ν such that

| f (x)| � c|x|ν , 0 < ν < 1,

(iii) if there exist a kernel function H(t,s) satisfying (H1)− (H3) such that

(HΔs(t,s)r(s))Δs � 0, (2.17)

limsup
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs+

∫ σ(t)

τ(t0)
P(t,s)Δs] = ∞, (2.18)
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liminf
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs−

∫ σ(t)

τ(t0)
P(t,s)Δs] = −∞, (2.19)

where P(t,s) , τ∗(t) and σ∗(t) are the same as in Theorem 2.2, then Eq. (1.1) is
oscillatory.

THEOREM 2.4. Assume that:

(i) τ(t) � t ,

(ii) there exist two positive constants c and ν such that

| f (x)| � c|x|ν , 0 < ν < 1,

(iii) if there exist a kernel function H(t,s) satisfying (H1)-(H3) such that

(HΔs(t,s)r(s))Δs � 0, (2.20)

limsup
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs+

∫ τ(t)

t0
P(t,s)Δs] = ∞, (2.21)

liminf
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs−

∫ τ(t)

t0
P(t,s)Δs] = −∞, (2.22)

where P(t,s) , τ∗(t) and σ∗(t) are the same as in Theorem 2.2, then Eq. (1.1) is

oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.1). Suppose that x(t) > 0
for t � t0 (when x(t) is eventually negative, the proof follows the same argument).
Proceeding as in the proof of Theorem 2.1 to get (2.6), i.e.,

∫ t

t0
H(t,σ(s))e(s)Δs = M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs

+
∫ t

t0
H(t,σ(s))p(s) f (x(τ(s)))Δs.

Since | f (x)| � c|x|ν , 0 < ν < 1, we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs

+ c
∫ t

t0
H(t,σ(s))p(s)xν (τ(s))Δs. (2.23)

Substituting from (2.13) and (2.14) into (2.23), we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)
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+
∫ σ(t)

σ(t0)
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)Δs

+ c
∫ τ(t)

τ(t0)
H(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν (s)Δs. (2.24)

Since τ(t) � t , we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)

−
∫ τ(t)

σ(t0)
|(HΔs(t,σ∗(s))r(σ∗(s)))Δs |(σ∗(s))Δx(s)Δs

+ c
∫ τ(t)

τ(t0)
H(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν(s)Δs,

and

∫ t

t0
H(t,σ(s))e(s)Δs � L(t,t0)

−
∫ τ(t)

t0
[|(HΔs(t,σ∗(s))r(σ∗(s)))Δs |(σ∗(s))Δx(s)

− cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν (s)]Δs, (2.25)

where

L(t, t0) = M(t,t0)+
∫ σ(t0)

t0
|(HΔs(t,σ∗(s))r(σ∗(s)))Δs |(σ∗(s))Δx(s)Δs+

∫ t0

τ(t0)
cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν(s)]Δs.

Set F(x) = ax− bxν , for x > 0, a � 0, b > 0. If 0 < ν < 1, then F(x) has the
minimum Fmin = (ν −1)ν

ν
1−ν a

ν
ν−1 b

1
1−ν . From (2.25), we have

∫ t

t0
H(t,σ(s))e(s)Δs � L(t,t0)−

∫ τ(t)

t0
P(t,s)Δs.

∫ t

t0
H(t,σ(s))e(s)Δs+

∫ τ(t)

t0
P(t,s)Δs � L(t,t0). (2.26)

Thus, multiplying (2.26) by H−1(t,t0) and taking the upper limit of (2.26), we get a
contradiction with (2.21). This completes the proof.

THEOREM 2.5. Assume that

(i) τ(t) � t ,
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(ii) there exist two positive constants c and ν such that

| f (x)| � c|x|ν , 0 < ν < 1,

(iii) if there exist a kernel function H(t,s) satisfying (H1)− (H3) such that

(HΔs(t,s)r(s))Δs � 0, (2.27)

lim
t→∞

1
H(t,t0)

∫ τ(t)

t
cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))ΔsνkΔs < ∞, (2.28)

limsup
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs+

∫ t

τ(t0)
P(t,s)Δs] = ∞, (2.29)

liminf
t→∞

1
H(t,t0)

∫ t

t0
H(t,σ(s))e(s)Δs−

∫ t

τ(t0)
P(t,s)Δs] = −∞, (2.30)

where P(t,s) , τ∗(t) and σ∗(t) are the same as in Theorem 2.2, then all solutions of

Eq. (1.1) satisfying x(t) = O(tk) are oscillatory.

EXAMPLE 2.2. Consider the equation (T = R)

(tx
′
(t))

′
+ tmxν(t) = tα cost, (2.31)

where m � 0, α > 0 and 0 < ν < 1. Here,

r(t) = t, p(t) = tm, f (x) = xν , 0 < ν < 1

with c = 1 and e(t) = tα cost . To apply Theorem 2.4, let us take H(t,s) = (t − s) .
Therefore, we have

(H
′
(t,s)r(s))

′
= −1 < 0.

Since
P(t,s) = (ν −1)ν

ν
1−ν (t− s)

1
1−ν s

m
1−ν ,

then ∫ t

0
P(t,s)ds = (ν −1)ν

ν
1−ν

∫ t

0
(t − s)

1
1−ν s

m
1−ν ds

= (ν −1)ν
ν

1−ν t
m+1
1−ν +1

∫ 1

0
(1−u)

1
1−ν u

m
1−ν du

= (ν −1)ν
ν

1−ν B(
1

1−ν
+1,

m
1−ν

+1)t
m+1
1−ν +1,

where the beta function B( 1
1−ν +1, m

1−ν +1) is positive constant. On the other hand,

∫ t

0
(t − s)sα coss ds = tα+2

∫ 1

0
(1−u)uα cosut du = tα+2I1,α(t),
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where I1,α(t) has the asymptotic formula

I1,α(t) = Γ(2)t−2 cos(t −π)+o(t−2) as t → ∞.

Consequently, Eq. (2.31) is oscillatory if α > m+1
1−ν +1.

EXAMPLE 2.3. Consider the equation (T = R)

− x′′(t)+ tmxν(t) = tα cost, (2.32)

where m � 0, α > 0 and 0 < ν < 1. Here,

r(t) = −1, p(t) = tm, f (x) = xν , 0 < ν < 1

with c = 1 and e(t) = tα cost . To apply Theorem 2.3, let us take H(t,s) = (t − s)β ,
β > 1. Therefore, we have

(H
′
(t,s)r(s))

′
= −β (β −1)(t− s)(β−2) < 0.

Since
P(t,s) = (ν −1)(

ν
β (β −1)

)
ν

1−ν (t − s)
(2−β)ν+β

1−ν s
m

1−ν ,

then∫ t

0
P(t,s)ds = (ν −1)(

ν
β (β −1)

)
ν

1−ν

∫ t

0
(t − s)

(2−β)ν+β
1−ν s

m
1−ν ds

= (ν −1)(
ν

β (β −1)
)

ν
1−ν t

(2−β)ν+β+m
1−ν +1

∫ 1

0
(1−u)

(2−β)ν+β
1−ν u

m
1−ν du

= (ν −1)(
ν

β (β −1)
)

ν
1−ν B

( m
1−ν

+1,
(2−β )ν + β

1−ν
+1

)
t

(2−β)ν+β+m
1−ν +1,

where the beta function B( m
1−ν + 1, (2−β )ν+β

1−ν + 1) is positive constant. On the other
hand,

∫ t

0
(t − s)β sα coss ds = tβ+α+1

∫ 1

0
(1−u)βuα cosut du = tβ+α+1Iβ ,α(t),

where Iβ ,α(t) has the asymptotic formula

Iβ ,α(t) = Γ(β +1)t−β−1 cos(t − (β +1)π
2

)+o(t−β−1) as t → ∞.

Consequently, Eq. (2.32) is oscillatory if α > (2−β )ν+β+m
1−ν +1.

REMARK 2.3. The results of [10] can not be applied to Eq. (2.32) for r(t) =
−1 < 0. But, according to Theorem 2.3, when (T = R) and H(t,s) = (t− s)β , β > 1,
this equation is oscillatory.
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EXAMPLE 2.4. Consider the equation (T = R)

− x′′(t)+ tm |x(t − τ)|νsgn x(t − τ) = tα cost, (2.33)

where m � 0, α > 0 and 0 < ν < 1. Here,

r(t) = −1, p(t) = tm, f (x) = xν , 0 < ν < 1

with c = 1 and e(t) = tα cost . To apply Theorem 2.3, let us take H(t,s) = (t − s)β ,
β > 1. Therefore, we have

(H
′
(t,s)r(s))

′
= −β (β −1)(t− s)(β−2) < 0.

Since P(t,s) = (ν −1)( ν
β (β−1))

ν
1−ν (t− s)

(2−β)ν
1−ν (t− s− τ)

β
1−ν (s+ τ)

m
1−ν , then

∫ t−τ

0
P(t,s)ds = (ν −1)(

ν
β (β −1)

)
ν

1−ν

∫ t

τ
(t − s+ τ)

(2−β)ν
1−ν (t − s)

β
1−ν s

m
1−ν ds

� (ν −1)(
ν

β (β −1)
)

ν
1−ν t

(2−β)ν
1−ν

∫ t

0
(t − s)

β
1−ν s

m
1−ν ds

= (ν −1)(
ν

β (β −1)
)

ν
1−ν t

(2−β)ν+β+m
1−ν +1

∫ 1

0
(1−u)

β
1−ν u

m
1−ν du

= (ν −1)(
ν

β (β −1)
)

ν
1−ν B(

m
1−ν

+1,
β

1−ν
+1)t

(2−β)ν+β+m
1−ν +1,

where the beta function B( m
1−ν +1, β

1−ν +1) is positive constant. On the other hand,

∫ t

0
(t − s)β sα coss ds = tβ+α+1

∫ 1

0
(1−u)βuα cosut du = tβ+α+1Iβ ,α(t),

where Iβ ,α(t) has the asymptotic formula

Iβ ,α(t) = Γ(β +1)t−β−1 cos(t − (β +1)π
2

)+o(t−β−1) as t → ∞.

Consequently, Eq. (2.33) is oscillatory if α > (2−β )ν+β+m
1−ν +1.

REMARK 2.4. The results of [9, 10, 13] can not be applied to Eq. (2.33) for
τ(t) �= σ(t)(τ(t) � σ(t)) . But, according to Theorem 2.3, when (T = R) and H(t,s) =
(t− s)β , β > 1, this equation is oscillatory.

Next, we have illustrative examples for the difference equation and 2-delay differ-
ence equation cases.
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EXAMPLE 2.5. Consider the equation (T = 2Z)

Δ2(r(t)Δ2x(t))− p(t) f (x(τ((t))) = e(t), t � t0 := 2, (2.34)

where f Δ(s) = Δ2 f (s) = [ f (2s)− f (s)]/(2s− s) and σ(s) = 2s . Here,

r(t) = 1, p(t) =
t

σ(t)
, e(t) = t2 sin t, f (x) = xν , 0 < ν < 1

with c = 1 and τ(t) = t . To apply Theorem 2.4, let us take H(t,s) = (t−s) . Therefore,
we have

Δ2(Δ2H(t,s)r(s)) = 0,

limsup
t→∞

1
H(t, t0)

∫ t

t0
[H(t,σ(s))e(s)+P(t,s)] Δ2 s

= limsup
t→∞

1
(t−2)

∫ t

2
(t−2s) s2 sins Δ2 s = ∞,

liminf
t→∞

1
H(t, t0)

∫ t

t0
[H(t,σ(s))e(s)−P(t,s)] Δ2 s

= liminf
t→∞

1
(t −2)

∫ t

2
(t−2s) s2 sins Δ2 s = −∞,

where
P(t,s) = 0, σ∗(s) =

s
2

and τ∗(s) = s.

Then, by Theorem 2.4, every solution of Eq. (2.34) is oscillatory.

EXAMPLE 2.6. Consider the equation (T = N)

Δ(r(t)Δx(t))− p(t) f (x(τ((t))) = e(t), (2.35)

where f Δ(s) = Δ f (s) = f (s+1)− f (s) and σ(s) = s+1. Here,

r(t) = −1, p(t) = t σ(t), e(t) = (−1)t t2, f (x) = xν , 0 < ν < 1

with c = 1 and τ(t) = t . To apply Theorem 2.4, let us take H(t,s) = (t−s) . Therefore,
we have

Δs(ΔsH(t,s)r(s)) = 0,

limsup
t→∞

1
H(t, t0)

∫ t

t0
[H(t,σ(s))e(s)+P(t,s)] Δs

= limsup
t→∞

1
(t −1)

t−1

∑
s=1

(t− s−1)(−1)s s2 = ∞,

liminf
t→∞

1
H(t, t0)

∫ t

t0
[H(t,σ(s))e(s)−P(t,s)] Δs
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= liminf
t→∞

1
(t−1)

t−1

∑
s=1

(t − s−1)(−1)s s2 = −∞,

where
P(t,s) = 0, σ∗(s) = s−1 and τ∗(s) = s.

Then, by Theorem 2.4, every solution of Eq. (2.35) is oscillatory.

II - Oscillatory behavior of solutions of Eq. (1.2):
In the following we establish oscillation criteria for Eq. (1.2). However, when

τ(t) �= σ(t) (e.g.τ(t) � σ(t) or τ(t) � σ(t)), the oscillation of this equation is not
discussed before except for τ(t) = σ(t) with r(t) = 1 (see [9, 13] and references cited
therein)

THEOREM 2.6. Assume that f ∈C(R,R) satisfying x f (x) > 0 for x �= 0 . If there
exists a function H ∈ ℑ , such that

(HΔs(t,s)r(s))Δs � 0, (2.36)

limsup
t→∞

1
H(t,t0)

∫ t

t0
H(t,σ(s))e(s)Δs = ∞, (2.37)

liminf
t→∞

1
H(t,t0)

∫ t

t0
H(t,σ(s))e(s)Δs = −∞. (2.38)

Then Eq. (1.2) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.2). Suppose that x(t) > 0
for t � t0 (when x(t) is eventually negative, the proof follows the same argument).
Multiplying Eq. (1.2) by H(t,σ(s)) for t � t0 and integrating from t0 to t , we get

∫ t

t0
H(t,σ(s))(r(s)xΔ(s))ΔΔs

−
∫ t

t0
H(t,σ(s))p(s) f (x(τ(s)))Δs =

∫ t

t0
H(t,σ(s))e(s)Δs. (2.39)

Using the integration by parts two times, we have
∫ t

t0
H(t,σ(s))(r(s)xΔ(s))ΔΔs = M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs. (2.40)

Substituting from (2.40) into (2.39), we have
∫ t

t0
H(t,σ(s))e(s)Δs = M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs−

∫ t

t0
H(t,σ(s))p(s) f (x(τ(s)))Δs. (2.41)
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Dividing through by H(t,t0) , we get

1
H(t, t0)

∫ t

t0
H(t,σ(s))e(s)Δs

=
M(t,t0)
H(t,t0)

+
1

H(t,t0)

∫ t

t0
[(HΔs(t,s)r(s))Δs x(σ(s))

−H(t,σ(s))p(s) f (x(τ(s)))]Δs. (2.42)

Taking limsup as t → ∞ , we derive a contradiction. The proof is completed.

REMARK 2.5. Theorem 2.6 is true for τ(t) � t or τ(t) � t and τ(t) � σ(t) or
τ(t) � σ(t) .

EXAMPLE 2.7. Consider the equation (T = R)

(tx
′
(t))

′ − p(t) f (x(τ(t))) = tα cost, (2.43)

where α > 0 and x f (x) > 0. Here, r(t) = t and e(t) = tα cost . To apply Theorem 2.6,
let us take H(t,s) = (t − s)β , 0 < β < 1. Therefore, we have

(H
′
(t,s)r(s))

′
= −β (t− s)β−2(t −β s) < 0,

limsup
t→∞

1

(t− t0)β

∫ t

t0
(t− s)β e(s)ds = ∞,

liminf
t→∞

1

(t− t0)β

∫ t

t0
(t − s)β e(s)ds = −∞.

Hence, by Theorem 2.6, Eq. (2.43) is oscillatory.

REMARK 2.6. The results of [9, 13] can not be applied to Eq. (2.43) for r(t) = t .
But, according to Theorem 2.6, when (T = R) and H(t,s) = (t− s)β , 0 < β < 1, this
equation is oscillatory for α > 0.

THEOREM 2.7. Assume that

(i) τ(t) � σ(t) ,

(ii) there exist two positive constants c and ν such that

| f (x)| � c|x|ν , ν > 1,

(iii) if there exist a kernel function H(t,s) satisfying (H1)− (H3) such that

(HΔs(t,s)r(s))Δs � 0, (2.44)
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limsup
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs−

∫ τ(t)

σ(t0)
Q(t,s)Δs] = ∞, (2.45)

liminf
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs+

∫ τ(t)

σ(t0)
Q(t,s)Δs] = −∞, (2.46)

where

Q(t,s) = (ν −1)ν
ν

1−ν [(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δ]
ν

ν−1

× [cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δ]
1

1−ν ,

τ∗(s) and σ∗(s) are the inverse functions of τ(s) and σ(s) respectively, then Eq. (1.2)
is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.2). Suppose that x(t) > 0
for t � t0 (when x(t) is eventually negative, the proof follows the same argument).
Proceeding as in the proof of Theorem 2.6 to get (2.41), i.e.,
∫ t

t0
H(t,σ(s))e(s)Δs = M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs−

∫ t

t0
H(t,σ(s))p(s) f (x(τ(s)))Δs. (2.47)

Since | f (x)| � c|x|ν , ν > 1, we have
∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs−

c
∫ t

t0
H(t,σ(s))p(s)xν (τ(s))Δs. (2.48)

Substituting from (2.13) and (2.14) into (2.48), we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)

+
∫ σ(t)

σ(t0)
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)Δs

− c
∫ τ(t)

τ(t0)
H(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν(s)Δs.

Since τ(t) � σ(t) , we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)

+
∫ τ(t)

σ(t0)
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)Δs
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− c
∫ τ(t)

τ(t0)
H(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν(s)Δs,

∫ t

t0
H(t,σ(s))e(s)Δs = M(t,t0)

+ c
∫ τ(t0)

σ(t0)
H(t,σ(τ∗(s)))p(τ∗(s))((τ∗(s)))Δxν(s)Δs

+
∫ τ(t)

σ(t0)
[(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)

− cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν(s)]Δs,

and
∫ t

t0
H(t,σ(s))e(s)Δs � K(t,t0)

−
∫ τ(t)

σ(t0)
[cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν(s)

− (HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)]Δs,

where

K(t, t0) = M(t,t0)+ c
∫ τ(t0)

σ(t0)
H(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δxν (s)Δs.

Set

Aν = [cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δ]xν(s),

Bν−1 =
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δ

ν[cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))Δ]
1
ν
.

Applying Lemma 2.1, we have

∫ t

t0
H(t,σ(s))e(s)Δs � K(t,t0)+

∫ τ(t)

σ(t0)
Q(t,s)Δs,

∫ t

t0
H(t,σ(s))e(s)Δs−

∫ τ(t)

σ(t0)
Q(t,s)Δs � K(t,t0). (2.49)

Thus, multiplying (2.49) by H−1(t,t0) and taking the upper limit of (2.49), we get a
contradiction with (2.45). This completes the proof.

THEOREM 2.8. Assume that

(i) τ(t) � σ(t) ,
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(ii) there exist two positive constants c and ν such that

| f (x)| � c|x|ν , 0 < ν < 1,

(iii) if there exist a kernel function H(t,s) satisfying (H1)− (H3) such that

(HΔs(t,s)r(s))Δs � 0, (2.50)

limsup
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs+

∫ σ(t)

τ(t0)
Q(t,s)Δs] = ∞, (2.51)

liminf
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs−

∫ σ(t)

τ(t0)
Q(t,s)Δs] = −∞, (2.52)

where Q(t,s) , τ∗(t) and σ∗(t) are the same as in Theorem 2.7, then Eq. (1.2) is

oscillatory.

THEOREM 2.9. Assume that

(i) τ(t) � t ,

(ii) there exist two positive constants c and ν such that

| f (x)| � c|x|ν , 0 < ν < 1,

(iii) if there exist a kernel function H(t,s) satisfying (H1)-(H3) such that

(HΔs(t,s)r(s))Δs � 0, (2.53)

limsup
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs+

∫ τ(t)

t0
Q(t,s)Δs] = ∞, (2.54)

liminf
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs−

∫ τ(t)

t0
Q(t,s)Δs] = −∞, (2.55)

where Q(t,s) , τ∗(t) and σ∗(t) are the same as in Theorem 2.7, then Eq. (1.2) is
oscillatory.

THEOREM 2.10. Assume that

(i) τ(t) � t ,

(ii) there exist two positive constants c and ν such that

| f (x)| � c|x|ν , 0 < ν < 1,

(iii) if there exist a kernel function H(t,s) satisfying (H1)-(H3) such that

(HΔs(t,s)r(s))Δs � 0, (2.56)
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lim
t→∞

1
H(t,t0)

∫ τ(t)

t
cH(t,σ(τ∗(s)))p(τ∗(s))(τ∗(s))ΔsνkΔs < ∞, (2.57)

limsup
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs+

∫ t

τ(t0)
Q(t,s)Δs] = ∞, (2.58)

liminf
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs−

∫ t

τ(t0)
Q(t,s)Δs] = −∞, (2.59)

where Q(t,s) , τ∗(s) and σ∗(s) are the same as in Theorem 2.7, then all solutions of

Eq. (1.2) satisfying x(t) = O(tk) are oscillatory.

EXAMPLE 2.8. Consider the equation (T = R)

(1
t
x′(t)

)′ − tmxν(t) = tα cost, (2.60)

where m � 0, α > 0 and 0 < ν < 1. Here,

r(t) =
1
t
, p(t) = tm, f (x) = xν , 0 < ν < 1

with c = 1 and e(t) = tα cost . To apply Theorem 2.8, let us take H(t,s) = (t − s) .
Therefore, we have

(H
′
(t,s)r(s))

′
=

1
s2 > 0.

Since

Q(t,s) = (ν −1)ν
ν

1−ν (t − s)
1

1−ν s
2ν+m
1−ν ,

then ∫ t

0
Q(t,s)ds = (ν −1)ν

ν
1−ν

∫ t

0
(t− s)

1
1−ν s

2ν+m
1−ν ds

= (ν −1)ν
ν

1−ν t
2ν+m+1

1−ν +1
∫ 1

0
(1−u)

1
1−ν u

2ν+m
1−ν du

= (ν −1)ν
ν

1−ν B(
1

1−ν
+1,

2ν +m
1−ν

+1)t
2ν+m+1

1−ν +1,

where the beta function B( 1
1−ν +1, 2ν+m

1−ν +1) is positive constant. On the other hand,

∫ t

0
(t − s)sα coss ds = tα+2

∫ 1

0
(1−u)uα cosut du = tα+2I1,α(t),

where I1,α(t) has the asymptotic formula

I1,α(t) = Γ(2)t−2 cos(t −π)+o(t−2) as t → ∞.

Consequently, Eq. (2.60) is oscillatory if α > 2ν+m+1
1−ν +1.
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REMARK 2.7. The results of [9, 13] can not be applied to Eq. (2.60) for r(t) = 1
t .

But, according to Theorem 2.7, when (T = R) and H(t,s) = (t − s) , this equation is
oscillatory.

III - Oscillation criteria of the Eq:

(r(t)xΔ(t))Δ ± p(t) f (x(τ(t))) = e(t). (2.61)

When p(t) changes its sign.

THEOREM 2.11. Assume that

(i) τ(t) � t ,

(ii) there exist two positive constants c and ν such that

| f (x)| � c|x|ν , 0 < ν < 1,

(iii) if there exist a kernel function H(t,s) satisfying (H1)-(H3) such that

(HΔs(t,s)r(s))Δs � 0, (2.62)

limsup
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs+

∫ τ(t)

t0
G(t,s)Δs] = ∞, (2.63)

liminf
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs−

∫ τ(t)

t0
G(t,s)Δs] = −∞, (2.64)

where

G(t,s) = (ν −1)ν
ν

1−ν [(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δ]
ν

ν−1

× [cH(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))Δ]
1

1−ν ,

τ∗(s) and σ∗(s) are the inverse functions of τ(s) and σ(s) respectively and p∗(s) =
max{±p(s),0} , then Eq. (1.2) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (2.61). Suppose that x(t) > 0
for t � t0 (when x(t) is eventually negative, the proof follows the same argument).
Multiplying Eq. (2.61) by H(t,σ(s)) for t � t0 and integrating from t0 to t , we have

∫ t

t0
H(t,σ(s))e(s)Δs �

∫ t

t0
H(t,σ(s))(r(s)xΔ(s))ΔΔs

−
∫ t

t0
H(t,σ(s))p∗(s) f (x(τ(s)))Δs.

From (2.5), we get
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∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs

−
∫ t

t0
H(t,σ(s))p∗(s) f (x(τ(s)))Δs.

Since | f (x)| � c|x|ν , 0 < ν < 1, we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)+

∫ t

t0
(HΔs(t,s)r(s))Δs x(σ(s))Δs

− c
∫ t

t0
H(t,σ(s))p∗(s)xν (τ(s))Δs. (2.65)

Substituting from (2.13) and (2.14) into (2.65), we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)

+
∫ σ(t)

σ(t0)
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)Δs

− c
∫ τ(t)

τ(t0)
H(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))Δxν (s)Δs. (2.66)

Since τ(t) � t , we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)

+
∫ τ(t)

σ(t0)
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)Δs

− c
∫ τ(t)

τ(t0)
H(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))Δxν(s)Δs,

and
∫ t

t0
H(t,σ(s))e(s)Δs � K(t,t0)

+
∫ τ(t)

t0

[
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)

− cH(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))Δxν(s)
]
Δs, (2.67)

where

K(t, t0) = M(t, t0)+
∫ t0

σ(t0)
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)Δs

− c
∫ t0

τ(t0)
H(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))Δxν(s)Δs.
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Set F(x) = ax− bxν , for x > 0, a � 0, b > 0. If 0 < ν < 1, then F(x) has the
minimum Fmin = (ν −1)ν

ν
1−ν a

ν
ν−1 b

1
1−ν . From (2.67), we have

∫ t

t0
H(t,σ(s))e(s)Δs � K(t,t0)+

∫ τ(t)

t0
G(t,s)Δs,

∫ t

t0
H(t,σ(s))e(s)Δs−

∫ τ(t)

t0
G(t,s)Δs � K(t,t0). (2.68)

Thus, multiplying (2.68) by H−1(t,t0) and taking the lower limit of (2.68), we get a
contradiction with (2.64). This completes the proof.

THEOREM 2.12. Assume that

(i) τ(t) � t ,

(ii) there exist two positive constants c and ν such that

| f (x)| � c|x|ν , 0 < ν < 1,

(iii) if there exist a kernel function H(t,s) satisfying (H1)-(H3) such that

(HΔs(t,s)r(s))Δs � 0, (2.69)

lim
t→∞

1
H(t, t0)

∫ τ(t)

t
cH(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))ΔsνkΔs < ∞, (2.70)

limsup
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs+

∫ t

τ(t0)
G(t,s)Δs] = ∞, (2.71)

liminf
t→∞

1
H(t,t0)

[
∫ t

t0
H(t,σ(s))e(s)Δs−

∫ t

τ(t0)
G(t,s)Δs] = −∞, (2.72)

where G(t,s) , τ∗(s) , σ∗(s) and p∗(t) are the same as in Theorem 2.11, then all solu-

tions of Eq. (2.59) satisfying x(t) = O(tk) are oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (2.61). Suppose that x(t) > 0
for t � t0 (when x(t) is eventually negative, the proof follows the same argument).
Proceeding as in the proof of Theorem 2.11 to get (2.66), i.e.,

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)

+
∫ σ(t)

σ(t0)
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)Δs

− c
∫ τ(t)

τ(t0)
H(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))Δxν(s)Δs.
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Since τ(t) � t , we have

∫ t

t0
H(t,σ(s))e(s)Δs � M(t,t0)

+
∫ t

σ(t0)
(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)Δs

− c
∫ t

τ(t0)
H(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))Δxν (s)Δs

− c
∫ τ(t)

t
H(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))Δxν(s)Δs,

and

∫ t

t0
H(t,σ(s))e(s)Δs � F(t,t0)

− c
∫ τ(t)

t
H(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))Δxν(s)Δs

+
∫ t

τ(t0)
[(HΔs(t,σ∗(s))r(σ∗(s)))Δs(σ∗(s))Δx(s)

− cH(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))Δxν(s)]Δs,

where

F(t, t0) = M(t,t0)+
∫ τ(t0)

σ(t0)
(HΔs(t,σ∗(s))r(σ∗(s)))Δ(σ∗(s))Δx(s)Δs.

Since x(t) � Mtk for some constant M > 0, we get from the last theorem, that

∫ t

t0
H(t,σ(s))e(s)Δs−

∫ t

τ(t0)
G(t,s)Δs � F(t,t0)−

cMν
∫ τ(t)

t
H(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))ΔsνkΔs. (2.73)

Thus, multiplying (2.73) by H−1(t,t0) and taking the lower limit of (2.73), we get a
contradiction with (2.72). This completes the proof.

EXAMPLE 2.9. Consider the equation (T = R)

x′′(t)± tm sin t |x(t− τ)|νsgn x(t − τ) = tα cost, t � 0, (2.74)

where m � 0, α > 0 and 0 < ν < 1 are constants. Here,

r(t) = t, p(t) = tm sin t, f (x) = xν , 0 < ν < 1
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with c = 1 and e(t) = tα cost . To apply Theorem 2.11, let us take H(t,s) = (t − s)β ,
β > 1. Therefore, we have

(H
′
(t,s)r(s))

′
= β (β −1)(t− s)β−2 > 0.

Since

G(t,s) � (ν −1)(
ν

β (β −1)
)

ν
1−ν (t − s)

(2−β)ν
1−ν (t − s− τ)

β
1−ν (s+ τ)

m
1−ν ,

then
∫ t−τ

0
G(t,s)ds = (ν −1)(

ν
β (β −1)

)
ν

1−ν

∫ t

τ
(t− s+ τ)

(2−β)ν
1−ν (t− s)

β
1−ν s

m
1−ν ds

� (ν −1)(
ν

β (β −1)
)

ν
1−ν t

(2−β)ν
1−ν

∫ t

0
(t − s)

β
1−ν s

m
1−ν ds

= (ν −1)(
ν

β (β −1)
)

ν
1−ν t

(2−β)ν+β+m
1−ν +1

∫ 1

0
(1−u)

β
1−ν u

m
1−ν du

= (ν−1)(
ν

β (β −1)
)

ν
1−ν B(

β
1−ν

+1,
m

1−ν
+1)t

(2−β)ν+β+m
1−ν +1,

where the beta function B( β
1−ν +1, m

1−ν +1) is positive constant. On the other hand,

∫ t

0
(t − s)β sα coss ds = tβ+α+1

∫ 1

0
(1−u)βuα cosut du = tβ+α+1Iβ ,α(t),

where Iβ ,α(t) has the asymptotic formula

Iβ ,α(t) = Γ(β +1)t−β−1 cos

(
t− (β +1)π

2

)
+o(t−β−1) as t → ∞.

Consequently, Eq. (2.74) is oscillatory if α > (2−β )ν+β+m
1−ν +1.
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